

Porter

The Maneuver Visualization Tool

Rohan Patel

Cal. Poly Pomona Aerospace Engineering **Jimmy Moore**

University of Utah School Of Computing

November 18, 2020

Design Team

Rohan Patel

- Finishing undergrad at CPP (Dec. '20)
- Interested in interplanetary trajectory and maneuver design
- Enjoys aviation, photography, and travel

Jimmy Moore

- A.B.D. Computer Science PhD at U. Utah
- Studying Data Visualization & Human-Centered Design
- <3 synthesizers, music, and baking

How can we support maneuver designers to more conveniently and effectively work with MONTE LAMBIC output data?

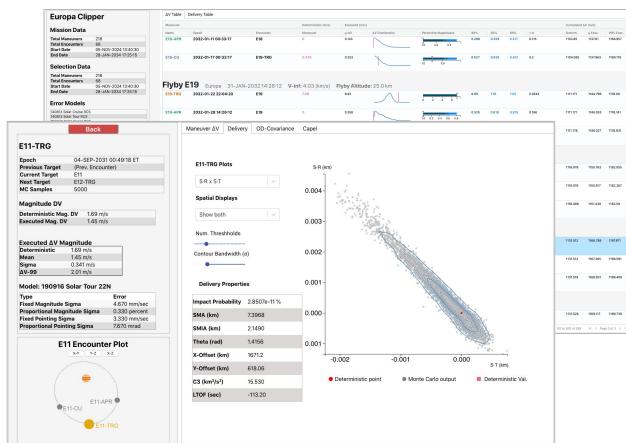
Current LAMBIC Data Processing

 Simulation statistics are exported to large text files.

 There are summary and detailed text files ordered by result type.

 Data is sectioned by variable making analysis of multiple variables for a single maneuver less convenient.

						1	
ecuted Delta-v M	Magnitude For Each Maneu	ıver:					
Maneuver	Mean (m/sec)	Sigma (m/sec)	90%tile	95%tile	99%tile		
TCM1	(m/sec) 5.984338497124361e+00	(m/sec) 3.577981520214896e+00	(m/sec) 1.112424419355801e+01	(m/sec) 1.289428096218146e+01	(m/sec) 1.675812368850398e+01	i	
TCM1 TCM2	5.984338497124361e+00 1.300649256015126e-01	3.577981520214896e+00 9.925677736013366e-02	1.112424419355801e+01 2.574469115281136e-01	1.289428096218146e+01 3.270661604344796e-01	4 752702005110072- 01		٦
TCM2 MGA-30	1.300649256015126e-01 9.994168426245187e-01		2.574469115281136e-01 1.013698925697085e+00	3.270661604344796e-01 1.017532406193550e+00	4 0000000000000000000000000000000000000	240e-04	
MGA-30 MGA-APR-1	9.99416842624518/e-01 3.924351598128361e-02		1.013698925697085e+00 6.302439472379362e-02	7.045426508310414e-02	1.026230639186889e+00 8.715871984008848e-02	632e-04	
MGA-APR-1 MGA-APR-2	1.352473984018922e-02		2.216574491774570e-02	2.540123447277078e-02	3.121590400723873e-02	i	
MGA-APK-2 MGA-CU-1	3.639359309663960e+00	7.720240003025990e-01	4.625889286526790e+00	4.930125616565962e+00	5.484095420936738e+00	i	
MGA-CU-2	4.151853733767459e-02		6.974190662696680e-02	8.153043506746532e-02	1.038337451458147e-01	F012-06	
EGA1+1yearBurn	1.137879785381149e-01	8.482394899640894e-02	2.353571034487911e-01	2.744578750715480e-01	3.604049862599412e-01	2016-00	
EGA1-APR-1	2.224592519530416e-02	1.244256301710710e-02	3.892881834639839e-02	4.638243564898829e-02	6.161937345699715e-02	i	1
EGA1-APR-2	1.945982070771165e-02		3.151816984571071e-02	3.570146069427786e-02	4.340689479685823e-02	i	1
EGA1-APR-3	1.354599449360169e-02		2.199345368429428e-02	2.525367121622163e-02	3.082734862936434e-02		l
EGA1-CU-1	7.766779345368597e-01	4.089329747238231e-01	1.334387783221923e+00	1.543003798742734e+00	1.979292877823814e+00		tу
EGA1-CU-2	1.202033538009216e-02	7.076736943897456e-03	2.111942450666982e-02	2.577876580159352e-02	3.536333022721765e-02	1	1
G00-APR-1	8.406227246760721e-02	6.215999464162381e-02	1.710679880619265e-01	2.061088442040083e-01	2.703249919471680e-01	i	L
G00-APR-2	3.793954989001416e-02	1.789647989547702e-02	6.204567826813941e-02	7.127498309015240e-02	8.912495091111021e-02	-02-07	e-
G00-APR-3	1.493563160453022e-02	7.132714033184036e-03	2.447126700967377e-02	2.799425101238695e-02	3.496591598824711e-02	688e-07	e+
JOI CH 1	9.151931912476730e+02	4.252513048727852e+00	9.205708635730584e+02	9.220468553203922e+02	9.251739029451637e+02	i	_
J0I-CU-1	1.069419938482026e+01	7.157493925106058e+00	2.090056386567001e+01	2.473255690830724e+01	3.292006043294113e+01	i	e+
JOI-CU-2	1.497162751697134e-01	1.422107828663017e-01	3.219509825930254e-01	4.347884569610375e-01	6.631324906449488e-01	229e-04	e+
PRM CU 1	1.155179157450093e+02		1.165824361158911e+02	1.168796426622650e+02	1.1/4866099180458e+02		-
PRM-CU-1 PRM-CU-2	1.553591430826063e+00	7.246914661587667e-01 1.432537031368258e-02	2.546715516424201e+00	2.850635938020802e+00	3.552989766445131e+00	į .	e+
G01-APR-1	2.348642300044192e-02 1.627012081419207e-02		4.259738319676432e-02 2.799218408009739e-02	5.090167473344149e-02	7.040908346405819e-02 4.195711673121103e-02		
G01-APK-1 G01-APR-2	1.007816978505422e-01	6.990784690573133e-02	1.990022389805089e-01	3.289562392481718e-02 2.350660742433254e-01	3.181239978867761e-01	082e-05	
G01-APK-2 G01-CU	5.988323761578244e-01	3.308621229197912e-01	1.036715663898204e+00	1.201551017746609e+00	1.567127600450474e+00	į .	
G02-TRG	4.789689409444836e+00	1.053544454778953e-01	4.925683937296758e+00	4.962371186803469e+00	5.047112916981545e+00	i	e-
G02-APR-1	7.706898496396468e-02	3.992618092203876e-02	1.319399821607687e-01	1.518544532275507e-01	1.938676589405342e-01	E160-03	=
G02-APR-2	1.239590737883457e-01	8.232766851635634e-02	2.402535227187991e-01	2.828835417822581e-01	3.775842122119161e-01		
G02-CU	8.433668217154083e-01		1.745009308808758e+00	2.084425880522748e+00	2.798326875019675e+00	1240 03	
G03-TRG	6.130197648762404e-02		1.093091873875907e-01	1.309504622207472e-01	1.744883132166301e-01	į .	þ-
G03-APR-1	1.352287319539004e-02		2.313977207567744e-02	2.699943257219799e-02	3.565578441943646e-02	į .	e-
G03-APR-2	9.861542056200387e-02	6.600730614088071e-02	1.900394724308597e-01	2.275073104153433e-01	3.026343716274733e-01	545e-04	
G03-CU	8.013870716702858e-01	5.865287512536854e-01	1.633978019001594e+00	1.930474143450400e+00	2.565621566244902e+00	į .	e+
G04-TRG	7.335379302326334e-02	5.939958790142526e-02	1.536108415083391e-01	1.912166230690196e-01	2.678857440393400e-01	i	e+
G04-APR	4.908197831995459e-02	2.584492513821149e-02	8.406449887421806e-02	9.617003401455118e-02	1.235397474824182e-01	-21- 04	
G04-CU	1.481762091551520e+00	1.112357443717493e+00	3.089082289048069e+00	3.669340973373691e+00	4.7003040133003030100	181e-04 929e-04	e+
E01-TRG	1.953480898236933e-01	2.154488137892850e-01	5.108198668867738e-01	6.337413739197575e-01	0.9310/310092302/6-01	9296-64	bн
E01-APR	1.867196406012113e-02		3.443808215627262e-02	4.090302712217306e-02	5.812745773715759e-02	i	1
E01-CU	9.104453087921569e-01		1.923065995008273e+00	2.265133534910445e+00	3.072968290936553e+00	į .	
E02-TRG	2.642498233490302e-01		6.015999696628515e-01	7.746757288885526e-01	1.075787114550508e+00	276e-05	1
E02-APR	1.991362818928939e-02	1.416528403232746e-02	3.802584545960676e-02	4.684114175757732e-02	6.789488686580394e-02		
E02-CU	2.559793690642006e+00	8.702423490375989e-01	3.764076592942703e+00	4.408410079759911e+00	5.518204912398916e+00	i	e-
E03-TRG	7.314763685848378e+00	4.720151006021458e-01	7.875361157927793e+00	8.064912784859073e+00	8.433146299715625e+00		
E03-APR E03-CU	2.128472147898962e-01 9.349432194819800e-01	1.566744290578100e-01 7.577700390642509e-01	4.365275700789277e-01 1.998350469000490e+00	5.132577888721137e-01 2.395977472756546e+00	6.693226747692521e-01 3.215327712490389e+00	486e-04	
E04-TRG	4.634988943255430e-01	2.656412734290359e-01	7.027140846870713e-01	8.730548571232638e-01	1.447553997257552e+00	962e-04	e-
E04-ING E04-APR	2.290236938141759e-02		4.427563547129428e-02	5.322633862754975e-02	7.742623018219243e-02	į .	e-
E04-CU	7.675345659194769e-01		1.725427626868729e+00	2.142463431694226e+00	2.916797634102932e+00	i	-
E05-TRG	1.835729870779062e+00	4.867015804389343e-01	2.290933250254757e+00	2.339392263462929e+00	2.532775899646498e+00	602e-05	þ-
E05-APR	5.373369471045700e-02	4.123285656706113e-02	1.102459689167444e-01	1.368884693609741e-01	1.896761894698513e-01		e-
E05-CU	2.201799485169046e-01	1.968361851555591e-01	4.964361671425382e-01	6.235331813767456e-01	8.979061668497149e-01	i	-
E06-TRG	4.837204979300064e+00	1.190003187651828e-01	4.928529383567868e+00	4.959982842425672e+00	5.097620719371720e+00		þ٠
E06-APR	2.777048282919037e-01	2.076321564884382e-01	5.661443060333055e-01	6.795040706927010e-01		886e-04	e-
E06-CU	7.566773782823671e-01	5.739890422426491e-01	1.571479871600472e+00	1.910851517047862e+00	2.556515390229260e+00	927e-04	_
E07-TRG	4.975354275471517e+00	3.932976220837671e-01	5.363650117804909e+00	5.408459331395144e+00	5.532035802096245e+00	į .	þ-
FØ7-APR	1.467320155066845e-01 (km)	9.808051958386858e-02 (km) (km)	2.843185523813345e-01	3.431009372933930e-01 (km/sec)	4.531194375960652e-01	i	e-
E24-CU		(km) (km) -1.265750128550097e+02 -4.72		05554954636e-04 -7.905980724	(km/sec) 4096009e-06 -6.295967037224	i905e-05	e-
Maneuver	B.R fixed	B.T fixed Lin.	. Time of Flight S.R fix	ked S.T fixed	C3		e-
Ge	2-TRG G	602 Ganyn	nede 1.31837	75632706405e-01	1.31837563270	36607	


Proposed Maneuver Analysis Solution

Create an intuitive way to access:

Summary Statistics

 Detailed Result Blocks and M.C. Samples

Maneuver Design
 CAPEL Plots

How it works

1. Process LAMBIC outputs and supplemental BOA files for the front end

2. API call to load and host data

3. Launch frontend for analysis tasks

1. Process LAMBIC Outputs

 Most Stats. Blocks have functions to extract data

 Designed to be used with multiple flight projects and simulations.

 Designed to handle different native data types and result sets automatically.

```
6.417623625726332e-06,
D Covariance": "OD Covariance Not Used"
aneuver Information": {
    "MoonFB": "temp. none",
    "Orbit Number": "NN",
    "Maneuver Type": "XXX",
    "Maneuver Number": "NN"
  Frame": "EME2000",
 'Burn Epoch": 2463741.0183310234,
 Burn Epoch (Cal.)": "23-MAY-2033 12:26:23 ET",
 Execution Error": "190916 Solar Tour 22N",
 'Execution Strategy": "Computed",
  Deterministic Delta-V": {
    'DX": -0.001007743568921487,
    "DY": -0.002082827108445194,
    "DZ": -0.00111287977168529,
  Deterministic Cumulative Delta-V": 1.184439529708479,
    "Frame": "EME2000",
    "Epoch": 2463748.1422883114,
    "Epoch (Cal.)": "30-MAY-2033 15:24:53 ET",
    'Aimpoint Values": {
       "Conic.bDotFixedR": -1432.9738414987157,
       "Conic.bDotFixedT": -1023.2053448457646,
       "Conic.linearizedTOF": -99.0804539749443,
       "Conic.sDotFixedR": 5.551115123125783e-17,
       "Conic.sDotFixedT": 0.0,
       "Conic.bDotFixedR": "km",
       "Conic.bDotFixedT": "km",
       "Conic.linearizedTOF": "sec",
       "Conic.sDotFixedR": "",
       "Conic.sDotFixedT": "",
       "Conic.c3": "km**2/sec**2"
```

2. Porter Server API

Routes

Implemented Routes

- GET /api/missions/:missionName/:simName
 - o returns an overview of a mission of a specific simulation (res_summary.json)
- GET /api/missions/:missionName/:simName/:maneuverName/optSamples/preManeuver
 - o returns Pre Maneuver array
- GET /api/missions/:missionName/:simName/:maneuverName/optSamples/postManeuver
 - o returns Post Maneuver array
- GET /api/missions/:missionName/:simName/:maneuverName/optSamples/executedDv
 - o returns Executed DV array

Planned Routes

- · GET /api/missions
 - o returns list of missions that is stored on the Server
- · GET /api/missions/:missionName
 - o returns list of simulations of a mission that is stored on the Server
- POST /api/missions/:misisonName/:simName
 - o upload set of json files that constitutes a single lambic run of a mission

Testing Routes

Open a web browser of your choice and enter http://localhost:8080/[SOME_ROUTE] for any GET endpoint. You should see the server response in the web browser.

Overarching Design Idea

Analysis is conducted from a high level <u>overview</u> to a low level <u>detailed</u> approach (currently sorted by maneuver).

Overview

I want to see all maneuvers and their respective encounters between a start and stop time that I define.

Maneuver:

- > Name
- > Deterministic DV
- > Executed Mean DV
- > Executed Sigma
- > Executed Percentiles
- > Cumulative Deterministic DV
- > Cumulative Executed DV

Event (Currently B-Plane Encounters for EC data):

- > Name
- > Flyby Altitude
- > Vinfinity
- > Impact Probability %
- > Ellipse Properties

Detail (Per Maneuver)

I am interested in the nitty gritty details of a single maneuver. Show me all the data regarding this specific one.

- > Next Encounter
- > Impact
- > Delivery
- > Miss
- > Executed DV Mag Stats.
- > Commanded DV Mag Stats.
- > Error DV Mag Stats.
- > Execution Error
- > OD Covariance
- > Delivery Plots
 - > B-Plane w/ Samples and Ellipses
 - > C3, S*R, S*T, LFT distributions
- > Capel Plots
 - > Choose from 29 plot options

Europa Clipper

Mission Summary

 Total Maneuvers
 218

 Total Encounters
 68

 Start Date
 05-NOV-2024 13:40:30

 End Date
 28-JAN-2034 17:25:15

Selection Summary

Total Maneuvers	218
Total Encounters	68
Start Date	05-NOV-2024 13:40:30
End Date	28-JAN-2034 17:25:15

Error Models

140813 S	iolar Cruise RCS	
140813 S	iolar Tour RCS	
150323 S	Solar Cruise RCS	
150323 S	Solar Tour RCS	
150413 S	iolar Cruise	
150413 S	olar Tour	
150430 S	Solar Cruise 22N	
150430 S	Solar Cruise 22N x0.5	
150430 S	Solar Cruise 22N x2	
150430 S	Solar Tour 22N	
150430 S	Solar Tour 22N x0.5	
150430 S	Solar Tour 22N x2	
190916 S	iolar Cruise 22N	
190916 S	iolar Cruise 22N x0.5	
190916 S	iolar Cruise 22N x2	
190916 S	iolar Tour 22N	
190916 S	iolar Tour 22N Capability	
190916 S	iolar Tour 22N x0.5	
190916 S	iolar Tour 22N x2	
200514 S	Solar Cruise 22N	
200514 S	Solar Tour 22N	
None		

EGA1 Encounter Plot

Maneuver			Deterministic (m/s)	Executed (m.	/s)						Cumulated I	∆V (m/s)	
lame	Epoch	Encounter	Maneuver	μ-ΔV	ΔV Distribution	Percentile Magnitudes	90%	95%	99%	1-σ	Determ.	μ Ехес.	99% Exe
гсм1	2024-11-05 13:40:30	MGA	0.575	5.98	1	0 5 10 15	11.1	12.9	16.8	3.58	0.575	5.984	16.758
гсм2	2024-12-30 13:40:30	MGA	0	0.13).0 0.2 0.4	0.257	0.327	0.475	0.0993	0.575	6.114	17.087
MGA-30	2025-01-28 19:00:05	MGA	0.999	0.999		3.0 0.5 1.0	1.01	1.02	1.03	0.0111	1.574	7.114	18.081
MGA-APR-1	2025-02-17 18:51:53	MGA	0	0.0392	M	00 0.02 0.04 0.06 0.08	0.063	0.0705	0.0872	0.0175	1.574	7.153	18.127
MGA-APR	2025-02-22 18:51:53	MGA	0	0.0135		.00 0.01 0.02	0.0222	0.0254	0.0312	0.00637	1.574	7.167	18.144
	GA1 Earth 01-DE				ude: 3.01e+3 km			500			1200		
MGA-CU-1	2025-03-09 18:51:53	EGA1	3.47	3.64		0 2 4 6	4.63	4.93	5.48	0.772	5.041	10.806	22.369
MGA-CU-2	2025-03-29 18:51:53	EGA1	0	0.0415		.00 0.05 0.10	0.0697	0.0815	0.104	0.0211	5.041	10.847	22.384
GA1+1ye	2026-09-03 16:35:48	EGA1	0.0034	0.114		0.0 0.1 0.2 0.3	0.235	0.274	0.36	0.0848	5.045	10.961	22.491
GA1-AP	2026-11-01 21:54:57	EGA1	0	0.0222		.00 0.02 0.04 0.06	0.0389	0.0464	0.0616	0.0124	5.045	10.984	22.51
GA1-AP	2026-11-21 21:54:57	EGA1	0	0.0195		.00 0.02 0.04	0.0315	0.0357	0.0434	0.00895	5.045	11.003	22.533
EGA1-AP	2026-11-26 21:54:57	EGA1	0	0.0135		.00 0.01 0.02	0.022	0.0253	0.0308	0.00639	5.045	11.017	22.546
lyby C	Ganymede 10-A	.PR-2030 19:32:0	1 V-inf: 8.27 (km/s) Flyby Alt	i itude: 200 km								
GA1-CU-1	2026-12-11 21:54:57	GO	0.272	0.777		0 1 2	1.33	1.54	1.98	0.409	5.317	11.793	23.455
GA1-CU-2	2026-12-31 21:54:57	GO	0	0.012		00 0.01 0.02 0.03	0.0211	0.0258	0.0354	0.00708	5.317	11.805	23.471

och 19-FEB-2032 22:22:27 ET

Back

Previous Target (Prev. Encounter)

Current Target E26
Next Target C2

MC Samples 5000

Magnitude DV

Deterministic Mag. DV 0.00 (m/s)

Executed Mag. DV 0.0384 (m/s)

Executed ΔV Magnitude

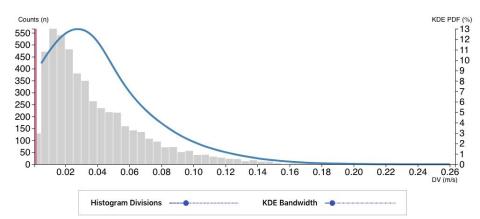
(m/s)

Deterministic 0.00

Mean 0.0384

Sigma 0.0307

ΔV-99 0.139



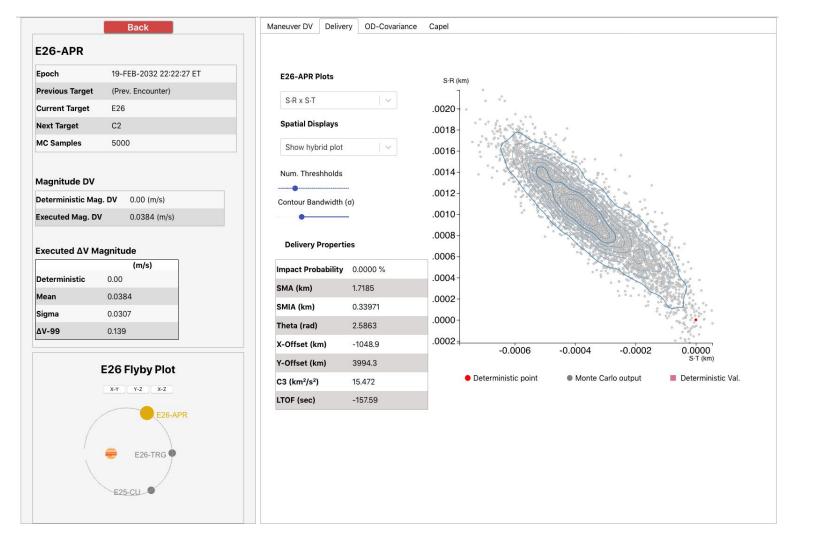
Maneuver DV Delivery OD-Covariance Capel

E26-APR Executed DV

Histogram bar height (counts) indicate the number of MC runs evaluating to a given X-axis velocity.

The Kernel Density Estimation (KDE) line is an approximation of the underlying continuous probability distribution.

Commanded ΔV


	Magnitude	Cumulated
	(m/s)	(m/s)
Mean	0.0377	977
Sigma	0.0308	7.23
90	0.0811	987
95	0.101	990
99	0.139	998

Executed ΔV

	Magnitude	Cumulated
	(m/s)	(m/s)
Mean	0.0384	977
Sigma	0.0307	7.73
90	0.0806	987
95	0.102	991
99	0.139	999

ΔV Error

	Magnitude (m/s)	Cumulated (m/s)
Mean	0.00614	9.30
Sigma	0.00271	3.20
90	0.00972	13.6
95	0.0110	15.0
99	0.0139	18.1

Initial Response

Validation

Five hour-long observational studies. Unanimously positive feedback.

P1: Good to see the DV Distributions and overview tables, previously this was much more difficult

P2: I really like information being in on place so I don't have to keep hopping back and forth between different documents

P3: This is much easier than scanning through a text file.

P4: I usually import data into excel to sort and generate plots, this does it automatically

P5: Making tables is usually where I spend most of my time in the post-processing part. Afterwards, you have to show them to other people. Just this on its own is already an improvement. And the same for the delivery plots. It's very easy to share

Clear Paths Forward

User feedback is coded and available in Airta

Feature requests, modifications, etc.

Integrate with MDNAV and Flight-Ops

Grow capability over time

		Overview Page
	Feedback / Observation	Overview Page
	Feedback / Observation	Overview Page
	Use-Case	Overview Page
	Feedback / Observation	General Function
able	Strategy	Overview Page
	Strategy	Detail Page
	Missing Data	Detail Page
	Feedback / Observation	Detail Page
	Missing Data	Detail Page
	Feedback / Observation	Detail Page
	Feedback / Observation	Overview Page
	Missing Data	Overview Page
	Feedback / Observation	General Function
	Feedback / Observation	Detail Page
	Feedback / Observation	Overview Page
	Researcher Observation	Overview Page
	Feedback / Observation	Overview Page
		Overview Page
	Researcher Observation	Overview Page
	Feedback / Observation	General UX
	Feedback / Observation	General UX
	Researcher Observation	Overview Page
	Feedback / Observation	General Function
	Feedback / Observation	General UX
		Overview Page
		Detail Page

Experience Vector
Feedback Type

Detail Page

Which Page?

Table Layout	When evaluating
General Functionality	"Good to see t
DV Table	Wants to review
Maneuver DV Panel	Troy checks ex
Maneuver DV Panel	Would like to h
Delivery Panel	Liked the data
Delivery Panel	Would like the

General Functionality

Table Interactivity

Maneuver DV Panel

Maneuver DV Panel

Which Component?

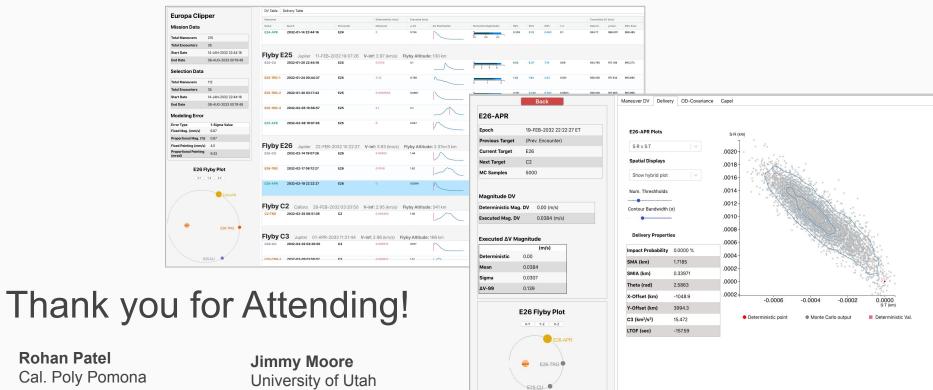
DV Table

A Feedback D

WAs confused

Liked the table

Impact probabi



Future Development Goals

- Incorporate additional maneuver data products (Capel, Flybys, etc.)
- Perform component-specific user studies as views mature
- Transition to a server-side application
- Extend functionality to other missions, simulation environments.
- Tackle user requests (bulk data export, compare simulations, etc.)

Rohan Patel Cal. Poly Pomona Aerospace Engineering rohan.d.patel@jpl.nasa.gov

University of Utah School Of Computing jamoore@jpl.nasa.gov

Mentors

Jeff Stuart & Sonia Hernandez Section 392 Mission Design & Navigation

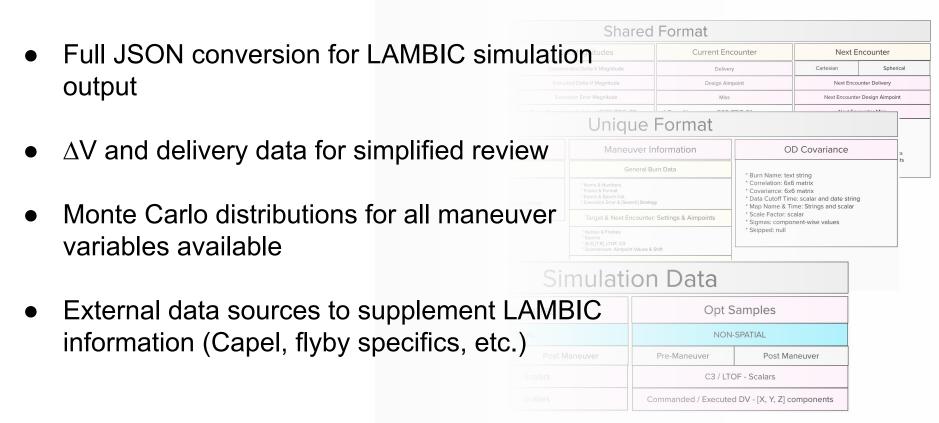
Basak Ramaswamy Section 397 Human Centered Design Group

Supplemental Slides

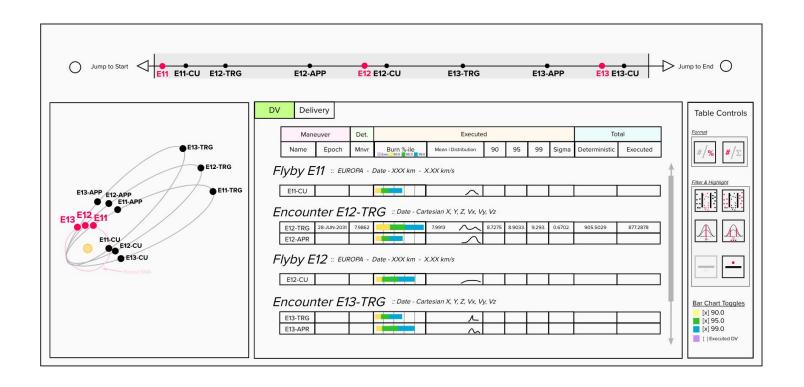
what im thinking is like:

what we hope to see this tool become and how current engineers really like it

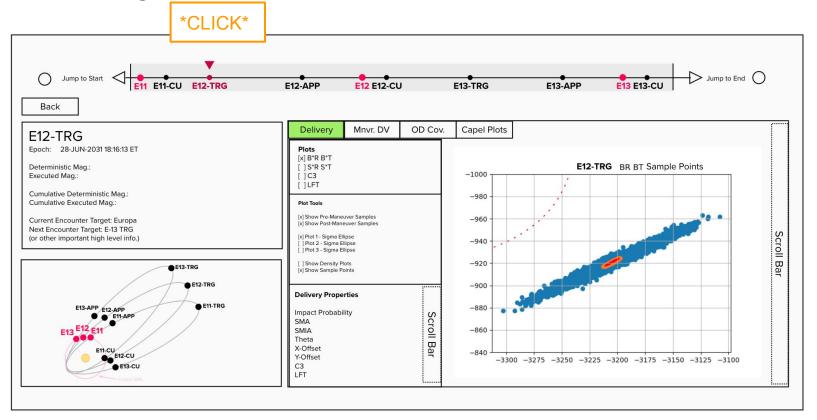
what our goal is


interviews and feedback collection

how the UI looks right now


how data is processed

intro to who we are (I want this so these people know who i am)


Understanding the Data

Porter Organization: Overview Mode Example

Porter Organization: Detailed Mode Example

Internship #1:: Sept - Dec 2019

Figuring it all out

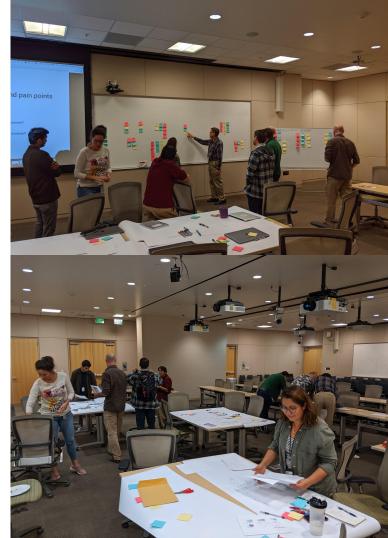
Accessing and formatting data

Learning what people do & need.

Interviews, workshop, prototype

Workshop Goals

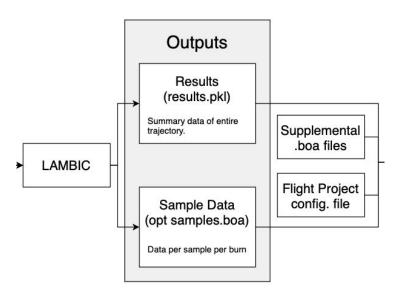
Identify use cases and pain points in maneuver design.

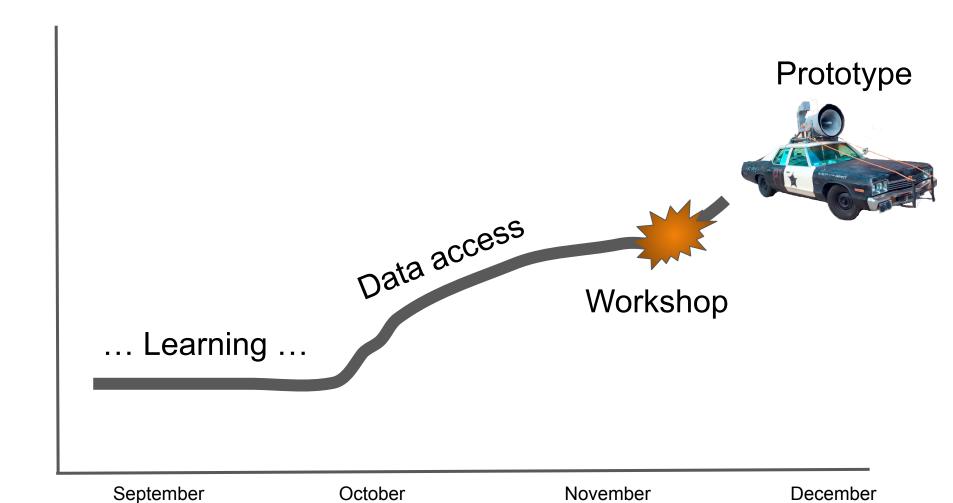

Brainstorm interactive analysis tools to improve workflows.

How do you approach the problem at the moment?

Identify current inefficiencies and challenges

How else can this analysis be performed?


Three use cases


1. Interactively explore high-level summary statistics

2. Drill down to visualize Monte Carlo simulation data

3. Compare different simulation outputs between conditions

Characterizing Exploration Tasks

Internship #2 :: Jun 2020 - Nov. 2020

Finished accessing & formatting data

Understanding what data is available & important (most of the time)

Design interface prototype

Attempts to get feedback on prototype design

Building our technology probe anyway

Current Project Focus

Create an intuitive and all-inclusive way to access:

LAMBIC Summary Statistics Data

Detailed Result Blocks and M.C. Sample Data from LAMBIC

Capel Plots

Initial Prototype Design

Initial Prototype

Europa Clipper

Mission Data

Total Maneuvers	215
Total Encounters	35
Start Date	14-JAN-2032 22:44:16
End Date	08-AUG-2033 00:19:48

Selection Data

Total Maneuvers	112
Total Encounters	35
Start Date	14-JAN-2032 22:44:16
End Date	08-AUG-2033 00:19:48

Modeling Error

Error Type	1-Sigma Value
Fixed Mag. (mm/s)	6.67
Proportional Mag. (%)	0.67
Fixed Pointing (mm/s)	4.0
Proportional Pointing (mrad)	9.33

E26 Flyby Plot

Maneuver			Deterministic (m/s)	Executed (m/	(s)						Cumulated 2	1V (m/s)	
Name	Epoch	Encounter	Maneuver	μ-ΔV	ΔV Distribution	Percentile Magnitudes	90%	95%	99%	1-σ	Determ.	μ Exec.	99% Exe
E24-APR	2032-01-14 22:44:16	E24	0	0.124		0.0 0.2 0.4	0.259	0.32	0.463	0.1	934.77	966.007	988.485
Flyby I	E25 Jupiter 11-FEB	-2032 19:07:26	V-inf: 3.97 (km/s)	Flyby Altitu	de: 100 km								
E24-CU	2032-01-20 22:44:16	E25	0.0152	5.1		0 2 4 6	6.02	6.37	7.19	0.69	934.785	971.108	993.273
E25-TRG-1	2032-01-24 00:44:37	E25	3.32	0.706	N	0 1 2	1.42	1.63	2.02	0.501	938.109	971.814	993.695
E25-TRG-2	2032-01-30 03:17:43	E25	0.0000663	0.0907		2.0 0.2 0.4	0.191	0.248	0.393	0.0803	938.109	971.905	993.966
E25-TRG-3	2032-02-05 10:56:57	E25	2.1	2.1		0 1 2	2.11	2.12	2.12	0.00849	940.211	974.007	996.074
E25-APR	2032-02-08 19:07:26	E25	0	0.047		.00 0.05 0.10	0.0884	0.106	0.137	0.0296	940.211	974.054	996.099
Flyby I	E26 Jupiter 22-FEE 2032-02-14 19:07:26	3-2032 10:22:27 E26	V-inf: 3.93 (km/s)	Flyby Altitu	ude: 2.37e+3 km	0 1 2 3	2.23	2.54	3.16	0.595	940.214	975.498	997.885
					ude: 2.37e+3 km		2.23	2.54	3.16	0.595	940.214 940.216	975.498 977.122	997.885 999.4
	2032-02-14 19:07:26	E26	0.00302	1.44	ude: 2.37e+3 km	0 1 2 3 0 1 2 3							
E26-TRG E26-APR	2032-02-14 19:07:26 2032-02-17 08:12:27 2032-02-19 22:22:27	E26	0.00302	1.44		0 1 2 3	2.44	2.62	2.92	0.671	940.216	977.122	999.4
E26-TRG E26-APR	2032-02-14 19:07:26 2032-02-17 08:12:27 2032-02-19 22:22:27	E26	0.00302	1.44		0 1 2 3 0 1 2 3	2.44	2.62	2.92	0.671	940.216	977.122	999.4
E26-TRG E26-APR Flyby (C2-TRG	2032-02-14 19:07:26 2032-02-17 08:12:27 2032-02-19 22:22:27 C2 Callisto 28-FEB-2032-02-25 06:51:39	E26 E26 E26 -2032 03:20:50 C2	0.00302 0.0018 0 V-inf: 2.95 (km/s) 0.000463	1.44 1.62 0.0384 Flyby Altitus 1.56	de: 341 km	0 1 2 3 0 1 2 3	2.44	0.102	2.92	0.671	940.216 940.216	977.122 977.16	999.462
E26-TRG E26-APR Flyby (C2-TRG	2032-02-14 19:07:26 2032-02-17 08:12:27 2032-02-19 22:22:27 C2 Callisto 28-FEB-2032-02-25 06:51:39	E26 E26 E26 -2032 03:20:50 C2	0.00302 0.0018 0 V-inf: 2.95 (km/s) 0.000463	1.44 1.62 0.0384 Flyby Altitu	de: 341 km	0 1 2 3	2.44	0.102	2.92	0.671	940.216 940.216	977.122 977.16	999.46
E26-TRG E26-APR Flyby (C2-TRG	2032-02-14 19:07:26 2032-02-17 08:12:27 2032-02-19 22:22:27 C2 Callisto 28-FEB-2032-02-25 06:51:39 C3 Jupiter 01-APR-	E26 E26 -2032 03:20:50 C2	0.00302 0.0018 0 V-inf: 2.95 (km/s) 0.000463	1.44 1.62 0.0384 Flyby Altitud	de: 341 km	0 1 2 3 0 1 2 3	0.0806	2.62	2.92	0.671	940.216 940.216	977.16 978.721	999.4