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ABSTRACT

Computer models of the heart can provide a greater understanding of the mechanisms

of arrhythmias as well as tools to develop treatment strategies, yet adoption of computa-

tion modeling in biomedical sciences lags behind that in other fields. One of the reasons

for the slow adoption of computational models in medicine is the lack of robust validation

studies. The goal of this dissertation was to develop and apply validation approaches to

two types of computer heart modeling pipelines, electrocardiographic (ECG) forward sim-

ulation and a defibrillation simulation, by comparing measured and predicted potential

fields.

Previous validation studies have shown that ECG forward simulations produce greater

error than expected, which could be caused by insufficient sampling of the cardiac sources.

Various sampling strategies over the atrial region were tested to determine the effect of

spatial sampling on the forward simulation. Including atrial samples reduced the error in

predicted body-surface potentials, with some strategies more effective than others. These

findings could help improve measurement protocols when validating the ECG forward

simulation and provide more insight into ways to improve ECG imaging techniques.

Simulations of defibrillators have previously been developed to provide patient-specific

guidance for improving treatment of fatal arrhythmias. To demonstrate the accuracy of one

of these simulations, torso-tank experiments and clinical studies were used to record the

potential fields generated by a defibrillator and compared to predicted values. Measure-

ments within the torso-tank, including within the myocardium, and body-surface record-

ings from patients agreed with corresponding simulated potentials. Predicted defibrilla-

tion thresholds (DFTs) also agreed with values observed clinically and experimentally. The

simulation’s accuracy in predicting potential fields and DFTs supports its use in guiding

defibrillation treatment.



For my boys. May you always love to learn.
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CHAPTER 1

INTRODUCTION

Heart disease, a term used to describe many cardiac conditions, is still the leading cause

of death in the United States [1]. Although the main function of the heart is mechanical,

i.e., to pump blood throughout the body, cardiac conditions are frequently caused by

disruptions in the electrical activity of the heart, called arrhythmias. Arrhythmias account

for a large subset of conditions included in heart disease [1], and thus improvements in

their diagnosis and treatment are necessary to reduce their impact and to improve indi-

vidual and public health. The challenge in achieving this goal arises, in part, because their

underlying mechanisms are incompletely understood. The understanding is improving,

in part driven by the use of well-established animal experiments and clinical studies, but

many recent breakthroughs have depended extensively on computer models of the heart.

Computer models of cardiac structure and function can test mechanisms and reveal be-

haviors inaccessible with experiments and thus improve the understanding of arrhythmias

and provide tools for treatment strategies. These models allow unparalleled interroga-

tions of the heart and cardiovascular systems that are otherwise unethical and impractical.

Furthermore, patient-specific modeling can provide highly personalized guidance for di-

agnostics and therapy in the clinical setting. Despite the promising progress in this field

and the efforts of regulatory bodies to encourage the use of such models [2], adoption of

computational modeling in biomedical sciences lags behind that in other fields.

One of the reasons for the slow adoption of computational models in medicine is the

challenge of performing robust validation studies. The main obstacles lie in the complexity

of the systems that are being modeled and measured and the difficulty gaining access to

measured data, sometimes from within the body. As a result, validation studies have not

kept pace with recent advances in the complexity of computer models of the heart [3]–[6].

In our area of cardiac electrocardiology, validating simulations of cardiac defibrillation
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and, more generally, simulations of body-surface potentials from cardiac sources, has been

specifically challenging in large part because they require measurements within the body.

The goal of this dissertation was to develop and apply validation approaches to two

types of computer heart modeling pipelines: electrocardiographic (ECG) forward simula-

tion and a defibrillation simulation. We compared measured potential values from these

studies to predicted values to quantify the accuracy of the simulation pipeline. The results

of these studies will establish experimental procedures and shared gold standard datasets

that can guide further pipeline development and validation studies and provide more

confidence in their use to guide diagnoses and treatment of cardiac arrhythmias.

1.1 Specific Aims
A persistent unexplained finding in previous validation studies of ECG forward mod-

els has been higher than expected differences between simulated and measured body-

surface potentials from known cardiac sources. The ECG forward problem consists of

computing the propagation of the electrical field from the cardiac sources to the torso

surface. The cardiac sources can be characterized in many ways, but most often as car-

diac surface potentials [7]–[11]. The potentials on the torso surface are calculated using

numerical approaches such as the boundary or finite element methods (BEM or FEM,

respectively) [3]–[5], [12]. The ECG forward problem is well behaved, with substantial

confidence in both the numerical and measurement approaches, yet previous validation

studies have consistently shown differences that were greater than might be expected

between simulated and measured body-surface potentials [13], [14]. Possible origins of

error include registration of geometry, deformations of the heart and some of the elec-

trode arrays, inaccurate conductivities, and insufficient spatial sampling of the heart with

measurement electrodes. Because of the practical challenges, most studies attempting

to validate the ECG forward simulation record only on the ventricles, leaving the atrial

surface unsampled. Ignoring these sources could have a significant impact on the forward

simulation. Experiments that separate and quantify the effect of sampling of the cardiac

surface, especially on the atrial surface, are needed to separate its effect from other origins

of error.

A similar paucity of data exists for simulations of defibrillation. Although tools sim-
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ulating the effectiveness of defibrillation have shown some promise in improving de-

vice use, the limited amount of high-quality validation studies is an impediment to the

widespread adoption of this technology. Validation studies have compared the potentials

recorded during defibrillator shocks in animals, but the potential fields are either sparsely

sampled or only within the heart [15]–[18]. High spatial sampling of the defibrillation

potentials, especially if close to and within the myocardium, can improve the precision

of the potential field validation and also allow validation of the electric field strength

through the myocardium. This validation is important because the critical mass hypothesis

relies on the predicted electric field strength [19], [20]. Additionally, we know of no

published reports of potential field validation studies with human geometries combined

with clinically determined defibrillation threshold (DFT) values. Such studies can show

the accurate prediction of the potential field in patients, and combining measured and

predicted potential fields with predicted and measured DFT values will allow for a unique

analysis of the ability of the critical mass hypothesis to predict DFTs.

The two modeling pipelines we have developed for this research are similar in their

structure and implementation in both the simulation and in recording the potential field.

The conduction of electrical signals through tissue is fundamentally the same, whether the

source of the signals is the heart or a defibrillator. Therefore, the mathematical formulation

to calculate the potential field is identical with either pipeline, and the implementation

varies only to accommodate the different source signals and geometry. Similarly, record-

ing the potential field from each of these sources requires closely related experimental

preparations and equipment to recreate and record potential fields. Validating pipelines

requires a well-characterized torso and source geometry and electrical properties to record

and to recreate in silico.

In this dissertation, we performed validation studies on the ECG forward and defib-

rillation simulation pipelines. We used data recorded from torso-tank experiments, clini-

cally recorded surface potentials, and other simulations to compare against the simulation

pipelines and develop strategies to improve validation techniques, addressed in three

aims:

1) Evaluate the error in ECG forward simulations due to incomplete sampling of the

atria and develop sampling strategies to reduce it.
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2) Record defibrillator potentials in torso-tank experiments to validate a defibrillation

simulation pipeline.

3) Record human body-surface shock potentials during clinical procedures to validate

a defibrillation simulation pipeline.

The findings of the studies performed for this dissertation help to validate the defib-

rillation simulation pipeline and provide some strategies to reduce error in electrocardio-

graphic forward simulation. The studies presented in Chapters 4 and 5 show that simu-

lated and measured potential fields agree in both the torso-tank and patient body-surface

mapping studies. We also found that DFTs predicted by the simulation agree with the

DFTs determined during device testing Chapter 5. These two findings support the use of

the simulation to test device efficiency for a given defibrillator position. They also provide

valuable validation for the findings of previous studies using our pipeline, which provides

device placement strategies for abnormal geometries [21], [22]. Chapter 3 addresses a

related but different problem, shows that atrial sampling is needed to accurately compute

the body-surface potential from the heart, and provides some sampling strategies to help

reduce the error when the complete surface cannot be sampled. Chapter 3 also shows that

missing ventricular sources can increase the error more than missing only atrial sources.

We were able to replicate the results of previous studies [13], [14] only when we com-

bined a lack of atrial sampling with incomplete ventricular sampling. These findings have

implications in the setting of electrocardiographic imaging (ECGI) studies that use ECG

forward solutions as their basis [23]–[26]. The dissertation findings support the use of

simulation pipelines to answer clinical and research questions and encourage their use to

help understand and treat cardiac arrhythmias.
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CHAPTER 2

BACKGROUND

2.1 Cardiac Arrhythmias
Arrhythmias of the heart are deviations from normal rhythm and function that are

caused by changes in the electrical properties of the myocardium. The myocardial tissue

consists of networks of electrically coupled cells that normally receive an electrical signal

from an adjacent cell and propagate it to other neighboring cells, resulting in a propagating

electrical wave that activates the cells and initiates contraction of the tissue [1]. Many

arrhythmogenic properties may arise from local changes in the electrical properties of the

cells and tissues. Two examples of such changes are spontaneous self-excitation, or “ec-

topic focal activity,” and slow or inhomogeneous propagation. These behaviors can cause

what is known as “reentrant” propagation, i.e., propagation that circles back upon itself

and becomes self-sustaining, thus disrupting the normal activity of the heart. The severity

of an arrhythmia depends on the persistence of the reentry; a few cycles of arrhythmia are

common even in healthy individuals. Arrhythmias become potentially fatal as the normal

spread of electrical activation degrades into a set of multiple, sustained reentrant circuits

[2], called ventricular fibrillation (VF). VF eliminates effective contraction of the heart,

causing rapid death if left untreated [3]. Persistent but less directly deadly arrhythmias,

such as ventricular tachycardia (VT) and atrial fibrillation (AF), may only partially disrupt

the function of the heart, yet they also impact the health of the individual. Additionally,

many initially benign arrhythmias also carry a high risk of developing into VF [4] or may

cause other serious side effects such as stroke, as in AF [5], [6]. Therefore, prompt and

effective detection of all arrhythmias is critical to achieve effective treatment [7], [8].

In order to understand, detect, and treat arrhythmias, clinicians must be able to ef-

fectively record the bioelectric fields generated by the heart [9], [10]. Such fields arise in

the heart but also throughout the torso and on the body surface. Recordings taken in or
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near the heart are called electrograms, and recordings taken on the body surface are called

electrocardiograms (ECGs).

Clinicians often use a combination of ECG and electrogram recordings to first diag-

nose arrhythmias and then to identify the regions of tissue that cause the arrhythmia and

become the targets of treatment. Due to the ease of acquisition, ECGs can often be used

to quickly determine the nature of an arrhythmia and can sometimes provide a general

location of arrhythmogenic tissue. Electrograms are often required to provide a more

precise description and location of the arrhythmogenic tissue. One of the goals of this

research was to explore the relationship between cardiac electrograms and ECGs in the

setting of arrhythmia detection.

2.2 Measuring Bioelectric Fields
When electrical sources, from the heart or from an external source like a defibrillation

pulse, are located in the body, the resulting electric field permeates the torso and generates

electrical currents. The current flow through the torso depends on the electrical properties

of the various tissues and the distance from the source, meaning that recordings near the

sources will have a higher amplitude than those farther away, and the current through

poorly conducting tissue will be lower than through tissues that conduct well. The electric

potential generated by such currents flowing through the torso can be measured at various

positions to obtain information regarding the electrical sources [11].

There is an inherent trade off between measurements from the torso surface and those

obtained through invasive procedures. As the heart is activated, the transmembrane cur-

rents driving the action potentials create extracellular currents, which are electrical sources

that conduct through the torso. Each of these small electrical sources superimposes through

the torso, so that the resulting measured potentials contain a summation of all the cardiac

sources within the torso, weighted by the distance from the source. This combination of

the attenuation with distance and spatial summation causes signals near the heart to be not

only larger but also more sensitive to the local cardiac activity than signals located farther

away [12]. The dichotomy between signal sensitivity and access is an ongoing challenge

in the evaluation and understanding of arrhythmias. Signals on the body surface, i.e., far

from the heart, are far easier to record than signals near the heart, but they are lower in
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amplitude and contain less localized information.

Electrograms, recordings taken in or near the heart, are signals that characterize the

activity of the region within a few centimeters of the heart and can be used to infer directly

the properties of the tissue, such as local activation time and duration [13] (Fig. 2.1). When

acquired as a set of multiple, simultaneously sampled recordings from known electrode

locations, electrograms can provide a spatially detailed representation of the electrical

activity of the heart and can reconstruct reentrant pathways characteristic of arrhythmias

[14]–[16]. Well-developed commercial systems and instrumentation based on electrodes

housed within vascular catheters are used to obtain electrograms in patients [17]–[20].

However, obtaining electrograms is invasive, expensive, time consuming, and not without

risk, thus reducing the utility of such recordings in the clinical detection and diagnoses of

arrhythmia.

ECGs, recordings of the activity of the heart from the body surface, are a noninvasive

method of observing the activity of the heart [9], [10]. Because ECG recordings are ob-

tained farther from the heart than electrograms, the relative distance to each point in the

heart is more uniform, and therefore they contain signals that represent the sum of all the

sources in the heart. A normal ECG, shown in Fig. 2.2, contains five distinct waveforms,

Activation
Electrogram recording site

Duration

QRS wave T wave

Recovery

Electrogram Acvation Map

Fig. 2.1. Example electrogram and activation map. Local tissue activity, such as the
activation and recovery time, can be inferred from the morphology of the signal and
spatially analyzed for arrhythmia diagnosis and treatment.
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Fig. 2.2. Cartoon ECG to show each of the waveforms.

labeled the P, Q, R, S, and T waves, and each wave reflects activity from various regions

of the heart. The P wave is caused by atrial activation, the Q, R, and S waves (or the QRS

complex) are caused by ventricular activation, and the T wave is caused by ventricular re-

polarization. The global information of ECG signals and the ease and low cost of recording

have made the ECG vital to the early detection and diagnosis of arrhythmias, which can

occur based only on changes in heart rate and the coarse morphology of the ECG.

Body-surface potential mapping (BSPM) requires a much higher spatial sampling of the

same signals as the standard ECG recordings to characterize the cardiac potential field on

the full surface of the torso [21], [22]. By using up to 200 electrodes, distributed in carefully

considered (but not universally agreed upon) patterns over the body, BSPM methods can

capture the subtle spatial variation of the surface bioelectric fields. The resulting surface

bioelectric field activity can be used to infer the underlying cardiac activity [23] either

through direct observation of the BSPM patterns [24], [25] or by using them as input

signals for an electrocardiographic imaging (ECGI) method that predicts cardiac activity

quantitatively [26].

ECGI is an emerging technology that involves estimating the cardiac activity from

BSPM recordings and known thoracic geometry and electrical conductivities [26], [27]

(Fig. 2.3). Although this technology in still in the academic and commercial research phase,

studies have shown promise in predicting areas of ectopic activity [28]–[31] and poor

conduction [32]. ECGI requires accurate knowledge of the torso volume conductor shape

and properties together with concise, quantitative descriptions of cardiac electric sources.

These element are then combined into a predictive model known as an “ECG forward

model,” which predicts torso potentials from known heart sources. The forward model
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Fig. 2.3. ECG imaging (ECGI) pipeline. ECGI is dependent on the accuracy of the ECG
forward simulation.

must then be mathematically or numerically inverted to solve an associated “inverse prob-

lem” to predict cardiac sources from body-surface potentials, ECGI. We cover both topics

in more detail because a major focus of the research presented in this dissertation is to

evaluate aspects of the ECG forward model.

Clinicians often use a combination of ECG and electrogram recordings to first diag-

nose arrhythmias and then to identify regions of tissue that cause the arrhythmia and

direct treatment. Due to the ease of implementation, ECGs can often be used to quickly

determine the nature of an arrhythmia and can sometimes provide a general location of

arrhythmogenic tissue. Electrograms are then often required to provide a more precise

description and location of the arrhythmogenic tissue. The research in this dissertation

seeks to explore the relationship between cardiac electrograms and ECGs in the setting of

arrhythmia detection.

In addition to measuring potentials fields generated by cardiac sources, this disser-

tation contains studies with measurements of potential fields generated by defibrillator

pulses. The physics of electrical current flow through the torso and the recording of
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the potential field are the same, regardless of the sources [11]. However, some addi-

tional considerations are required to record defibrillator potentials in practice. Both the

amplitude and frequency of defibrillator pulses are higher than those in signals from

cardiac sources, and therefore using the same recording system to measure fields from both

types of sources requires some adjustment. However, by recording at higher sampling

rates and attenuating the signal, either the pulse generated by the device or the signal

acquired in the tissues can be measured with cardiac mapping systems. We carried out

such measurements in this study and used them to validate computer simulations.

2.3 Treatment of Arrhythmias
Once an arrhythmia is detected, usually with ECG recordings, it can be treated with

three types of methods: pharmacology, ablation, and defibrillation. Each method is de-

signed to target a different aspect of arrhythmogenesis.

Pharmacological treatments are generally used to alter the electrical properties of the

tissue to reduce the risk of an arrhythmia occurring. For instance, β blockers or Na+channel

antagonists will reduce the excitability of the heart and can reduce or eliminate arrhyth-

mogenic activity in the heart [33]–[35].

Ablation is the process of applying thermal energy, typically heat (radio frequency),

but also cold, by specialized catheters in order to create scar tissue at carefully identified

regions in the heart [36]. Doctors create such scar tissue with the goal of permanently alter-

ing the electrical properties of the tissue in a way that interrupts the formation of reentrant

pathways and thus eliminates arrhythmias. Clinicians may also use ablation to destroy

arrhythmogenic stimuli or modify tissue substrates in order to reduce the possibility of

initiating an arrhythmia. However, in order to target the appropriate region for ablation,

clinicians need to know the locations of arrhythmogenic tissue.

Identifying arrhythmogenic tissue or tissue substrates requires acquiring electrograms

and mapping the electrical activity of the heart. To acquire the signals, catheters are typi-

cally introduced via the vasculature to access the endocardium or through small incisions

in the chest wall for access to the epicardium. These procedures are thus semi-invasive, at

least marginally risky, and time consuming [18], [37]–[39]. ECG imaging (ECGI) provides

a noninvasive means to acquire this information (Fig. 2.3).
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2.3.1 Treatment of Arrhythmias Through Defibrillation

Short-term, emergency treatment of life-threatening arrhythmias involves terminating

reentrant circuits and the resulting fibrillation with an electrical shock, known as defib-

rillation [40]. Conventional defibrillation involves applying a large electric field through

the heart to forcibly drive a large portion of the heart into the electrically activated or

depolarized state. All the cells in the heart will then return to their electrical resting

potential, allowing normal rhythm to resume [41].

Three main defibrillator device types automatically detect and treat fibrillation: au-

tomatic external defibrillators (AEDs), wearable cardioverter defibrillators (WCDs), and

implantable cardioverter defibrillators (ICDs). AEDs are designed as a tool for bystanders

to quickly administer defibrillation to a subject with life-threatening arrhythmias. WCDs

are external devices that patients wear on their bodies, and ICDs are devices that are

implanted into the body of the patient to deliver therapy to the heart. Although the details

of these defibrillators are significantly different, the behavior of each is fairly similar: detect

fibrillation from measured electrograms or electrocardiograms and apply large, carefully

timed electric fields to defibrillate the heart. These devices are widely used and save many

lives [7].

We can quantify the effectiveness of a defibrillator configuration by means of the DFT,

which is the lowest energy the system (device plus electrodes) needs to deliver for effec-

tive defibrillation. Reducing the DFT of defibrillators maximizes the efficiency while the

reduced energy usage also preserves device battery life, which reduces the frequency of

replacement for implantable devices. Lower energy defibrillation also reduces the excess

current delivered to the myocardium and surrounding tissue, which in turn reduces both

pain and damage to the tissue [42].

Although the mechanisms for defibrillation are not fully understood, the critical mass

hypothesis [43] is one approach that seeks to quantify the shock that successfully restores

normal sinus rhythm and is a valuable tool for use in simulation approaches. The critical

mass hypothesis stems from the assumption that a large enough electric field will activate

adequate proportions of cardiac tissue to achieve defibrillation [44]–[46]. This hypothesis

provides an efficient way to calculate the DFT and therefore the effectiveness of the device.

However, critical mass hypothesis does not fully describe the mechanisms of defibrillation,
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with documented cases in which 1) defibrillation occurred without reaching critical mass,

and conversely, 2) defibrillation shocks achieved critical mass but were not successful [41],

[47]. Another mechanistic theory is the virtual electrode hypothesis [48], which states

that in the presences of a strong external electric field, e.g., from a defibrillator, regions

of tissue experience hyperpolarization or depolarization of the transmembrane potential.

These virtual stimulation sites then stimulate or suppress electrical activity of the cells to

extinguish fibrillating wavefronts in certain circumstances.

Although defibrillators have been used to save lives for many decades, further op-

timization could improve their effectiveness. One form of optimization is to determine

electrode locations that balance the many device requirements [43], [49]. An example of

such a strategy is subcutaneous ICD implantations, which are less invasive with more

benign failure modes than the traditional strategy [50].

2.4 Simulation Pipelines for Cardiac
Bioelectricity

Modeling electrical conduction through a medium such as the torso can range from

overly simple to needlessly complex, and all such models require a description of both

the electrical sources and the conduction through the torso. Although electrical sources

in the torso may be modeled in many ways, this dissertation will focus on two types of

voltage sources: the epicardial surface of the heart and the electrodes from a defibrillator.

In both approaches, the voltage sources are assumed to be outside the simulation domain,

and the resulting potential distribution through the body can be described with Laplace’s

equation:

∇ · σ∇φ = 0 (2.1)

where ∇ is the gradient operator, ∇· is the divergence operator, σ describes the elec-

trical conductivities of the (possibly heterogeneous and even anisotropic) tissues, and φ

is the potential field. To compute a unique solution for φ, some locations must have

known potentials set as known as Dirichlet boundary conditions, or be constrained to

have zero normal components of the electric field, the Neumann conditions. Numerical

methods such as boundary or finite element methods (BEM or FEM, respectively) are used

to approximate the solution to Laplace’s equation over a discrete domain described by a
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polygonal discretization [23], [51]–[53].

2.4.1 ECG Forward Model

The ECG forward model describes the prediction of the electric potentials throughout

a known passive conductive medium from a bioelectric source representing the heart [23].

Three well-characterized ways to represent the cardiac source are 1) as single or multiple

current dipoles representing the summation of the cardiac current [54]–[56], 2) as a layer

of current dipoles along the activation wavefront [57], [58], or 3) as an enclosed surface

of potentials that encompasses the myocardium [59]–[62]. Other common assumptions

are that conduction through the passive tissue is linear and that the frequencies of the

cardiac sources are low enough that the torso potentials reach steady state almost instantly

(the quasistatic assumption) [23]. The predicted potential fields are calculated at desired

locations using numerical techniques, e.g., BEM or FEM, as described above [23], [51]–

[53].

Using these assumptions and numerical estimation techniques, the ECG forward model

can be represented as a linear system, where the potentials at a set of locations away

from the sources are equal to a matrix of all the coefficients relating the cardiac sources

to the remote locations multiplied by the vector of all the source values [59]–[62] (Fig. 2.4).

This formulation is useful because it allows for quickly calculating multiple instances of

source values, representing either different candidate sources or a sequence or time series.

This formulation also provides a conceptually straightforward means of solving associated

inverse problems, i.e., to determine the cardiac source values from the measured remote

potentials, as in ECGI [26], [27] (Fig. 2.4).

2.4.2 Defibrillation Simulation

Simulating the effect of defibrillation on the heart requires overcoming two main chal-

lenges: calculating the electric field of the defibrillator throughout the medium and pre-

dicting how this electric field within the heart will achieve successful defibrillation. The

first challenge is mathematically similar to the ECG forward model; the difference is that

the source is external to the heart, a set of two or more defibrillator electrodes instead of

the intrinsic bioelectricity of cardiac tissue. Both sources are modeled as voltage supplies

and the resulting potentials in the torso are computed, typically using the FEM [51], [52]
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Fig. 2.4. ECG forward and inverse computational pipeline. ECG inverse, also called ECGI,
is dependent on the accuracy of the ECG forward simulation.

(Fig. 2.5).

To address the second challenge, once the electric field within the heart is calculated,

different strategies can be employed to predict the effect of the defibrillation shock on

the heart. One such strategy is to use the previously described critical mass hypothe-

sis [44]–[46]. Critical mass can be used to calculate the DFT by scaling the predicted

electric field throughout the heart until the necessary criteria are met (Fig. 2.5). Simulations

using the critical mass hypothesis can be fast to compute, so that multiple parameters and

configurations of defibrillation can be tested quickly to determine the effect of each on the

DFT. Other strategies could be used in this pipeline, such as computing a time-dependent

simulation of the fibrillating and defibrillating activity of the tissue and evaluating which

shocks produce successful defibrillation [41], [47].

2.5 Validating Computer Models
Validation of any simulation approach is essential, especially in medical applications,

before computational predictions can play any role in driving research, device develop-

ment, or clinical practice. Specific validation of geometry-based computer models, such

as the ECG forward simulation and the defibrillation simulation, is challenging because
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Fig. 2.5. Patient-specific pipeline for simulating defibrillation.

such studies need to capture complex interactions of sources within the irregular and

often heterogeneous volume conductors of the body and then place invasive measurement

electrodes within living organisms while maintaining the integrity of the volume conduc-

tor. Experiments that enable validation need some combination of three types of data:

body-surface potential recordings, comprehensive measurements of cardiac sources or an

otherwise known extracardiac source, and high-fidelity characterization of the geometry

of the volume conductor in which the heart resides.

The three most commonly used types of preparations that address these needs are in

situ animal experiments, experiments using physical, electrolytical phantoms, e.g., re-

alistically shaped “torso-tank,” and clinical studies. In situ animal experiments involve

capturing the potential field with electrodes that are placed throughout the animal, most

often on the torso and heart surface, while various interventions are performed [45], [63].

Such preparations are physiologically realistic provided the native position and conditions

of the heart and surrounding tissues in the torso are maintained [64], [65]. Torso-tank ex-

periments combine an isolated animal heart and an electrolytic tank to represent the torso,

allowing recording electrodes to be placed virtually anywhere within the tank and the

heart [29], [66]–[74]. Tank experiments allow for greater control of many of the variables

involved with the generation of ECGs than in situ animal preparations or clinical stud-

ies, including the conductivity and geometry of the torso volume conductor, facilitating
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replication in silico. However, they are phantoms and not intact torsos, and they represent

simplifications of reality. Clinical studies are highly realistic and involve recording the

potential field while a medical intervention is applied to the patient [46], [75]. Potential

recordings are most often captured on the body surface and on the endocardial surface of

the heart by means of catheter-based electrodes. In this dissertation, we utilized torso-tank

and clinical studies to validate and improve ECG forward and defibrillation simulations.

When experimental studies disagree with simulations, identifying the aspects of the

simulation and experiment setup that differ can be challenging. Both the simulation and

experiment have inherent uncertainties associated with them, and analyzing the contribu-

tion of each step can be virtually impossible for specific cases. One approach to discovering

sources of error is to systematically vary parameters of the simulation or the experimental

protocols, either individually [76] or with a statistical approach, such as the Monte-Carlo

method [77] or stochastic collocation [78]–[80]. Once the sensitivity of various parameters

is established, the simulation or experiment can be modified to reduce the error.

2.5.1 ECG Forward Model Validation

Many studies have used in situ animal experiments to validate ECG forward models

[63], [81]–[83] but with mixed results due to the many unavoidable technical challenges of

placing electrodes and then maintaining an intact physiological volume conductor, usually

by re-closing the chest [63], [64]. Hence, although these experiments provide data that are

arguably the most physiologically realistic, the conditions of the experiment can be chal-

lenging to recreate in silico. Recent studies have shown disappointing levels of accuracy

when comparing predicted and measured ECGs (Fig. 2.6) [64], a finding that provoked

some of the goals of this research.

Previous studies using torso-tank preparations have focused not only on ECGI valida-

tion [29], [84], but also on the characterization of ischemia [72] and the evaluation of the

effects of changes in heart position [76], [85] and torso conductivity [86]. Most studies for

ECGI validation have not used measured torso potentials but rather forward-computed

facsimiles to which noise was added and ECGI performed. Conspicuously missing from

published studies are examples using fully measured data from torso-tank studies to val-

idate ECG forward models. One likely reason for this omission is that the agreement
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the cases. First, the potential magnitudes were substantially 
greater in simulated than in measured BSPMs. Second, the 
maximum and minimum potentials were inaccurately local-
ized by the forward model. Specifically, the vector between 
extrema was substantially longer in the simulated BSPMs and 
at a different angle with respect to the X–Z plane. Finally, the 
attenuation of potential adjacent to extrema was steeper in 

the simulations. Although inclusion of inhomogeneity in the 
model reduced the differences between simulated and mea-
sured BSPMs, they remained substantial nonetheless.

In Figure 4, RMS potential, rRMSE, and CCs were cal-
culated during ventricular activation for both the case studies. 
RMS potentials predicted by homogeneous (red) and inho-
mogeneous (blue) simulations were nearly twice as great as 

Figure 3. Typical potential distributions on epicar-
dial and body surfaces during ventricular activa-
tion and repolarization for case studies (A) in sinus 
rhythm and (B) during left ventricle apical pacing. 
The left most column shows anterior and posterior 
views of recorded epicardial potentials. Representa-
tive electrograms are presented with a bar indicat-
ing times corresponding to the potential maps. The 
central columns show anterior views of simulated 
body surface potential maps (BSPMs) generated 
from epicardial potentials, using homogeneous and 
inhomogeneous models. Corresponding measured 
BSPMs are presented in the right most column. 
Magnitudes of black contours indicated on associ-
ated color bars.

Figure 4. A and B, Quantitative comparison of 
body surface potential maps during the QRS com-
plex for case studies. In the left column, root-mean-
square (RMS) potentials are compared throughout 
a 100-ms window over the QRS for experimental 
measurements (black), and simulated results using 
homogeneous (blue) and inhomogeneous (red) 
models, respectively. In the middle and rightmost 
columns, root-mean-squared error (rRMSE) and 
correlation coefficient (CC) between measured and 
simulated potentials are given for the same time 
interval.
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Fig. 2.6. In situ validation of ECG forward simulations. Residual error exists despite
mature experimental and simulation techniques. Reprinted with permission from Bear et
al. [64].

between these experimental recordings and predicted ECG signals has been lower than

expected, a challenge we address in Chapter 3 of this dissertation.

Several studies have recorded body-surface potentials and cardiac sources in clinical

settings. These studies are often designed to validate ECGI [75], [87]–[92] and have gener-

ally shown that ECGI can accurately calculate specific aspects of the cardiac activity, such

as earliest site of activation [75], [89], [90], [93]. However, these studies have less accuracy

in calculating total activity of the heart, such as the cardiac-surface potentials [75], [92].

Clinical studies that attempt to validate the ECG forward simulations often record some

cardiac source data, such as a stimulus or rotor site, and simulate resulting cardiac activity

to produce body-surface potentials [87], [94], [95].

The accuracy of the validation of ECG forward models can also vary depending on

the type of electrodes used to record cardiac potentials. The majority of published stud-

ies describe configurations of measuring epicardial potentials either by means of contact

electrodes [72] or from electrodes placed near the heart in a torso tank [29] (Fig. 2.7).

Contact epicardial potentials are more relevant in validation studies because, as discussed
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Fig. 2.7. Forward simulations compared to measured values using cardiac sock and cage
electrode arrays. The cage shows better agreement between measured and simulated
potentials than the sock. The cardiac surface with the sock contains interpolated potentials
over the atria where the sock did not cover.

earlier, sensitivity to local features of the cardiac sources decreases with distance and

electrograms are spatially smoothed. However, noncontact electrograms are often easier to

reproduce in silico specifically because of this spatial smoothing; therefore, they are easier

to solve numerically. Noncontact electrograms can be less sensitive to perturbations in

heart location and have more accurate registration because the electrodes are often rigidly

mounted in the tank. Noncontact electrodes also often surround the heart, providing more

complete spatial sampling of the cardiac sources. In Chapter 3, we analyze the effect of

removing samples surrounding the heart to develop strategies to improve ECG forward

model validation studies.

2.5.2 Defibrillation Simulation Validation

Previous studies have used in situ animal experiments to capture potentials generated

by defibrillators at recording sites throughout the torso; however, these locations were

either sparsely spaced or only in the heart [45], [96]–[98] (Figs. 2.8 and 2.9). A different
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Fig. 8. The voltages measured experimentally and calculated by the finite element model are plotted at each of the 14 locations in the heart (animal 
#6, configuration #3). The original finite element model predictions, the transformed values, and the values resulting from transformation and resistivity 
adjustment are shown. 

voltage gradient. In this section, however, we present an 
example of how FEM voltage gradient data might be used 
in defibrillation studies. The heart region is the area where we 
are most interested in being able to predict voltage gradient 
distributions. Investigators who have attempted to quantify 
the voltage gradient needed for defibrillation have suggested 
that a minimum of 5-6 V/cm should be achieved in greater 
than 90% of the ventricular myocardium for defibrillation 
with a truncated monophasic waveform [18]. Fig. 9 contains 
the graphs of the predicted distributions of voltage gradient 
within the myocardium in two animals for each of the three 
electrode configurations. The data in Fig. 9(a), (b), and (c) 
were calculated from animal #6, while the data in Fig. 9(d), 
(e), and (f) were calculated from animal #4. In these graphs, 
the distributions of the voltage gradient magnitude found 
in the atrial myocardium, right ventricular myocardium, left 
ventricular myocardium, and the combination of both left and 
right ventricular myocardium are shown. Each configuration 
is normalized for 400 V applied voltage and the data has been 
linearly transformed to adjust for the lead-wire and interface 
impedance as discussed in Section 111-A. 

By comparing the data corresponding to the same electrode 
configurations in each of the animals, a significant variation in 
the myocardial voltage gradient distribution is revealed. For 
example, by comparing configuration #3 in animal #6 and an- 
imal #4 (Fig. 9(c) and (f)), the data from animal #4 are shifted 
to the left, i.e., for the same percentage of myocardial tissue, 

the voltage gradient is smaller. The magnitudes of the voltage 
gradient found in 95%, 50%, and 5% of the myocardial tissue 
are listed in Table V for each of the animal models. In animal 
#4, configuration #3, the voltage gradient in 95% of the ven- 
tricular myocardium was 3.92 V/cm, while in animal #6, the 
voltage gradient was 8.16 V/cm. Using the criterion that a min- 
imum of 5-6 V/cm is needed to defibrillate, this electrode con- 
figuration would be unsuccessful in animal #4 (at this applied 
voltage) and successful in animal #6. This type of significant 
variability seen among animals reinforces the potential benefit 
of patient-specific modeling and also demonstrates the need for 
a set of criteria for selecting effective electrode configurations. 

If we attempt to rank the electrode configurations in order of 
the highest voltage gradient achieved in 95% of the ventricular 
myocardium, there is some variation among the animals. In 
four of the animals (#2, #3, #5, and #6), the transvenous 
electrode configuration with the subcutaneous patch placed 
over the cardiac apex (configuration #3) provides the highest 
voltage gradient. This voltage gradient ranges from 4.86 to 
8.16 V/cm. In animal #4, the transvenous configuration with 
the subcutaneous patch placed over the left posterior scapular 
(configuration #2) provides the highest voltage gradient value 
of 5.18 V/cm. The electrode configuration that results in the 
second highest voltage gradient value is configuration #2 in 
three animals (#2, #5, and #6) and configuration #3 in animal 
#4. However, in animal #3, the transthoracic configuration 
ranked second. 

Fig. 2.8. In situ validation of potential fields predicted by defibrillation simulation in the
torso. Reprinted with permission from Jorgenson et al. [45]. Copyright c©1995 IEEE.
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Fig. 2.9. In situ validation of potential fields predicted by defibrillation simulation on the
epicardium. Reprinted with permission from Claydon et al. [96]. Copyright c©1988 IEEE.

approach based on physical phantoms, i.e., torso-tank studies, offers the capacity for

higher resolution and more consistent sampling of the torso volume than in situ studies.

Such torso-tank studies have reported defibrillation potentials [99] but have not compared

them to simulated defibrillation fields. Related studies have used optical mapping to

record high-resolution cellular potentials [100]–[102] but only to record the subsequent

cardiac activity, not the defibrillation shock field. To date, no published tank studies have

been used to validate the predicted electric field through a volume conductor, especially

within the heart. Chapter 4 will address this omission.

Validation of DFT prediction can be achieved with animal studies and clinical trials,

both of which have similar methodologies. VF is induced in a subject, who then receives

defibrillation treatments in increasing energy values. The lowest energy to terminate fib-

rillation is considered the DFT. DFT studies in animals have shown that simulations can

replicate the predictions of DFT based on the critical mass hypothesis [45], [103]. Some

studies have measured DFTs in humans [104]–[106], and we have used these data to con-

duct our own validation studies [46]. The major limitation of these studies for validation
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of simulations has been the lack of measured potentials; the studies measured only DFT,

i.e., the success or failure of defibrillation. This dissertation addresses this shortcoming in

Chapter 5 by measuring body-surface potentials during testing of ICDs in patients.
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CHAPTER 3

REDUCING ERROR IN ECG FORWARD

SIMULATIONS WITH IMPROVED

SOURCE SAMPLING

This chapter addresses the unresolved error that exists in Electrocardiographic (ECG)

forward simulation validation studies and presents the research for the first aim of this

dissertation: evaluate the error in ECG forward simulations due to incomplete sampling

of the atria and developing sampling strategies to reduce it. The following manuscript

was published in September 2018 in the Frontiers in Physiology - Cardiac Electrophysiology

journal as part of the Electrocardiographic Imaging research topic (Front. Physiol. 9:1304,

2018. DOI link: https://doi.org/10.3389/fphys.2018.01304). The published version ap-

pears here with permission.
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A continuing challenge in validating electrocardiographic imaging (ECGI) is the persistent

error in the associated forward problem observed in experimental studies. One possible

cause of this error is insufficient representation of the cardiac sources; cardiac source

measurements often sample only the ventricular epicardium, ignoring the endocardium

and the atria. We hypothesize that measurements that completely cover the pericardial

surface are required for accurate forward solutions. In this study, we used simulated and

measured cardiac potentials to test the effect of different levels of spatial source sampling

on the forward simulation. Not surprisingly, increasing the source sampling over the atria

reduced the average error of the forward simulations, but some sampling strategies were

more effective than others. Uniform and random distributions of samples across the atrial

surface were themost efficient strategies in terms of lowest error with the fewest sampling

locations, whereas “single direction” strategies, i.e., adding to the atrioventricular (AV)

plane or atrial roof only, were the least efficient. Complete sampling of the atria is needed

to eliminate errors from missing cardiac sources, but while high density sampling that

covers the entire atria yields the best results, adding as few as 11 electrodes on the

atria can significantly reduce these errors. Future validation studies of the ECG forward

simulations should use a cardiac source sampling that takes these considerations into

account, which will, in turn, improve validation and understanding of ECGI.

Keywords: ECG imaging, ECG forward simulation, cardiac source sampling, epicardial potentials, body-surface

potentials

1. INTRODUCTION

Electrocardiographic Imaging (ECGI) is a promising technology for diagnosing and treating
cardiac arrhythmias (Pullan et al., 2010; Rudy and Lindsay, 2015). Its goal is to compute some
formulation of cardiac sources from known patient torso geometry (typically extracted from
medical imaging) and body-surface potential mapping (BSPM) recordings (Barr et al., 1977;
Plonsey and Barr, 1987; Plonsey and van Oosterom, 1991; Gulrajani, 1998). This computation is
possible by first establishing a model of the ECG from knowledge of cardiac sources and geometry,
known as a numerical forward simulation (MacLeod and Buist, 2010) and then inverting this
process to solve the associated inverse problem (Pullan et al., 2010). Establishing well-validated
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ECG forward simulations is, therefore, critical to developing
ECGI as a technology.

The purpose of an ECG forward simulation is to predict
the electric potential response through a passive volume
conductor, i.e., the torso, from cardiac sources (MacLeod and
Buist, 2010). Cardiac sources are represented in the literature
in several ways, but the most common and most readily
measured method is a surface of potentials surrounding the
myocardium (Barr et al., 1977; Messinger-Rapport and Rudy,
1986; Plonsey and Barr, 1987; Plonsey and van Oosterom,
1991; Gulrajani, 1998). Predicting the resulting ECGs requires
solving a partial differential equation using numerical techniques,
such as boundary or finite element methods (BEM and FEM,
respectively) (Johnson et al., 1993; Johnson, 1997, 2015; MacLeod
and Buist, 2010).

Despite the existence of well-established methods of the ECG
forward simulation, previous validation studies have consistently
shown differences that were higher than might be expected
between simulated and measured body-surface potentials, such
as higher overall error and changes in extrema location (Ramsey
et al., 1977; Bear et al., 2015). The ECG forward problem is
well behaved, and we have sufficient confidence in all aspects
of the simulation and measurement protocols to expect errors
well below those reported. This disparity between confidence in
the simulation approaches and persistent errors in experimental
validation, along with the sensitivity of ECGI to model errors
due to its ill-posed nature (Pullan et al., 2010), provides powerful
motivation to explore possible explanations.

One as yet unexplored source of error in these studies is
insufficient cardiac source representation, i.e., either inadequate
coverage or spatial density of coverage of the cardiac sources. For
example, many experimental validation studies use an epicardial
sock electrode array to record cardiac surface potentials from the
animal heart (Ramsey et al., 1977; Stanley et al., 1986; Shome and
MacLeod, 2007; Bear et al., 2015). A common limitation of these
epicardial socks is that they position electrodes on the ventricles
only, ignoring the atria. Not only does such a set up exclude
measurement of atrial sources, but some ventricular sources, such
as locations either on the apex or at the base of the heart, lack
either adequate spatial coverage or stable mechanical contact
by sock electrodes. Such conditions are problematic as the
mathematical formulation of the ECG forward simulation with
potential sources assumes a complete and closed representative
surface that is adequately sampled; the compromises driven by
practical limitations in experiments suggest that missing sources
exist and they could have a significant impact on the predicted
potential values on the torso surface (Barr et al., 1977). Our
goal was to examine some aspects of this dilemma, using a
combination of experimental and numerical approaches.

In addition to experimental studies, we can also use
computer simulation to help answer questions about the effect
of cardiac sampling on the forward simulation. Simulation
methods such as pseudo-bidomain (Vigmond et al., 2003,
2008) and cellular automaton (Schulze et al., 2015) can
predict full pericardial potentials in a way that cannot be
measured experimentally due to regions of the epicardium being
inaccessible to measurement. Using simulated potentials together

with experimentally recorded values provides a more complete
evaluation of the effect of pericardial source sampling.

In this study, we tested the impact of cardiac source
representation of the atrial region on ECG forward simulations.
We hypothesize that, in the context of forward simulations
from epicardial potentials, measurements that completely cover
the heart are required for accurate prediction of the body-
surface potentials. To test this hypothesis, we used simulated and
measured cardiac potentials to determine the effect of different
levels of sampling on a typical forward simulation pipeline
(Burton et al., 2011). Our results support this hypothesis and
encourage us to propose some sampling strategies that may
minimize error resulting from incomplete sampling of cardiac
sources.

2. METHODS

We analyzed the effect of source representation coverage and
density of the atrial region of the heart on ECG forward
simulations by sampling the cardiac source with a range of
strategies, and then used those sources in our ECG forward
simulation pipeline. We tested these sampling strategies on
three different geometries and source models: (1) simulated
epicardial potentials using the CARP (Vigmond et al., 2003,
2008) cardiac propagation modeling software package, (2) a
second set of simulations provided in the EDGAR database
(Aras et al., 2015) by the Biomedical Engineering team a the
Karlsruhe Institute of Technology, KIT (Schulze et al., 2015), and
(3) one experimentally recorded dataset from the CardioVascular
Research and Training Institute (CVRTI) at the University of
Utah using a unique “cage” electrode (Milanic et al., 2014),
also available in the EDGAR database (Aras et al., 2015). We
then computed ECG forward simulations from subsampled
versions of the original sources, which we compared to FEM
simulations from our ground truth cardiac potential sources.
We also performed experiments in which we recorded source
potentials with a ventricular sock and an electrode plaque placed
on the atria and used these recorded potentials in our simulation
pipeline to compare the predicted body-surface potentials with
and without the additional atrial potential sources.

2.1. Datasets
2.1.0.1. CARP Dataset
The set of cardiac potentials generated using the CARP
(Vigmond et al., 2003, 2008) modeling software consisted of
simulated extracellular potentials using the pseudo-bidomain
method (Bishop and Plank, 2011) in an isolated rabbit ventricle
model previously described (Deo et al., 2009). The four pacing
profiles were sinus rhythm, left ventricle (LV) free wall pacing,
right ventricle (RV) free wall pacing, and apical pacing. The
heart geometry was then manually registered and scaled to a
human torso geometry of of dimensions ∼ 36 × 22 × 40 cm,
771 nodes, and an internodal distance of 24.6 mm (MacLeod
et al., 1995; Shome and MacLeod, 2007; Milanic et al., 2014). An
ellipsoidal cap was placed on a mesh of the epicardial surface
of the ventricles (to replicate a typical sock array) by fitting
a precomputed ellipsoid mesh to the points near the base of
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the ventricles and clipping it to cover the open region in the
sock. The combination of the sock mesh and the ellipsoid cap
formed a pericardial mesh of dimensions ∼ 6 × 6 × 7 cm
with 498 nodes with an average internodal spacing of 5.3 mm.
To compute the potentials on both the cap of the mesh and
the torso surface, we used the previously computed ventricular
surface extracellular potentials from both the endocardial and
epicardial surfaces and the FEM approach in SCIRun (http://
scirun.org, Parker et al., 1997; MacLeod et al., 2004) with the
Forward/Inverse Toolkit (Burton et al., 2011). This calculation
consisted of generating a tetrahedral mesh for the region between
the heart and torso surface, including the vertex locations for
the pericardial mesh with the ellipsoid cap. Then for each time
step, the endocardial and epicardial potentials were used to set
the Dirichlet boundary conditions along the cardiac surface and
Neumann boundary conditions on the torso surface to solve for
the potentials distribution throughout the homogeneous torso
volume. The potentials were extracted at the torso and pericardial
surfaces to use in the subsequent sampling tests described below.

2.1.0.2. KIT Dataset
The KIT geometric model of a single heart and torso geometry
was generated from a patient scan (Schulze et al., 2015) and is
available on the EDGAR database (http://edgar.sci.utah.edu, Aras
et al., 2015). The torso surface had the dimensions ∼ 47 × 30
× 35 cm, 2002 nodes, and an internodal distance of 19.0 mm.
The cardiac potentials computed from this model, also available
fromEDGAR, consisted of four activation profiles: septal, RV free
wall, LV free wall, and apical pacing. In contrast to the pseudo-
bidomain approach using CARP, the KIT investigators computed
cardiac potentials using a cellular automaton approach for the
activation sequence, and calculated first the transmembrane
potentials based on the activation times with a monodomain
simulation and the ten Tusscher electrophysiological model (ten
Tusscher and Panfilov, 2006; Loewe et al., 2015) and then the
extracellular potentials using the bidomain approach (Schulze
et al., 2015). As in the CARP dataset, we added an ellipsoidal
cap on a mesh of the epicardium to form a pericardial mesh of
dimensions ∼ 13 × 19 × 10 cm with 532 nodes with an average
spacing of 9.4 mm. We used the ventricular surface extracellular
potentials from both the endocardial and epicardial surfaces to
simulate the potential values on the ellipsoidal cap and the torso
surface using FEM, as described for the CARP dataset.

2.1.0.3. Utah Cage Dataset
The cage dataset available in EDGAR consists of measurements
from our group using a perfused, isolated canine heart
preparation placed inside a cylindrical cage of dimensions ∼
10 × 10 × 15 cm (600 electrodes, with average spacing of 10.7
mm) within a human torso-shaped electrolytic tank (dimensions
∼ 36 × 22 × 40 cm) instrumented with 192 surface electrodes
(average spacing of 40 mm MacLeod et al., 1995; Shome and
MacLeod, 2007; Milanic et al., 2014). For this study, we used
recorded signals from three activation profiles: sinus rhythm
and left and right ventricular pacing. The geometric model and
measured potentials are all available on the EDGAR database.We
used the cage electrodes as a pericardial source and compared

forward computed and measured torso-tank surface potentials.
We also generated simulated ground truth torso potentials from
the recorded cage potentials using FEM, just as for the other two
datasets.

2.2. Sampling Strategies
The main goal of the study was to evaluate the effect of source
representation in the forward solution by varying coverage and
sampling density of the signals representing that source. We used
five different incremental sampling strategies with each of the
datasets to analyze the specific effect of atrial sampling on the
simulated ECG, as shown in Figure 1. Sampling locations were
added to the atria in an increasing fashion: (1) starting near the
atrioventricular (AV) plane (closest to the ventricular sock) and
moving toward the atrial roof, (2) from the atrial roof to the AV
plane, (3) combining sites from the AV plane and atrial roof, (4)
adding sites in a uniformly distributed order, and (5) adding sites
in a randomly distributed order. The sampling locations were
added in nine iterations for the KIT dataset, seven for the CARP
dataset, and seven for the cage dataset.

In addition to testing a variable number of added electrodes
to the atria, we also tested the effect of adding a cluster of
electrodes, similar to a plaque electrode array, in a variety of
different locations (Figure 1): 22 for the KIT dataset, 34 for the
CARP dataset, and 72 for the cage datasets. The simulated plaque
was generated by picking the nearest electrodes to each of the
central locations. The number of plaque electrodes match the
number of electrodes added in each iteration explained above,
i.e., 11 for the KIT dataset, 15 for the CARP dataset, and 40 for
the cage datasets.

In addition to testing the effect of missing atrial source
samples, this study also evaluated the effect of missing ventricular
source samples. To test this, source samples were incrementally
removed from the basal region of the ventricles (Figure 1).
Sampling locations were removed in eight iterations for the KIT
dataset, six for the CARP dataset, and six for the cage datasets.

2.3. ECG Forward Simulation Pipeline
To simulate the body surface potentials from pericardial
surface potentials with various sampling strategies, we
first interpolated values from the sampled cardiac surface
mesh to the entire cardiac surface and then simulated the
torso surface potentials. For the interpolation step, we
used Laplacian interpolation (Oostendorp et al., 1989) to
estimate the values missing due to undersampling and for
the forward simulation we used the BEM, as implemented
in SCIRun (Parker et al., 1997; MacLeod et al., 2004) with
the Forward/Inverse toolkit (Burton et al., 2011). Similar to
the simulations and experiments that provided the ground
truth data, the torso was modeled as homogeneous outside the
heart.

We compared simulated torso potentials with those from
the ground truth data using several standard approaches. We
first visually compared potential maps of the results during
ventricular activation, identify similarities of the main features of
activation. The quantitative comparisons that followed consisted
of three standard error metrics, root mean square error (Ē),
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FIGURE 1 | Cardiac source sampling strategies tested. Recording locations were added from the AV plane of the heart to the atrial roof, from the roof to the AV plane,

a combination of the first two, uniform sampling, and random sampling of the atria. Black spheres indicate added atrial sampling locations.

relative root mean squared error (rRMSE), and correlation (ρ),
defined as follows:

Ē =
||8gt − 8s||√

n
(1)

rRMSE =
||8gt − 8s||

||8gt||
(2)

ρ =
8T

gt8s

||8gt||||8s||
, (3)

where 8gt is a vector of the ground truth BSPM values, 8s is a
vector of the associated simulated BSPMs, and n is the number of
body surface electrodes.

2.4. Validation Experiments
With data acquired in experiments, we tested the sampling
strategy of placing a regularly spaced array of electrodes
on the atria to validate the prediction of our hypothesis.
In an in situ open-chest preparation (Aras, 2015; Aras
et al., 2016), we placed a cardiac sock with 247 electrodes
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around the ventricles and a plaque electrode array with 24
electrodes fixed to the atria on an accessible anterior epicardial
region near the AV plane. With the electrodes in place,
we recorded electrograms in sinus rhythm and as the heart
developed ventricular tachycardia through the duration of the
experiments.

Generating datasets for validation required the electrograms
from the experiments be placed inside a complete geometric
model of the torso. At the end of the experiments, we used
a manual digitizer (Microscribe, Solution Technologies,
Inc.) to capture the locations of anatomically distinct
landmarks. We identified correspondance points from a
previously generated geometric model of a human thorax,
resulting in two meshes of the heart surfaces with a set of
corresponding spatial reference points. These meshes were
then registered using a combination of the RANSAC (Fischler
and Bolles, 1981), Iterative closest point (ICP) (Besl and
McKay, 1992), and thin plate spline techniques, followed by
any necessary manual adjustments, implemented in MATLAB
and SCIRun. To process the electrogram recordings, we
isolated representative beats and performed baseline correction
and filtering with the default settings in PFEIFER (https://
www.sci.utah.edu/software/pfeifer.html; Rodenhauser et al.,
2018).

The resulting registered meshes and processed cardiac
surface recordings served as the input for our ECG forward
simulation pipeline. The forward computations of body
surface potentials also required closed surfaces, so we
integrated the cardiac sock and atrial plaque meshes into
an ellipsoidal cap similar to those described in section 2.1.
Laplacian interpolation was then used to estimate the missing
potential values on the cap. The resulting complete set of
cardiac potentials was used in the ECG forward simulation
pipeline, as explained in section 2.3. Torso potentials were
simulated from cardiac potentials, with and without the
additional plaque recordings, and compared using the metrics
explained in section 2.3. We compared the resulting metrics
to those from the simulated cardiac potentials described above
(Figure 1).

2.5. Ethics
All experiments were performed with approval from the
Institutional Animal Care and Use Committee at the University
of Utah and conform to the Guide for the Care and Use of
Laboratory Animals (National Institutes of Health publication
No. 85-23).

2.6. Data Availability
Some of the data used in this study (KIT and cage datasests) are
available in the EDGAR database (http://edgar.sci.utah.edu), as
previously noted. The rabbit model used in the CARP dataset
was obtained from a third party, and requests for that data
should be directed to the CARP software team ( Deo et al.,
2009). The raw data collected or generated for this study will be
made available by the authors, without undue reservation, to any
qualified researcher.

3. RESULTS

Removing potentials from the atrial region of the cardiac
surface had a significant impact on the computed forward
simulations. For all pacing profiles and data sets, the errors in
computed body-surface potentials increased when atrial samples
were omitted. Furthermore, the errors grew monotonically with
reduced numbers of atrial sample sites. Our experimentally
recorded data also produced similar effects on the torso surface
to those observed with the simulated data.

Figures 2, 3 show representative tracings of the various
metrics over the course of ventricular activation with and without
atrial sampling. As shown, the rRMSE tracings of the forward
simulation using full pericardial sampling more closely match
those of the ground truth. The values of ρ computed from
pericardial potentials both with and without atrial sampling were
high during most of the time signals, but the minima were
reduced or eliminated when we included atrial sampling. The
mean ρ without atrial sampling was 0.94 compared to 0.99 with
atrial sampling. The rRMSE values showed a similar trend when
comparing the forward solution with and without full atrial
sampling; the maxima were reduced or eliminated when atrial
samples were included. In a few time steps, adding atrial sampling
produced a slight increase in rRMSE error, as seen in the KIT
(Figure 2) and cage experiment datasets (Figure 3). However, the
mean rRMSE was always reduced, with the total mean rRMSE
reduced from 0.54 to 0.08. The peak Ē with only ventricular
sampling ranged from 0.05 to 0.77 mV, while the peak Ē with full
sampling dropped substantially, ranging from 0.01 to 0.19 mV
and the peak Ē was reduced for each simulation by a mean of
0.40 mV.

Figure 4 shows the representative cases of the general effect
of excluding the potential sources in the atrial region. Comparing
the potential maps simulated from only ventricular sources to the
ground truth demonstrates qualitative differences, especially in
the right anterior region in the CARP and KIT datasets, and over
the entire anterior region with the cage datasets. However, there
were no qualitative differences in the location of the extrema.
The observed differences in the potential maps were reduced
when we used full sampling of the atrial surface. The areas
with the greatest differences were consistent across all activation
profiles, as were the improvements whenever we included atrial
sampling.

Increasing the number of recording locations on the atrial
surface systematically resulted in reduced error in the forward
simulations. Every dataset and activation profile showed a
progressive decrease in the peak rRMSE, except the apical
stimulation of the KIT dataset, which showed an increase in
the peak rRMSE from the previous iteration when adding 22
electrodes (from 11) near the AV plane (2.85 from 1.84). The
mean peak rRMSE over all datasets and activation profiles
decreased from 2.40 to 0.06. The mean rRMSE also progressively
decreased as atrial sampling increased in all datasets, with the
same exception of the apical stimulation of the KIT dataset,
which showed an increase in mean the rRMSE from the previous
iteration (0.30 from 0.27) when adding 22 electrodes (from 11).
The mean rRMSE decreased from 0.54 to 0.08.
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FIGURE 2 | Effects of removing atrial and some ventricular sampling over time on the sinus or septal activation profile for each dataset. Each row presents the error

for each dataset. Each column corresponds to a metric, RMS voltage, relative RMS error (rRMSE), and correlation (ρ). Each plot shows a tracing of the error over the

ventricular activation in four case: ground truth (RMS voltage only), using ventricle-only sources, full pericardial sources, and when some ventricular sources are

removed from the basal region.

Figure 5 shows the mean peak rRMSE for each dataset.
An increase in the number of samples resulted in a near
asymptotic reduction in error, so that adding even a few
recording locations to the atrial surface provided a significant
reduction in error. Every sampling strategy we employed reduced
the mean peak rRMSE in a similarly asymptotic relationship,
but some strategies approached the minimum error with fewer
added electrodes. In general, the single-direction strategies, i.e.,
applying electrodes only to the atrial roof or the AV plane,
were less efficient than the more distributed approaches, i.e., the
uniform and random distributions. The approach that combined
adding electrodes to both the atrial roof and the AV plane was
usually more efficient in reducing the mean peak rRMSE than
the single-direction strategies. However, for the CARP dataset,
the combined approach was only more efficient than adding
electrodes to the atrial roof first. The specific order of most
efficient strategies varied based on the dataset and activation

profile. For example, the randomdistribution showed the greatest
reduction of mean peak rRMSE after one iteration for all but the
CARP dataset.

Figures 6,7 show how the peak rRMSE and the mean rRMSE,
respectively, were affected by the different activation profiles
when adding a limited number of recording electrodes to the
atria with various sampling strategies. In general, the uniform,
random, and combined distributions produced lower error for
each of the activation profiles than the remaining two strategies.
The uniform distribution produced the lowest error of any of the
strategies for most of the tested activation profiles. The random
distribution had the second lowest error for most activation
profiles and the combined approach was third lowest for most
activation profiles. Adding recording electrodes to the atrial roof
first generally had the highest error of any of sampling strategy,
both in terms of the mean and peak rRMSE. Though there
are some overall trends, there are noticeable anomalies in the
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FIGURE 3 | Effects of removing atrial and some ventricular sampling over time on the left ventricle simtulation activation profile for each dataset. Each row presents

the error for each dataset. Each column corresponds to a metric, RMS voltage, relative RMS error (rRMSE), and correlation (ρ). Each plot shows a tracing of the error

over the ventricular activation in four case: ground truth (RMS voltage only), using ventricle-only sources, full pericardial sources, and when some ventricular sources

are removed from the basal region.

responses to sampling. For instance, the apical stimulation of the
CARP dataset had a noticeably higher mean and peak rRMSE for
all sampling strategies than the other activation profiles in the
same dataset. There are also cases with the CARP dataset in which
the AV plane or atrial roof strategies produced lower or similar
errors compared to the distributed strategies.

Simulated BSPM results from ventricular epicardial sources
with potentials from an additional simulated plaque array
placed in various locations showed a consistent reduction in
error when compared to the simulations with ventricle-only
sources. The mean rRMSE from all the plaque placements was
0.28 and the mean ρ was 0.97, compared to 0.40 and 0.95
with the ventricle-only sampling. The peak Ē was reduced
by a mean of 0.45 mV. The placement that resulted in the
lowest error was at the roof of the atria, yet there was
no other trend to predict the plaque location with lower
error.

When source samples were removed from the ventricular
sock, there was a general increase in error for most of the QRS
complex, as shown in Figure 2. By reducing the number of
ventricular leads by approximately 45% of the total added on
the atria (45, 34, and 121 for the CARP, KIT, and cage datasets,
respectively), the mean ρ dropped from 0.94 to 0.84, the mean
rRMSE increased from 0.16 to 0.28, and the peak Ē increased by
a mean of 0.40 mV.

Progressively reducing the number of ventricular samples also
generally increased the error, but not consistently. As shown in
Figure 8, using the KIT dataset, the mean peak rRSME decreased
initially, but then increased continuously as samples were
removed. The CARP dataset showed a increased continuously
as samples were removed, with the exception of the final step.
Results from the cage datasets showed a similar trend: an increase
in mean peak rRMSE with the first set of removed sources, a
reduction with the second, and then a fairly consistent mean
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FIGURE 4 | Effect of atrial region sampling on simulated BSPMs. Shown is the ground truth potential map and the forward simulation with sampling of the ventricles

only and with full coverage of the ventricles and atria. The cardiac/cage surface potentials with the two sampling methods are also shown. Results are from the same

representative beats shown in Figure 2 and at the time sample 25 ms into the QRS complex for the CARP dataset, 78 ms for the KIT dataset, and 18 ms for the cage

datasets.

peak rRMSE for the remaining steps. The plateau mean peak
rRMSE remained higher than for the full ventricular sampling
for the cage experiment dataset, yet it was slightly lower for the
cage simulation dataset. Themean rRMSE gradually increased for
the CARP and cage datasets as ventricle samples were remove.
However, for the KIT dataset, the mean rRMSE decreased slightly
for the first four iterations before dramatically increase for the
final stages. The mean ρ consistently dropped as samples were
removed for the CARP dataset and for all but one step in the
cage datasets. For the KIT dataset, the mean ρ increase slightly
for three iterations, then decrease for the remaining steps.

Figure 9 illustrates representative cases of changes in
the predicted BSPMs as ventricle samples were reduced.

Most notably, removing ventricular sources produced greater
qualitative differences than could be generated by removing
the atrial sources (Figure 4). In each dataset, removing the
ventricular sources produced changes in the apparent location
of the extrema on the BSPM, or, as in the case of the simulated
cage dataset, removed an extremum. Interestingly, although an
extremum remained missing from the BSPMs, reducing the
sampling further actually otherwise improved the qualitative and
quantitative accuracy of the BSPM (Figures 8, 9). This result was
likely due to removing a more balanced distribution of potentials
in the more extreme sampling reduction.

Comparing forward simulations using experimentally
recorded cardiac sock potentials, with and without additional
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FIGURE 5 | Peak rRMSE of the forward simulation using different sampling strategies with increasing number of electrodes. The plots are the CARP, KIT, simulated

cage, and recorded cage datasets.

FIGURE 6 | Peak rRMSE of the forward simulation from different activation profiles using different sampling strategies. The plots are the CARP, KIT, simulated cage,

and recorded cage datasets.

atrial plaque recordings, showed that the using a plaque
electrode could alter the accuracy of the forward simulation.
The comparison showed a mean rRMSE of 0.21 and a mean ρ

of 0.98 across all experiments. Figure 10 shows a representative
comparison over time for each of the experiments. The RMS
values of the potential maps showed only minor variations,

and the rRMSE showed some time frames with high error,
most notably near the beginning of the QRS complex. The ρ

remained high throughout ventricular activation, except at the
beginning time instants (Figure 10, panels 1 & 2) Repeating
the same experiment with simulated results yielded similar
results.
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FIGURE 7 | Mean rRMSE of the forward simulation from different activation profiles using different sampling strategies. The plots are the CARP, KIT, simulated cage,

and recorded cage datasets.

FIGURE 8 | Peak rRMSE of the forward simulation in response to reduced ventricular sampling.

Repeating the same experiment with simulated data, i.e.,
comparing forward simulation using cardiac sock potentials
with and without an additional plaque, yielded similar results
(Figure 10). The mean rRMSE and ρ were 0.26 and 0.98,

respectively. The comparison of the BSPM over the time showed
different rRMSE and ρ profiles compared to the experimental
data, in that there peaks or dips near the middle of ventricular
activation in addition to near the beginning or the end
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FIGURE 9 | Effect of removing ventricular source sampling on simulated BSPMs. Shown is the ground truth potential map and the forward simulation with

progressively reduced sampling of the ventricles. The same representative beats and time samples are shown as in Figure 4.

(Figure 10). However, these profiles were similar, yet with a
lower amplitude, to the corresponding profiles in Figure 2

comparing the ventricle-only recordings to the ground truth
data.

Figure 11 shows the potential maps generated with
and without additional recorded electrograms from a
plaque based over the roof of the atria. The difference
between BSPMs was relatively minor overall, but the
region of greatest difference was in the right anterior
region. The right posterior region also showed observable
differences.

4. DISCUSSION

The goal of this study was to evaluate the hypothesis that
complete sampling of the cardiac surface is needed to accurately
perform forward simulations of body surface potentials based
on pericardial potentials, a hypothesis our results support.
Moreover, our findings indicate that the accuracy of the forward
simulation depends in subtle ways on the specific atrial sampling
strategies. Surprisingly, some strategies are more effective than
others even though they contain fewer points, indicating that
sampling location is as important as sampling number. The
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FIGURE 10 | Comparison of forward simulations with cardiac sock recordings to those with additional plaque electrode recordings over time on a representative beat.

Metrics from the experimental simulations and a similar comparison with simulated datasets are shown. Each row presents the error for each dataset. Each column

corresponds to a metric, RMS voltage, relative RMS error (rRMSE), and correlation (ρ).

results of this study could serve as guidance when carrying
out simulations or animal and human experiments to validate
electrocardiographic imaging approaches and may even impact
the ECGI strategy for dealing with missing samples.

The motivation for the study came from reports and our
own observations that forward simulations with ventricular
pericardial sources often produced errors that exceed
anticipated levels based on the relatively well-posed nature
of the electrocardiographic forward problem (Ramsey
et al., 1977; Bear et al., 2015). Previous, unreported results

from our group based on studies with torso-tank phantoms
(Shome and MacLeod, 2007) also produced a similar level of
error.

The results of this study indicate that, in general, any source
sampling added to the atrial region will reduce the error between
the measured potentials and computed forward simulation. Even
a relatively small number, e.g., 11–40, of additional source
samples produced a reduction in the overall error (Figures 5–7)
across every dataset and with every sampling strategy. Similarly,
simulations that included measurements from atrial plaque
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FIGURE 11 | Effect of additional atrial sampling from a plaque electrode array on the forward simulation. Time frame shown is from the same representative beats

shown in Figure 10 and is 30 ms into the QRS complex for Experiment A and 25 ms for the Experiment B.

electrodes also improved the agreement between ground truth
torso potentials and simulations.

Although all strategies for additional atrial sampling improved
the errors, we also sought specific strategies for picking the
sample locations in future validation experiments. Analysis of
the approaches we tested reveals that selecting evenly distributed
points, such as the random and uniform strategies, are likely
to produce greater accuracy with fewer added samples than
other strategies (Figure 5). The combined strategy (i.e., basal plus
atrial roof locations) also performed well, although not with the
CARP dataset. The distributed nature of these strategies is likely
a reason for their efficiency, because they reduce the need for
interpolation over large distances that is an either explicit or
implicit component of solving the forward problem.

Our analysis of the effect of various atrial plaque
configurations on the simulated torso potentials revealed
that the most valuable location may be at the roof of the atria, but
placements even slightly away from the roof had lower accuracy.
Therefore, it is difficult to identify and achieve the best location
of additional measurement sites, typically in the form of a plaque
electrode, in an experimental setting. Nevertheless, every plaque
placement reduced the overall error of the simulated BSPMs,
so it is likely that any plaque electrode placed on the atria will
improve the overall accuracy of the forward simulation.

In comparing our results to similar studies, we found that
eliminating the atrial sampling produced rRMSE and Ē values

in the simulated torso potentials similar to those reported as
early as the mid 1970s by Ramsey et al. (1977) and as recently
as by Bear et al. (2015). We eliminated or dramatically reduced
these errors by including sampling over the atria, which suggests
that the absence of atrial sampling contributed to the errors
in their studies. However, both these studies showed higher
qualitative differences in simulated BSPMs, e.g., differences in
extrema location, than we could account for by removing atrial
sampling locations, which suggests additional causes of error,
possibly from registration, segmentation, or addition missing
sampling.

One potentially significant additional source of error is in
missing ventricular sampling locations. Such undersampling of
the ventricle is possible even when using a ventricular sock
because parts of the epicardium may not be sufficiently sampled,
for example, because of poor electrode contact around the base
of the heart or a lack of electrode density in regions of high
spatial complexity of the potentials. Our results indicate that
eliminating sampling locations from the ventricle can produce
shifts in extrema locations, or remove them entirely, (Figure 9),
and, in general, will decrease the overall accuracy of the forward
simulations (Figures 2, 8). Removing ventricular samples can
increase the rRMSE even beyond that reported by Bear et al.
(2015). All these results suggest that adequate sampling of both
ventricles and atria is required to achieve the expected match
between measured and predicted torso potentials.
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The strategy of using more distributed sampling over the
atria did not always produce the lowest error in the forward
simulations (Figures 6, 7). The spatial variability of cardiac
potentials means that there are likely sampling configurations
that could reduce error more efficiently for specific geometries
and activation profiles, for example, those that combined AV
plane and atrial roof strategy produced the lowest error for
apical stimulation in the KIT dataset, but in no other example
(Figures 6, 7). Moreover, reducing error during different times
of the cardiac cycle could also motivate different sampling
strategies. There can be dramatic changes in the error and
correlation through the cardiac cycle, as seen in the late stages
of the CARP dataset sinus beat and cage datasets following
left ventricular stimulation (Figures 2, 3). In a similar vein, the
dramatic shift in error and correlation when the atria and basal
region of the ventricles were undersampled could be attributed
to incorrectly interpolating late activity near the AV plane over
the atrial surface. The reduction in sampling either removes
local potential extrema in this region, or could possibly remove
transition regions to cause the extrema to become larger with
the interpolation. In both these examples, we found that adding
samples near the AV plane of the atria reduced error more than
adding samples to the atrial roof (Figures 6, 7), which indicates
that strategies that sample the AV plane would be important
for late sinus activation or left ventricular activation. Therefore,
with some a priori knowledge about activation profile and the
regions of interest within the cardiac cycle, researchers could
design specific strategies to correctly record them.

Implementing many of the strategies we tested in an
experimental setting has many practical and logistical obstacles.
For example, placing uniformly distributed recording electrodes
on the epicardial surfaces of the atria is virtually impossible,
due to limited access to the active myocardium. A combined
approach including sampling near the atrial roof and near the
AV plane would be feasible using multiple plaque electrodes
and/or and a ventricle sock that extended over the base to the
atrial surface. Such sampling would likely be feasible in an in
situ animal preparations, although placement of the plaque would
remain a challenge due to the many vessels attached to the atria.
The isolated, perfused heart suspended in a torso-shaped tank
phantom (MacLeod et al., 1995; Shome and MacLeod, 2007;
Milanic et al., 2014), similar to the one used to acquire the cage
dataset, could provide the best option for recording full coverage
cardiac source potentials because the vessels supplying the heart
are gathered and fed through a small opening, and the rest of
the surrounding surface can be instrumented with electrodes. A
limitation of this approach is that the atria are not filled with
blood and so collapse to lie on the base of the ventricles and lack
both realistic shape and a stable surface for attaching electrodes.

Limitations to the study generally involved compromises in
capturing cardiac sources and the associated torso potentials.
By using fully simulated potentials, we could achieve levels
of coverage and resolution not possible with experiments but
with the caveat that these are simulations and reflect certain
assumptions and conditions. For example, we ignored any
electrical activation of the atria, assumed that the conductivity
of the atria was the same as for the torso, and greatly simplified

the atrial epicardial surface by replacing it with a parameterized
and smooth epicardial cap. Additionally, we did not account
for possible scar or fibrosis formation which would occur in
many disease states, possibly affecting any attempt to use these
strategies in patients. Another source of validation data was a set
of potentials from an isolated, perfused heart, captured with an
instrumented rigid cage surrounding the heart. This arrangement
provides full coverage of the heart and thus a complete source
model, but the distance between heart and cage electrodes causes
the signals to be smoother than on the epicardium and does
not reflect perfectly the ECGI application. Finally, we assumed
in this study that the only error would be due to insufficient
source sampling of the atrial region, and thus we ignored other
possible causes of error in source sampling, such as sampling
density, uncertainty in individual electrode locations, or any
other possible errors in capturing and representing the geometric
model. These additional sources of error may compound those
due to incomplete sampling over the atria.

This study focused specifically on the sampling of the atrial
region and how it generally affected the forward simulation,
but there are several additional, related questions that could be
addressed in future studies. For example, of great interest would
be a more direct spatial sensitivity analysis of the relationship
between the potentials on the cardiac surface and the torso, or
from the endocardial surface to the atria. Such results could
suggest sampling strategies that would be specialized for specific
regions of tissue, or types of activation. Other questions that
could be similarly explored relate to the shape, location, and
orientation of the heart, and how they might influence the
forward simulation. Inclusion of torso heterogeneity due to other
organs would affect the flow of current through the torso andmay
therefore affect the sampling strategies needed tomore accurately
predict BSPM. These questions and others could be the focus of
future studies to help fully understand the effect of discretizing
the cardiac electrical source with potential recordings.

This study illustrates the need to acquire adequate cardiac
source sampling in ECG forward simulations, as well as the
challenges in doing so. These findings also have implications for
solving and validating the inverse solutions required for ECGI.
Most mathematical formulations of ECGI solve for a subset
of the cardiac sources without any cost to accuracy, but they
are based on the assumption of a robust forward solution, i.e.,
that the relationship between the cardiac sources and the torso
potentials is represented accurately (Barr et al., 1977; Plonsey and
Barr, 1987; Plonsey and van Oosterom, 1991; Gulrajani, 1998).
Our results suggest that coverage of the atrial surface with at
least a schematic multielectrode cap could improve the resulting
ECGI solutions. Additionally, our results have implications for
how researchers validate ECGI methods using forward simulated
BSPM data (Erem et al., 2011; Wang et al., 2011). Our findings
suggest that the computed BSPMs used as inputs in these ECGI
pipelines may contain errors due to inadequate cardiac sampling.
Using BSPMs with such errors may bias the tuning of the
constraints in the ECGI inverse problem and even alter the levels
of accuracy achieved.

We conclude that complete sampling of the cardiac surface
potentials is required to create realistic source descriptions for
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validation experiments and simulations of ECGI. Ignoring or
crudely interpolating over sources on the atrial surfaces or even
parts of the ventricular surface will also reduce the accuracy of
simulations. Researchers can mitigate these effects by ensuring
that both the full ventricular epicardium and at least some
locations on the atria are sampled. Even modest coverage of
the atria can increase the accuracy of the resulting simulations
dramatically. Distributed sampling over the atrial will likely
produce the lowest error, yet may be a challenge to implement
experimentally. These efforts to improve source sampling will
also improve the accuracy of the ECG forward simulations, which
will further clarify the aspects of ECGI that need more research
and development.

AUTHOR CONTRIBUTIONS

JT and RM originated the study idea and developed the
hypothesis. JT, KG, BB, WG, BZ, JC-F, DB, and RM contributed

to the study design. JT, KG, BB, WG, and BZ contributed to

data collection, organization, and processing. JT, KG, and JC-F
contributed to developing the simulation pipelines used in the
study. JT wrote the first draft of the manuscript. JT, KG, BB, WG,
BZ, JC-F, DB, and RM contributed to manuscript revision and
approved the submission of the manuscript.

ACKNOWLEDGMENTS

The research presented in this paper was made possible with
help from the Cardiovascular Research and Training Institute
(CVRTI) and the Nora Eccles Treadwell Foundation. This project
was also supported by the National Institute of General Medical
Sciences of the National Institutes of Health under grant number
P41 GM103545-18. Some data used in this study was made
available by a joint research project between the First Department
ofMedicine (Cardiology), UniversityMedical CentreMannheim,
and the Karlsruhe Institute of Technology (KIT).

REFERENCES

Aras, K. (2015). Bioelectric Source Characterization of Acute Myocardial Ischemia.

Ph.D. thesis, University of Utah.

Aras, K., Burton, B., Swenson, D., and MacLeod, R. (2016). Spatial

organization of acute myocardial ischemia. J. Electrocardiol. 49, 689–692.

doi: 10.1016/j.jelectrocard.2016.02.014

Aras, K., Good, W., Tate, J., Burton, B., Brooks, D., Coll-Font, J., et al. (2015).

Experimental data and geometric analysis repository: EDGAR. J. Electrocardiol.

48, 975–981. doi: 10.1016/j.jelectrocard.2015.08.008

Barr, R., Ramsey, M., and Spach, M. (1977). Relating epicardial to body

surface potential distributions by means of transfer coefficients based

on geometry measurements. IEEE Trans. Biomed. Eng. 24, 1–11.

doi: 10.1109/TBME.1977.326201

Bear, L. R., Cheng, L. K., LeGrice, I. J., Sands, G. B., Lever, N. A., Paterson, D. J.,

et al. (2015). The forward problem of electrocardiography: is it solved? Circ.

Arrhythm. Electrophysiol. 8, 677–684. doi: 10.1161/CIRCEP.114.001573

Besl, P., and McKay, N. (1992). A method for registration of 3-D shapes. IEEE

Trans. Pat. Anal. Mach. Intell. 14, 239–256. doi: 10.1109/34.121791

Bishop, M. J., and Plank, G. (2011). Representing cardiac bidomain bath-

loading effects by an augmented monodomain approach: application to

complex ventricular models. IEEE Trans. Biomed. Eng. 58, 1066–1075.

doi: 10.1109/TBME.2010.2096425

Burton, B., Tate, J., Erem, B., Swenson, D., Wang, D., Brooks, D., et al. (2011).

“A toolkit for forward/inverse problems in electrocardiography within the

scirun problem solving environment,” in Proceedings of the IEEE Engineering

in Medicine and Biology Society 33rd Annual International Conference . Boston,

MA: IEEE, 1–4.

Deo, M., Boyle, P., Plank, G., and Vigmond, E. (2009). Arrhythmogenic

mechanisms of the purkinje system during electric shocks: a modeling study.

Heart Rhythm. J. 6, 1782–1789. doi: 10.1016/j.hrthm.2009.08.023

Erem, B., Ghodrati, A., Tadmor, G., MacLeod, R., and Brooks,

D. (2011). Combining initialization and solution inverse

methods for inverse electrocardiography. J. Electrocardiol. 44:e21.

doi: 10.1016/j.jelectrocard.2010.12.059

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography.

Commun. ACM 24, 381–395. doi: 10.1145/358669.358692

Gulrajani, R. (1998). The forward and inverse problems of electrocardiography.

EMBS Mag. 17, 84–101. doi: 10.1109/51.715491

Johnson, C. (1997). Computational and numerical methods for

bioelectric field problems. Crit. Rev. Biomed. Eng. 25, 1–81.

doi: 10.1615/CritRevBiomedEng.v25.i1.10

Johnson, C. (2015). Chapter 43: Computational Methods and Software for

Bioelectric Field Problems, Vol. 1, 4th Edn. Boca Raton, FL: CRC Press, 1–28.

Johnson, C., MacLeod, R., and Matheson, M. (1993). Computational medicine:

Bioelectric field problems. IEEE Comput. 26, 59–67. doi: 10.1109/2.237454

Loewe, A., Schulze, W. H. W., Jiang, Y., Wilhelms, M., Luik, A., Dössel, O., et al.

(2015). ECG-based detection of early myocardial ischemia in a computational

model: impact of additional electrodes, optimal placement, and a new

feature for ST deviation. BioMed Res. Int. 2015:530352. doi: 10.1155/2015/5

30352

MacLeod, R., and Buist, M. (2010). “The forward problem of electrocardiography,”

in Comprehensive Electrocardiology, eds P. Macfarlane, A. van Oosterom, O.

Pahlm, P. Kligfield, M. Janse, and J. Camm (London, UK: Springer Verlag),

247–298.

MacLeod, R., Taccardi, B., and Lux, R. (1995). “Electrocardiographic mapping in

a realistic torso tank preparation,” in Proceedings of the IEEE Engineering in

Medicine and Biology Society 17th Annual International Conference (Montreal,

QC: IEEE Press), 245–246.

MacLeod, R., Weinstein, D., de St. Germain, J. D., Brooks, D., Johnson, C., and

Parker, S. (2004). “SCIRun/BioPSE: integrated problem solving environment

for bioelectric field problems and visualization,” in IEEE International

Symposium on Biomedical Imaging (ISBI), Arlington, VA: IEEE Press, 1–3.

Messinger-Rapport, B., and Rudy, Y. (1986). The inverse problem in

electrocardiography: a model study of the effects of geometry and conductivity

parameters on the reconstruction of epicardial potentials. IEEE Trans. Biomed.

Eng. 33, 667–676. doi: 10.1109/TBME.1986.325756

Milanic, M., Jazbinsek, V., Macleod, R., Brooks, D., and Hren, R. (2014).

Assessment of regularization techniques for electrocardiographic

imaging. J. Electrocardiol. 47, 20–28. doi: 10.1016/j.jelectrocard.2013.

10.004

Oostendorp, T., van Oosterom, A., and Huiskamp, G. (1989).

Interpolation on a triangulated 3D surface. J. Comp. Phys. 80, 331–343.

doi: 10.1016/0021-9991(89)90103-4

Parker, S., Weinstein, D., and Johnson, C. (1997). “The SCIRun computational

steering software system,” in Modern Software Tools in Scientific Computing,

eds E. Arge, A. Bruaset, and H. Langtangen, Boston, MA : Birkhauser Press,

1–40.

Plonsey, R., and Barr, R. (1987). Mathematical modeling of electrical activity of the

heart. J. Electrocardiol. 20, 219–226. doi: 10.1016/S0022-0736(87)80019-5

Plonsey, R., and van Oosterom, A. (1991). Implications of macroscopic source

strength on cardiac cellular activation models. J. Electrocardiol. 24, 99–112.

doi: 10.1016/0022-0736(91)90001-3

Pullan, A., Cheng, L. K., Nash, M., Brooks, D., Ghodrati, A., and MacLeod,

R. (2010). “The inverse problem of electrocardiography,” in Comprehensive

Frontiers in Physiology | www.frontiersin.org 15 September 2018 | Volume 9 | Article 1304

48



Tate et al. Source Sampling Error in Simulations

Electrocardiology, eds P. Macfarlane, A. van Oosterom, O. Pahlm, P. Kligfield,

M. Janse, and J. Camm (London, UK: Springer Verlag), 299–344.

Ramsey, M., Barr, R. C., and Spach, M. S. (1977). Comparison of measured

torso potentials with those simulated from epicardial potentials for ventricular

depolarization and repolarization in the intact dog. Circulation 41, 660–672.

doi: 10.1161/01.RES.41.5.660

Rodenhauser, A., Good, W., Zenger, B., Tate, J., Aras, K., Burton, B., et al.

(2018). Pfeifer: Preprocessing framework for electrograms intermittently

fiducialized from experimental recordings. J. Open Source Softw. 3, 472.

doi: 10.21105/joss.00472

Rudy, Y., and Lindsay, B. (2015). Electrocardiographic imaging of heart rhythm

disorders: from bench to bedside. Card Electrophysiol. Clin. 7, 17–35.

doi: 10.1016/j.ccep.2014.11.013

Schulze, W. H. W., Potyagaylo, D., Schimpf, R., Papavassiliu, T., Tülümen,

E., Rudic, B., et al. (2015). “A simulation dataset for ECG imaging of

paced beats with models for transmural, endo-and epicardial and pericardial

source imaging,” in First Meeting of the Consortium for EGI Imaging (Bad

Herrenalp), 1.

Shome, S., and MacLeod, R. (2007). “Simultaneous high-resolution electrical

imaging of endocardial, epicardial and torso-tank surfaces under varying

cardiac metabolic load and coronary flow,” in Functional Imaging andModeling

of the Heart, Lecture Notes in Computer Science 4466 (Berlin: Springer-

Verlag), 320–329.

Stanley, P., Pilkington, T., and Morrow, M. (1986). The effects of thoracic

inhomogeneities on the relationship between epicardial and torso potentials.

IEEE Trans. Biomed. Eng. 33, 273–284. doi: 10.1109/TBME.1986.325711

ten Tusscher, K. H. W. J., and Panfilov, A. V. (2006). Alternans and

spiral breakup in a human ventricular tissue model. Am. J. Physiol.

Heart Circ. Physiol. 291, H1088–H100. doi: 10.1152/ajpheart.001

09.2006

Vigmond, E., Hughes, M., Plank, G., and Leon, L. (2003). Computational tools for

modeling electrical activity in cardiac tissue. J. Electrocardiol. 36(Suppl.), 69–74.

doi: 10.1016/j.jelectrocard.2003.09.017

Vigmond, E. J., Weber dos Santos, R., Prassl, A. J., Deo, M., and Plank, G. (2008).

Solvers for the cardiac bidomain equations. Prog. Biophys. Mol. Biol. 96, 3–18.

doi: 10.1016/j.pbiomolbio.2007.07.012

Wang, D., Kirby, R., and Johnson, C. (2011). Finite-element-based discretization

and regularization strategies for 3-D inverse electrocardiography.

IEEE Trans. Biomed. Eng. 58, 1827–1838. doi: 10.1109/TBME.2011.21

22305

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Tate, Gillette, Burton, Good, Zenger, Coll-Font, Brooks and

MacLeod. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 16 September 2018 | Volume 9 | Article 1304

49



CHAPTER 4

VALIDATING DEFIBRILLATION

SIMULATION IN A HUMAN-

SHAPED PHANTOM

4.1 Abstract
We previously developed a computational model to aid clinicians in positioning im-

plantable cardioverter defibrillators (ICD), especially in the case of abnormal anatomies,

such as in pediatric cases. However, high spatial resolution validation of the simulation is

still needed to improve its use in clinical settings. The goal of this study is to record the

ICD potential field within the heart and on the torso to validate the simulation.

We recorded defibrillator shock potentials from an ICD suspended with an animal heart

in a human-shaped torso tank and compared them to simulated values. We also compared

the critical mass threshold (CMT), an analogue to the defibrillation threshold, from the

measured and simulated electric fields within the myocardium.

ICD potentials recorded on the tank and cardiac surface and within the myocardium

agreed well with those predicted by the simulation. A quantitative comparison of the

recorded and simulated potentials yielded a mean correlation of 0.94, relative error of 19.1

%, and normalized root-mean-squared error of 6.0 %. Comparisons of CMTs calculated

from the measured and simulated electric fields also showed that the simulation can pre-

dict similar electric field and CMT values.

The agreement of the potential recordings within the torso tank with simulated values

shows that the simulation can predict accurate potential fields within the heart as well as

on the torso tank surface. These results support the use of this model for optimization of

ICD placements.
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4.2 Introduction
Defibrillation is a mature technology used in hundreds of thousands of patients to

treat fibrillation and other life-threatening arrhythmias [1]–[3], but it is not without sig-

nificant risks, including tissue damage from overshock [4] and the morbidity of implanta-

tion surgery for implantable cardioverter-defibrillators (ICDs) [2]. Device manufacturers,

physicians, and researchers have proposed improvements to reduce the energy needed

to defibrillate a patient, called the defibrillation threshold (DFT), and to minimize the

invasiveness of the devices while maintaining patient safety. These improvements include

new configurations such as subcutaneous ICDs [5]–[7] and wearable cardio-defibrillators

[8], [9]. Testing the effectiveness of new device developments is essential, yet conducting

such tests in animal or clinical experiments can be cost prohibitive or unethical.

Mathematical and computational modeling can facilitate defibrillator development,

test new technologies, and guide their use. Such modeling may also reduce the number

of patient and animal trials needed to test device configurations. We have developed a

patient-specific pipeline for just such modeling, which has been used to allow researchers

and physicians to test new or modified device configurations in subject-specific anatomies

[10], [11]. The pipeline predicts the potential distribution throughout the torso and cal-

culates the DFT based on the critical mass hypothesis to determine device safety and

effectiveness. This pipeline has been shown to be generally accurate in predicting DFT and

body-surface potential maps (BSPMs) in patients [12], [13]; however, to our knowledge,

no such validations published by any group have included comprehensive measurements

of potentials within the volume of the heart.

Previous studies have compared measured and simulated defibrillation potentials within

the heart, but only with vary sparse sampling and often over limited regions of the heart.

[14], [15]. Other groups have used electrolytic phantoms to measure cellular potentials

during defibrillation using optical techniques [16], yet these studies measured tissue activ-

ity before and after defibrillation, i.e., the impact of defibrillation and are fundamentally

unable to record the potentials generated by the device. We have carried out many studies

in electrolytic, densely instrumented phantoms shaped like a human torso with an iso-

lated, perfused heart suspended inside [17]–[19]. Such a configuration offers a unique

opportunity to record multichannel signals of defibrillation pulses simultaneously in the
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myocardium and on the heart and torso surfaces to compare with simulated potential

distributions.

In this study, we recorded defibrillator potentials in a human-shaped torso tank phan-

tom containing an isolated animal heart. We could capture up to 1024 channels of signals

recorded from within the heart using intramural multielectrode needles and on the epicar-

dial and torso surfaces with the goal of validating our defibrillation simulation pipeline.

We compared the measured potential fields to those predicted by the simulation pipeline

to establish its accuracy. We also computed the electric field strength from the recorded

and simulation potentials and evaluated its similarity based on the critical mass threshold

(CMT), an analogue to the DFT, computed using the assumptions of the critical mass

hypothesis [20].

The results of this study establish the torso-tank setup as a method to record potentials

at high spatial resolution within the heart with accompanying cardiac and torso measure-

ments. The comparisons of simulated and measured potentials demonstrated good overall

agreement and indicated that simulation was generally accurate and that the potential field

was captured effectively enough to enable validation of the simulation. We also found that

using needle electrodes in the myocardium could effectively capture the electric field in

the tissue, and when compared to the simulated values, showed that simulation predicst

comparable electric fields.

4.3 Methods
We recorded potentials generated by an ICD implanted in an isolated animal heart

within a torso-shaped electrolytic tank and compared them with simulated potentials. To

record ICD potentials, we modified a previous setup designed to record potential dis-

tributions in and around a heart as it was suspended in a tank filled with electrolyte

solution [17]–[19], but instead of recording cardiac potentials, we recorded potentials gen-

erated by an ICD. We simulated the potential field generated by the device using the same

geometries and conductivities to predict the potentials at the measurement locations and

compared them to the recorded values.
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4.3.1 Tank Experiments

Each torso tank experiment (N=4) consisted of an explanted porcine (N=3) or dog (N=1)

heart and an ICD (Medtronic Virtuoso II DR or Medtronic Maximo II VR) suspended in an

instrumented tank filled with isotonic electrolytic solution of known conductivity. The

hearts were excised, postmortem canine or porcine hearts that were electrically inactive.

The three pig hearts were not perfused while submerged, but the dog heart was retrograde

perfused with blood via a support animal. An epicardial sock was applied, and between 20

and 31 plunge needles were inserted into the walls of both ventricles. A 5 cm defibrillator

coil was placed either in the right ventricle (N=3) or on the epicardium, held in place

near the left anterior descending artery (LAD) with the cardiac sock (for the single case of

the perfused heart). The electrolytic solution consisted of glucose and NaCl balanced to

achieve a resistivity of 200 Ωm.

With the heart, ICD, and electrodes in place, we manually induced biphasic shocks

and recorded the potentials within the torso tank. The shocks were generated by the

ICDs or by an external cardioverter defibrillator (ECD) (VENTAK model 2815, Boston

Scientific Corp.) while using the ICD casing and coil as the defibrillation electrodes. The

defibrillator devices were attenuated by a factor of ∼1,300 to allow recording with the

recording system. Potentials were recorded with a 256-channel acquisition system devel-

oped at the Cardiovascular Research and Training Institute (CVRTI) on the tank surface

(192 electrodes), epicardial sock (247 electrodes), and 20 to 34 plunge needles (200 to 340

electrodes). Electrode sets were recorded sequentially in three or four separate shocks

at a sampling rate of 8 kHz and time aligned during postexperiment signal processing.

For one of the experiments, an observable shift in the reference state of the recording

system between the sequential recordings caused a dramatic shift in potential distribu-

tion between neighboring electrodes. We corrected this shift by comparing neighboring

electrodes from different sets, i.e., adjacent needles or epicardial needles and the sock

electrodes, to readjust the reference of the signals.

The recording system used in the experiment was designed to record cardiac potentials

and so required attenuation of the ICD potentials to protect the instrumentation and keep

signals within measurable range. The ICD was attenuated without changing the lead

impedance outside the physiological range by adding a high wattage resistor (R1=68 Ω,
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50 W) in parallel with a voltage divider, as shown in Fig. 4.1. Using high resistance for the

second resistor (R2 = 100KΩ) reduced the amplitude of the signal by a factor of ∼1,300,

low enough to record with the cardiac mapping system. The scaling factor was dependent

on the total resistance between the ICD coil and generator. We used the shock impedance

calculated by the device (without attenuation) as this resistance value.

At the end of the experiment, corresponding landmark points were acquired using an

electromechanical digitizer (Microscribe) to register the heart and recording locations (see

Section 4.3.3). The correspondence points were acquired on the torso tank (16 points), the

epicardial sock (20-40 points), the entry locations of each of the needles (20-31 points), the

ICD can (10-20 points) and coil (5-10 points), and several points on the heart surface (∼50),

including the LAD (∼10).

The heart was then imaged in a 7 T small animal MRI scanner with FISP and FLASH

sequences. Preparation for imaging involved replacing the recording needles with spacers

that marked the needle positions in the MRI scan, filling the chambers with alginate, and

fixing the heart with formalin.

4.3.2 Signal Processing

The recorded ICD pulses were extracted, time aligned, and processed to enable com-

parison to the simulated values. All signals were scaled by the device attenuation factor.

R1

R2

RL

VG

VD

Fig. 4.1. Schematic of the ICD attenuation used to reduce the amplitude of the generated
signal to allow for recording with a cardiac mapping system. VG is the voltage generated
by the device, VD is the voltage delivered through the torso tank, R1 and R2 are resistors
added to the device, and RL is the total resistance through the torso between the ICD lead
and the generator.
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The pulse windows were calculated from a root mean squared (RMS) curve for all channels

by identifying deviations from the baseline, with manual correction. The ICD pulse peak

was identified as the mode of the time of the first maximum or minimum for all channels

in a recording instance. Separately recorded time signals were time aligned with the pulse

peak of each recording instance. Leads of unacceptable technical quality were identified as

those with a low correlation to all other channels and were removed from the comparison

calculations. Such missing leads were replaced with a Laplacian interpolation on the torso

and heart surfaces and by thin-plate spline radial basis function for the cardiac tissue

volume. Each channel was also baseline corrected and median filtered (window of five

time steps). These steps were implemented using customized code written in MATLAB

(The Mathworks, Inc) and our simulation environment SCIRun [21] (http://scirun.org).

4.3.3 Geometric Registration

The registration of the geometries used in these experiments requires aligning geome-

tries from three sources: the points digitized during the experiment, the imaging of the

heart, and the precomputed geometries of the equipment used in the experiment, i.e.,

the sock, heart images, needles, ICD geometries, and torso tank measurement nodes. We

used a series of registration steps, illustrated in Fig. 4.2, that utilized the RANSAC [22],

modified iterative closest point (ICP) [23], and thin-plate spline techniques, implemented

in MATLAB or SCIRun [21] (http://scirun.org). The result was a co-registered geometric

model that included all input elements combined in the same simulation space coordinate

system, as shown in the lower right panel of Fig. 4.2.

4.3.4 Simulation Pipeline

The defibrillation simulation pipeline used in this paper is well established and de-

scribed elsewhere [11], [13]. For this study, however, the pipeline was modified to use

experimental signals and geometric models instead of patient data. Hence, the differences

we summarize here deal with geometry and mesh generation.

The geometric models used in the simulation were generated from the registered image

and electrode locations described in Section 4.3.3 using a combination of open-source soft-

ware tools: Seg3D (http://seg3d.org), BioMesh3D [24] (http://scirun.org), SCIRun [21]

(http://scirun.org), and Tetgen [25] (http://tetgen.org). Seg3D was used to segment the
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Fig. 4.2. Schematic of the registration pipeline used to merge the experimental and simula-
tion space for comparison. On the left side are the recorded geometric information, which
then had to be aligned and registered into a common coordinate system (“simulation
space”) to enable analysis of the defibrillation simulations.
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MRI images of the excised hearts, from which a high-quality mesh of the ventricles was

then generated using BioMesh3D. SCIRun and Tetgen were used to generate a conforming

(i.e., a mesh that maintains the node locations at boundaries between regions of different

conductivities [26]) tetrahedral mesh that included the tank, heart, and ICD geometries.

This mesh was then used as the simulation domain to calculate the ICD potentials through

the volume.

The potentials generated by the defibrillators were simulated using the finite element

method implemented in SCIRun. The conductivities used were 0.3 S/m in the heart and

0.5 S/m in the tank. The ICD generator and coil potentials were set as the Dirichlet

boundary conditions of the simulation, and the torso surface was set as the Neumann

boundary condition. After the potentials were calculated, the values at the three tank

reference electrode locations corresponding to the locations used to construct the Wilson’s

Central Terminal were averaged and subtracted from the volumetric potentials. Measured

potential values were extracted at the electrode locations for the tank, sock, and needles

for comparison with the simulations. A similar example of this calculation is included in

the open-source SCIRun-Exchange repository (https://github.com/SCIInstitute/SCIRun-

Exchange).

4.3.5 Potential Comparisons

To validate the accuracy of our defibrillation pipeline, we compared simulated poten-

tial fields to those recorded at the same locations in our torso tank study. Each simulated

potential field was compared to the recorded potential field at the first peak of each bipha-

sic pulse at the corresponding locations. The differences in the field were quantified with

three standard metrics: normalized root mean square error (Ē), relative error (RE), and

correlation (ρ), defined as follows:

Ē =
||Φr −Φs||√

n · (max(Φr)−min(Φr))
(4.1)

RE =
||Φr −Φs||2
||Φr||2

(4.2)

ρ =
ΦT

r Φs

||Φr||||Φs||
, (4.3)

where Φr is a vector of the recorded potential values, Φs is a vector of the associated

simulated potentials, and n is the number of electrodes in the set.
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We also compared the computed electric field strength through the cardiac tissue near

the plunge needles (within 10 mm). The electric field strength from the simulations was

determined by calculating the gradient magnitude of the potential field through the my-

ocardial tissue region. The equivalent measured electric field was computed from po-

tentials interpolated through the region of the needles with a thin-plate spline radial basis

function. We compared the measured and simulated electric field strength in the context of

the critical mass threshold (CMT), which we defined as the shock energy needed to ensure

that the electric field strength within tissue region was greater than 5 V/cm for 95% of the

tissue; therefore, it is similar and analogous to the DFT as it is calculated via the critical

mass hypothesis [10], [20]. We also calculated and compared the probability density

functions of the electric field strength, i.e., the amount of myocardial tissue experiencing

an electric field over any given value, for recorded and simulated data.

4.3.6 Ethics

All experiments were performed with approval from the Institutional Animal Care and

Use Committee at the University of Utah and conform to the Guide for the Care and Use

of Laboratory Animals (National Institutes of Health publication No. 85-23).

4.4 Results
The results presented in this section demonstrate the feasibility of using the torso-tank

experimental preparation as a method to validate the simulation pipeline. Comparing

potential fields measured with the torso tank setup and those predicted by the simula-

tion pipeline showed high overall agreement, both qualitatively and quantitatively, for all

experiments and recorded shocks. The same agreement was supported by a comparison

of the electric field cumulative density functions between measurements and simulations.

The critical mass thresholds (CMTs) from recorded and simulated electric fields agreed in

some experiments but not in others.

4.4.1 Potential Field Comparison

Comparing the measured peak ICD potentials to values predicted by the simulation

pipeline showed high ρ, low Ē, and moderate RE (Table 4.1). The ρ ranged from 0.91 to

0.95 with a mean value of 0.94, the Ē ranged from 4.9 to 7.4 % with a mean of 6.0 %, and
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xTable 4.1. Statistical comparisons of the simulated and measured peak potential fields.
Each row contains the results from a single test shock, with variable numbers of test shocks
from each of the four experiments. †ρ is the correlation, ‡RE is the relative error, and §Ē is
the normalized RMS error.

experiment lead shock
& species impedance energy ρ† RE‡ Ē§

Exp A 79 Ω 10 J 0.92 30.9 % 7.2 %
Pig 15 J 0.91 33.4 % 7.4 %

Exp B 77 Ω 5 J 0.94 19.3 % 5.1 %
Pig 15 J 0.95 17.9 % 4.9 %

25 J 0.95 19.0 % 5.1 %
Exp C 73 Ω 0.6 J 0.94 20.4 % 6.7 %

Pig 1 J 0.94 20.8 % 6.8 %
Exp D 60 Ω 1 J 0.95 5.3 % 5.8 %
Dog 10 J 0.95 4.5 % 5.2 %

mean 73 Ω 9.2 J 0.94 19.1 % 6.0 %
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the RE ranged from 4.5 to 33.4 %. Experiment A showed the biggest differences with the

highest error (RE and Ē) and lowest ρ. Conversely, experiment D was the most accurate,

with the highest ρ, lowest RE by a factor of ∼4, and near lowest Ē (Table 4.1). Each

experiment demonstrated relatively consistent accuracy across shocks based on comparing

all measured potentials within each experiment.

Comparing each of the recorded subsets, i.e., the cardiac surface (sock), tank surface,

and cardiac volume (needles), to the corresponding simulated potentials yielded results

at finer spatial resolution than comparing all recordings. There was variability across the

lead subsets; for example, ρ ranged from 0.77 to 0.98, the RE ranged from 2.7 % to 103 %,

and Ē ranged from 5.5 % to 22.6 %. As shown in Fig. 4.3, the accuracy of the predicted

potentials varied by recordings surface as well as by experiment. The needle potentials

showed lower correlation than the other recording subsets for three of the four experi-

ments, but had the highest RE in one experiment and the highest Ē in two experiments.

The tank surface showed the highest correlation for all experiments, the lowest RE for two

experiments, and the lowest Ē for two experiments. Also, the tank surface recordings for

experiment D showed the highest RE and Ē for all surfaces over all experiments, despite

the high correlation, likely because they also showed the highest noise levels. The standard

deviation of the metrics for all recording subsets and experiments was also relatively low,

except for the RE and Ē with the tank recordings.

Figs. 4.4, 4.5, and 4.6 show the measured potential distributions at the peak of a defib-

rillator pulse along with the corresponding simulated potentials. The measured and pre-

dicted potential distributions show a high degree of qualitative agreement in the pattern of

A
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Fig. 4.3. Mean comparison of the simulated and measured potential fields by measurement
domain, i.e., the sock, tank, needles, or all recordings. The metrics shown are the a)
correlation (ρ), b) relative error (RE), and c) normalized RMS error (Ē). Error bars represent
the standard deviation.
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Fig. 4.4. Spatial comparison of the peak potential fields recorded on the torso tank and the
simulated values. ICD generator and coil positions are included (black).
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Fig. 4.5. Spatial comparison of the peak potential fields recorded on the epicardial sock
and the simulated values. ICD coil position is included (black).
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Fig. 4.6. Spatial comparison of the peak potential fields recorded within the myocardium
with plunge needles and the simulated values. ICD coil position is included (black).
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the potentials (a finding supported by the strong correlations). Amplitude variations were

visible, largely accountable as scaling differences between simulations and measurements.

However, some shifts in extrema were seen on the tank surface in experiments A and C

(Fig. 4.4), the heart surface in experiments A, B, and C (Fig. 4.5), and in the myocardium

in experiments A, B, and C (Fig. 4.6). Experiment D showed a difference in the maximum

area shape observed in the myocardium (Fig. 4.6), which could be caused by undersam-

pling of the region. The measured epicardial surface and myocardial volume potentials in

experiments A, B, and C contained local extrema that were not predicted by the simulation

(Figs. 4.5 and 4.6). Some of the local extrema on the epicardial surface, e.g., near the base

of the heart, could be attributed to poor electrode contact.

Qualitative comparison of the simulated and measured potential gradients through

the myocardium showed general agreement for most of the heart, yet not in some areas

(Fig. 4.6). In one example in experiment D, the potential gradient was high near the coil but

decreased quickly with distance from the coil in the simulated case, yet the transition was

smoother in the recorded data. The areas of maximum gradient, which correlated to the

areas maximum potential, were also shifted in experiments A, B, and C, with a superficial

area of high gradient on the posterior wall of the heart in experiment B in the recorded

data that were not present in the simulation.

4.4.2 Electric Field Comparison

Comparing the CMT calculated from the recorded and simulated electric field strength

through the myocardial tissue showed some agreement with two of the experiments (ex-

periments A and C) but not the other two (experiments B and D). The CMTs derived from

the measured potentials ranged from 4.3 to 12.9 J, whereas values from simulation ranged

from 5.2 to 18.5 J. As shown in Fig. 4.7, the CMT varied within an experiment, with the

greatest range occurring in experiment D (10.5 to 12.9 J) and the lowest range in with

experiment A (4.25 to 4.33 J). Experiment C showed the closest simulated CMT to the mean

CMT from recordings with a difference of 1.6 J. Experiment A was the next closest with a

difference of 2.7 J, followed by experiment D with 6.5 J, and finally experiment B with a

difference of 7.8 J. The CMT from simulated data overpredicted the CMT from recorded

data in experiments A and B and underpredicted in experiments C and D.



65

Exp A Exp B Exp C Exp D
Experiment

0

5

10

15

C
M

T
 (

J)

recorded data
simulated data

Fig. 4.7. Predicted CMTs based on recorded and simulated electric fields using the critical
mass hypothesis (95 % over 5 V/cm). The CMT from each shock is shown compared to the
simulated value from each experiment.

Fig. 4.8 shows the probability distribution of the electric field strength through the

region of the tissue near the needles scaled to fit the critical mass hypothesis (95 % over

5 V/cm). The probability distributions of different shock recordings of the same experi-

ment were nearly identical. Observable differences between the probability distributions

corresponded to differences in the CMT calculation (Fig. 4.7). The distributions from the

recorded fields had profiles similar to those for the simulated fields.

4.5 Discussion
The goal of this paper was to compare recordings from an ICD in a torso tank exper-

iment to those predicted by our defibrillation simulation pipeline. The findings showed

agreement, both qualitatively and quantitatively. We also found that the simulation could

predict CMTs and cumulative density functions similar to those calculated from recorded

potentials. The combination of accurate potential field comparison and similar electric

field measures, although in a limited number of experiments, provides a proof of concept

that the torso-tank experimental preparation can be used to validate the defibrillation

simulation, including in the myocardium.

The high-density spatial sampling of the potential field within the torso tank and heart

provides a unique validation of the defibrillation pipeline to predict potential distribu-

tions. Other studies have performed similar recordings and comparisons [13]–[15], i.e.,

recordings within the heart or on the body surface, yet none have recorded defibrillator

potentials at this resolution within the heart and on the body surface. This study showed a
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Fig. 4.8. Cumulative probability density plot showing the percentage of the myocardial
tissue region above each electric field value. The electric fields were scaled to satisfy the
critical mass hypothesis (95 % over 5 V/cm), which is marked as a X.

higher correlation and lower relative RMS error than those shown in an in situ study based

on recorded epicardial potentials [15]. We also showed a correlation and relative error

similar to those shown in another in situ animal study based on sparse torso recordings

[14]. Our findings also showed ρ, RE, and Ē similar to those reported in our previous

study based on recorded body-surface maps during ICD testing [13].

The presented comparison of the CMTs calculated from the recorded and simulated

electric fields provides some insight into the general accuracy of the simulation and the

ability of the experimental preparation to capture the electric field (Fig. 4.7). Although

the measured and simulated CMTs did not agree in every case, they did show generally

comparable values. The comparable results indicate that the electric field captured by

the needles was dense enough to provide a high spatial resolution comparison within the

myocardium. The CMTs calculated in the study provide a metric to evaluate the electric

field in a way that relates to the DFT as calculated using the critical mass hypothesis [12].

The CMT and DFT metrics used in this study are not designed to support the critical mass
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hypothesis as an underlying explanation of the mechanism of defibrillation, yet the metrics

are useful in comparing the electric field generated by a defibrillator.

The qualitative differences found in the potential fields (Figs. 4.4, 4.5, and 4.6) suggest

improvements for future experiments. For instance, since the only electrical sources are the

ICD generator and coil, changes in the absolute maximum and minimum in the potential

field could easily be due to registration errors, particularly with the ICD coil (Fig. 4.6).

This registration error may also be the cause of the difference in calculated CMTs from

measured and simulated fields. However, experiment D also had a different calculated

CMT, yet agreement with regard to the location of the maximum in the potential fields, so

other factors may also be involved. Experiment D also displayed a difference in the shape

of the maximum region as recorded with the needle data (Fig. 4.6). This maximum region

is more fully sampled by the epicardial sock, which indicates that the difference in shape

is likely due to incomplete needle sampling of the region near the ICD coil. Placing more

plunge needles near the ICD may provide more effective measurements of the potential

field through the myocardium.

Other experimental design components may have affected the recorded potential field

in ways that we could not observe with the data recorded in the study. One potential

cause of error is the attenuation of the defibrillators used in the torso-tank experiment.

Tissue under large electric fields can produce nonlinear effects, such as electroporation

[27], that would not be present in these attenuated shocks. However, previous studies

have not shown these nonlinear effects to be significant [13]–[15]. Similarly, the effect of

perfusing the tissue on the resulting recordings was not clear from the study. Although

the recordings from the one experiment that was perfused were different from those for

the other three, the data are inadequate to determine whether these differences are due to

perfusion, species, or device placement.

In addition to experimental considerations, some of the assumptions made about the

simulation pipeline could produce differences in the measured and simulated potential

field. One previously discussed possible source of error is the isotropic conductivity values

used in the simulation [13]. Past studies have shown anisotropic conductivities are needed

to accurately predict [15], [28] defibrillation potentials; however, high spatial sampling of

the myocardial tissue during ICD shock shows local extrema, indicating that heteroge-
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neous conduction may be occurring. More intricate modeling of the tissue heterogeneity

in the myocardium, such as the vasculature or the conduction system, may be need to ac-

curately predict the potential field generated by defibrillators. Another possible source of

simulation error includes the quasi-static assumption, which simplifies the computation of

the potential field. The frequencies generated by the device are high enough that frequency

responses from the tissue are expected [29].

The overall accuracy of the predicted potential fields compared to the measured values

in these torso tank experiments provides important validation of the ability of our simula-

tion pipeline to predict potentials fields and DFTs. Combined with past validation studies,

[10], [13] these findings provide further support that the simulation of defibrillation can be

effective as a patient-specific tool to facilitate defibrillator use or design, such as guiding

new placements of ICDs in patients with abnormal or developing anatomies [10]. The

accuracy and computational efficiency of the pipeline also provides a possibility for an

immediate impact as a ICD implantation planning tool. The pipeline can also be used

to test new device configurations, such as subcutaneous ICD implantations [11], or to

identify trends in defibrillator behavior based on many varied parameters, such as patient

size, structural variability, tissue conductivity, and many others. With this simulation

tool, which is demonstrably accurate, clinicians and researchers can better understand

defibrillators for both individual and general applications.

4.6 Conclusions
In this study, we found that our simulation pipeline can consistently predict accurate

potential fields through the torso volume, including on the epicardial surface and through

the myocardial volume, and can generate reasonable electric field probability distribu-

tions. We also found that the simulation can predict CMT metrics that are comparable

to measured values. An expanded validation study using the torso-tank experimental

preparation would provide further insight into the accuracy of the simulation, especially

in predicting potential fields through the myocardium. The demonstrated accuracy of

the simulation pipeline supports findings that show the feasibility of using the torso-tank

experimental preparation to validate the defibrillation simulation in the myocardium and

provides further general confidence in the simulation’s usefulness in improving defibrilla-
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tion therapy.
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CHAPTER 5

MEASURING DEFIBRILLATOR SURFACE

POTENTIALS: THE VALIDATION OF A

PREDICTIVE DEFIBRILLATION

COMPUTER MODEL

In response to the lack of clinical validation of defibrillation simulation, this chapter

presents research performed as described in the third aim: record human body-surface

shock potentials during clinical procedures to validate a defibrillation simulation pipeline.

The following paper was accepted for publication in Computers in Biology and Medicine

journal in August 2018 as part of the 2018 Symposium on Quantitative Cardiology (DOI

link: https://doi.org/10.1016/j.compbiomed.2018.08.025). The typeset version is included

here with permission.
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A B S T R A C T

Implantable cardioverter defibrillators (ICDs) are commonly used to reduce the risk in patients with life-
threatening arrhythmias, however, clinicians have little systematic guidance to place the device, especially in
cases of unusual anatomy. We have previously developed a computational model that evaluates the efficacy of a
delivered shock as a clinical and research aid to guide ICD placement on a patient specific basis. We report here
on progress to validate this model with measured ICD surface potential maps from patients undergoing ICD
implantation and testing for defibrillation threshold (DFT). We obtained body surface potential maps of the
defibrillation pulses by adapting a limited lead selection and potential estimation algorithm to deal with the
limited space for recording electrodes. Comparison of the simulated and measured potential maps of the defi-
brillation shock yielded similar patterns, a typical correlation greater than 0.9, and a relative error less than
15%. Comparison of defibrillation thresholds also showed accurate prediction of the simulations. The high
agreement of the potential maps and DFTs suggests that the predictive simulation generates realistic potential
values and can accurately predict DFTs in patients. These validation results pave the way for use of this model in
optimization studies prior to device implantation.

1. Introduction

Implantable cardioverter defibrillators (ICDs) are used to prevent
fatal arrhythmias [1–4], with approximately 100,000 implantations
each year [5]. Typically, these devices are designed for use in adults
and implantation follows standardized techniques; however, neither the
device nor the placement has been optimized for children or persons
with abnormal cardiac anatomies or other congenital defects [6]. As a
result, there is a rise in alternate configurations, such as eliminating the
lead placed in the subclavian vein or placing the ICD generator in the
abdomen instead of the left upper chest. Each configuration seeks to
maximize the efficiency of the device and ensure safety for the patient
[7]. A further motivation for exploring alternative ICD placement
strategies are studies that associate negative consequences to either
unnecessary or over-strength shocks. One study has shown that the
discharge of the ICD can alter the Ca++ dynamics of cardiac tissue,
which may inhibit normal cell contraction, especially if the shock uses

more energy than necessary [8]. Such risks have motivated new im-
plantation strategies for ICDs, including subcutaneous implantation
[9–15] and wearable external defibrillation devices [16–19]. With each
new approach comes the need for optimization and testing, which can
impede development, especially when each step requires animal and/or
human experiments.

Mathematical modeling and computer simulation can efficiently
accelerate the process of optimizing and testing of ICDs; to this end, we
have developed a computational simulation pipeline that generates a
patient-specific defibrillation model. With this pipeline, we can predict
the potential field throughout the torso during defibrillation and esti-
mate the defibrillation threshold (DFT), i.e., the lowest level of energy
needed for defibrillation, for any given device design, implantation, and
patient [20–23]. In previous studies, this simulation pipeline has shown
accuracy in predicting the threshold energy required for successful
defibrillation [22]. However, our previous validation studies have been
limited in their level of detail and complexity. We were able to compare
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holistic values such as the DFT, but could not evaluate how well the
model predicted the actual distribution of potential over the heart and
thorax. A more comprehensive verification requires comparison of our
simulation to empirical data, ideally from clinical tests. To acquire such
data in clinical studies, we have developed a method of measuring the
body surface potential maps (BSPMs) generated by ICDs in humans.

The standard testing process that follows each ICD implantation
provided the natural setting in which to acquire BSPMs during defi-
brillation shocks. Following implantation, the ICD is tested by inducing
fibrillation in the patient and allowing the device to sense the ar-
rhythmia and deliver a defibrillation shock to restore sinus rhythm.
These test shocks provide a rare opportunity to record the ICD potential
maps in patients. Although BSPM is a well established technique
[24–28], using it during defibrillation and in the catheterization la-
boratory environment requires additional consideration to allow space
on the torso surface for the sterile implantation region, the external
defibrillation pads, and other instruments for the safety of the patient.
Consequently, there is a highly limited and variable area of the torso
surface that is available for the placement of validation BSPM lead
systems. Fortunately, there are algorithms that use the spatial re-
dundancy of potential recordings to estimate full torso surface poten-
tials from a small number of electrodes [29–31].

In this study, we applied what is known as a limited lead selection
and body surface estimation algorithm developed by Lux et al. [31–33]
to deal with the restricted access to the torso surface. We adapted this
algorithm for use with ICD potentials by training it with 3870 sets of
simulated defibrillation potentials that included different human torso
geometries and also a wide range of realistic ICD placement locations.
We also validated the resulting estimation technique on a small set of
patient geometries.

With these novel techniques, we were able to gather BSPMs and DFT
from patients receiving an ICD implantation and compare them to the
results of patient-specific simulations. The results reported here estab-
lish the ability to accurately reconstruct ICD potential maps from both
measurements and simulations, show a strong correlation between
them, and demonstrate similar accuracy between simulated and actual
DFTs.

2. Methods

In order to validate the defibrillation simulation pipeline, we mea-
sured body-surface potentials during ICD shocks and the DFTs of pa-
tients who underwent ICD implantation and compared these data to
those predicted by the simulation. The validation, therefore, consisted
of three stages: adapting a limited lead selection and body surface es-
timation algorithm for use with ICD potential maps, recording ICD
potential maps and DFTs for each patient, and generating the patient-
specific model for each patient to predict the potential field and DFT to
compare them to the recorded values.

2.1. Body surface potential estimation of ICD shocks

We adapted a previously published limited lead selection and body-
surface potential estimation algorithm [31] for measuring body surface
potentials during ICD implantation surgery. Fig. 1 illustrates the ap-
plication of the algorithm, which is composed of two processes. The
first process is limited lead selection, which consists of finding the
optimal lead set for estimation by finding the most statistically unique
locations one at a time until the desired number of leads (32 in our
case) are found [31]. We applied additional spatial constraints imposed
by the implantation surgery, the sterile area, and the area covered by
the external defibrillator pads (Fig. 2), by removing from consideration
the locations covered by these areas. From the resulting limited lead set,
we modified the locations to fit regular strips of four leads for easier
fabrication and application (Fig. 2). The second process, body-surface
potential estimation, determines the linear transform that predicts from

the potentials measured with the lead set the potentials on the rest of
the torso (Fig. 1). This relationship is found from the covariance matrix
of the training potential maps and is represented as a transformation
matrix. This matrix is multiplied by the potential recordings from the
32 limited-lead locations to yield the full estimated potential map.
While our modeling approach could generate potential maps at any
time step, we used the relatively stable peak of the ICD pulse to allow
for direct comparison with measurements. Implementing these two
processes requires a database of potential maps to provide the statistical
information needed to create a limited lead mapping system.

For both these first two processes, we used a database of simulated
potential maps generated using our defibrillation simulation pipeline
[22] from a combination of 9 patient geometries, 43 tissue conductivity
schemes, and 10 ICD placement geometries. Each of the resulting 3870
simulated potential fields was sampled at the same 370 body-surface
locations to meet the requirements of the algorithm. These three
parameters, i.e., patient geometry, tissue conductivities, and ICD pla-
cement, were chosen to represent the range of such parameters ex-
pected in patients. Previous studies [6,23,34–37] and our own pre-
liminary simulation results showed that these parameters could be
expected to affect the BSPM and DFTs consistent with bioelectric
principles of conduction through an isotropic volume conductor. We
tested the ability of the limited leads and estimation algorithm to re-
construct potentials on a separate database of simulated potential maps.
This test dataset was generated with same 9 geometries, but a different
set of 20 conductivity schemes and 10 different ICD placement geo-
metries for a total of 1800 potential maps representing the peak of the
ICD pulse. The simulated potentials were sampled at the limited lead set
locations, and the previously calculated transformation matrix was
applied to generate the full estimated torso potentials. The quality of
the estimation was evaluated with absolute error, correlation (ρ), re-
lative error (RE), and normalized RMS error (E ). We first evaluated the
result of the estimation algorithm using an increasing number of leads
from 5 to 100 to determine the number of leads required for acceptable
estimation error. We also tested the sensitivity of the algorithm to
changes in electrode location by evaluating the level of error from a
variety of lead sets chosen to represent the placement variation likely to
occur in the catheterization laboratory setting.

2.2. Recording surface potentials

We recorded the body surface potential maps from test shocks
during standard ICD implantation surgery and testing. Table 1 lists each
of the subjects used in the study with their weight, the device which
was implanted, and geometric abnormalities. Surface recording elec-
trodes (32 plus 2 electrodes for ground and reference) were applied to
each subject as closely as possible to the locations described in Fig. 2
after intubation but before surgery. The surface potentials during each
biphasic test shock were recorded using a 32-channel customized re-
cording system (CVRTI, University of Utah) at 1 kHz or 4 kHz sampling
rates. Ag/AgCl electrodes were used to mitigate the effects of electrode
polarization on the measured potentials. To accommodate the large
shock voltages (up to∼ 750 V) in a system originally constructed for
ECG acquisition, we added attenuation by a factor of 104 using a vol-
tage divider on each channel. Faulty leads were identified by the signal-
to-noise ratio or pulse morphology and eliminated. The potentials for
reconstruction were identified as the value at the first peak of the ICD
pulse. The potential map was estimated using the transformation matrix
described in Section 2.1, and compared to the simulated maps for each
patient. Quantitative evaluation was by the same metrics as described
in Section 2.1. The measured potentials from the 32-lead set were also
compared to the simulated surface potentials and evaluated with the
same metrics. The resulting error metrics are presented as mean ±

standard deviation.
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2.3. Patient-specific simulation

We used the patient-specific simulation pipeline [22] implemented
in SCIRun [38,39] (http://www.scirun.org) to simulate the potential
field within the torso and predict the DFT of each patient in the study.
Nine patients identified as candidates for ICD implantation, with a
range of ages from 6 to 32 years, were imaged using magnetic re-
sonance prior to implantation using a 1.5 T MRI scanner with a double
IR pulse sequence. From these scans, segmentations of 11 tissues
[34,35] were generated using Seg3D [40] (http://www.seg3d.org) as
shown in Fig. 3, which provided torso geometries. Into this geometric
model, we added the location of the implanted ICD from postoperative
x-ray images. The torso and ICD geometries were then used as inputs in
the simulation pipeline to predict the potential field through the body
from the ICD for each shock level recorded for the patient. An example
of how to run this simulation can be found on the SCIRun-Exchange
(https://github.com/SCIInstitute/SCIRun-Exchange). The calculated
potentials were sampled at the same 370 points for which we mea-
sured/estimated the shock potentials (Section 2.2) and were compared

Fig. 1. Application of the limited lead selection and the body
surface estimation algorithm from Lux et al. [31]. Original
Data are body-surface potentials simulated from realistic ICD
placements, and the Constraints are those imposed by the
device implantation procedure. Lead selection follows itera-
tively to create reduced, constrained leadsets that we then
used to create the estimation transform contained in the
Transformation Matrix. Sparse Measurements are those sig-
nals acquired during each procedure.

Fig. 2. The optimal locations for measuring and from which to estimate full
body surface maps during implantation surgery (red dots). The dark gray areas
are generally covered by the external defibrillator pads, and the tan area in-
dicates the sterile field where the device is implanted. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web
version of this article.)

Table 1
List of patients in the study with the ICD device manufacturer and geometric
information. Acronyms are: atrioventricular septal defect (AVSD), left ventricle
(LV), ventricular septal defect (VSD), pulmonary valve (PV).

age weight device geometric abnormalities

6 years 25 kg Medtronic Virtuoso II DR Normal Anatomy
8 years 36 kg Medtronic Virtuoso II DR Normal Anatomy, Long QT
9 years 35 kg St. Jude Promote Prosthetic MV, repaired AVSD,

LV dilation
15 years 46 kg Medtronic Virtuoso II DR Repaired AVSD, Scoliosis,

Spinal Rods
16 years 65 kg St. Jude Current DR Normal Anatomy
17 years 70 kg St. Jude Current DR Aortic Atresia, Repaired VSD,

Cardiac Reconstruction
17 years 60 kg Medtronic Virtuoso II DR Cardiac Reconstruction, Scoliosis
29 years 85 kg St. Jude Unify Tetralogy of Fallot, PV Homograft
32 years 60 kg Medtronic Virtuoso II DR Tetralogy of Fallot

Fig. 3. 11 segmented tissues types included in the defibrillation simulation
pipeline.

J. Tate et al. Computers in Biology and Medicine xxx (xxxx) xxx–xxx

3

75



using the same metrics as for the other map errors. The DFT corre-
sponding to the ICD geometry was also calculated for each patient using
the critical mass hypothesis, which holds that 95% of the ventricular
myocardium must have an electric field above 5 V/cm for successful
defibrillation [41]. The predicted DFTs were also compared with the
clinically derived biphasic DFTs of each patient.

2.4. Collecting patient data

All patient data used in this study was collected with informed
consent and under the direction of the local institutional review board
of Primary Children's Medical Center at the University of Utah.

3. Results

The results presented in this section demonstrate the ability of the
simulation pipeline to recreate ICD potential and DFT values measured
in the clinical setting. We show the results of four comparisons: known
simulated potential maps to those estimated using the limited lead set
and training data, body-surface recordings at approximately 32 re-
cording locations to simulated values at the same locations, potential
maps estimated from the measured body-surface potentials to simulated
surface potential maps, and predicted DFT to clinically measured DFT.

3.1. Reconstruction of simulated surface potentials

When tested against simulated body-surface shock potentials, the
limited lead selection and estimation algorithm showed a low error and
a high correlation. The limited lead sites preferred by the algorithm
tended to be locations as close to the ICD device and active coils as
possible. When unconstrained, the majority of the selected leads were
on the left, anterior chest. With constraints there was a high con-
centration of leads on the shoulders, along the mid-axillary lines, and
near the xyphoid process. The error of the estimations as a function of
number of leads demonstrated a general exponential reduction as
shown in Fig. 4. The minimum ρ for five or more leads was 0.993, the
maximum RE was 1.8%, and the maximum E was 4.6%. Although the
correlation changed very little with the number of leads used, the im-
proved values for RE and E indicate substantial benefits are possible up
to approximately 60 leads. The error did not significantly decrease
when using more than 60 electrodes at which point the ρ=0.999, RE
=0.47%, and E =2.2%. The error using 32 electrodes was acceptably
low with a ρ of 0.997, RE of 0.88%, and E of 3.1%.

The body surface estimation algorithm exhibited high accuracy
when using a variety of lead sets when comparing estimated and si-
mulated potential maps. The error was lowest using the unconstrained
lead set, with a ρ of 0.99991 ± 7×10−5, a E of 0.5 ± 0.1%, RE of
0.02 ± 0.02%, and a mean maximum error of 19 ± 9V. Using the
chosen clinical lead set reduced the accuracy, yet the metrics should
very high accuracy with a high ρ (0.999 ± 2×10−3), low E
(1.6 ± 0.7%), and low RE (0.3 ± 0.4%) between the estimated and
simulated potential maps. The mean maximum error of the estimation

was 68 ± 39 V on shocks of 500 V. Comparing Fig. 5 shows the typical
distribution of error, with highest values near the left upper chest,
where the ICD was placed. The accuracy of estimated surface potentials
was not sensitive to changes in the limited lead set, both in location and
number of leads. The reconstruction of the lead set with the greatest
error, based on the location and the number of the leads, did not change
the mean E more than 0.9%, the mean RE more than 0.3%, and the
mean ρ more than 2×10−3. These changes in the error metrics are
within the standard deviation of the metrics from the limited lead set,
with the exception of E , which was slightly higher than the standard
deviation.

3.2. Surface potential comparison

Comparison of the potentials measured at the lead locations against
those from patient-specific simulation showed high correlation, with a
varied RE and E , which ranged from 5.8 to 47.3% and 8.1–23.1% re-
spectively. As shown in Table 2, the mean ρ, RE, and E were
0.97 ± 0.02, 20 ± 11%, and 15 ± 4%, respectively. Comparing the
potentials and the absolute error at the leads marked with black spheres
in Fig. 6 also shows that the simulated potentials were generally lower
in amplitude than the measured potentials.

The body surface estimation algorithm was effective in generating
potential maps of ICD discharges that are qualitatively and quantita-
tively similar to the maps from the patient-specific simulation. Fig. 6
shows a comparison between the estimation from the ICD surface re-
cordings and the patient-specific simulation. Qualitatively, the poten-
tial maps are similar, but there are regions of high error near the left,
superior chest where the device was located. The quantitative com-
parison between the reconstruction and simulation also showed high
accuracy, as listed in Table 3. The ρ for each shock was above 0.96, with
a mean of 0.99 ± 0.01 from 29 shocks. Similarly, the RE was low for
all shocks with a mean of 13 ± 9%. The normalized E demonstrated a
similar level of accuracy of 6 ± 2%.

Fig. 4. Mean estimation accuracy as the number of leads used in estimation algorithm was increased. Error is expressed by A) correlation (ρ), B) relative error (RE),
and C) normalized RMS error (E ).

Fig. 5. Typical absolute error between actual and reconstructed potentials by
location from a shock with 500 V magnitude.
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Fig. 7 shows the mean and standard deviation of the accuracy me-
trics for each patient as a condensed visualization of the information in
Tables 2 and 3. This figure compares the accuracy of the simulation
using both the full torso maps and the subsets for each patient form
which we obtained measured signals. In general, the error is higher
between the recorded potentials and the simulated potentials for the
subset of the measured locations than in the full potential maps, how-
ever, the accuracy of the simulation varies among patients.

3.3. DFT comparison

Table 4 shows the comparison between the clinically determined
DFTs and the predicted DFTs. The predictions for the 6-, 9-, 16-, and 29-
year-old patients were within the range of the clinically determined
DFTs, indicating a high predictive accuracy for these patients. The 8-,
15-, 17-, and the 32-year-old patients demonstrated predicted DFT
outside the clinically determined DFT range but typically by less than
2 J, which is less than or equal to the range tested for each patient. The
highest difference in predicted and observed DFTs was recorded for the
first 17-year-old patient. This difference was nearly double the observed
range (∼10 J).

4. Discussion

The results presented in this paper demonstrate three major find-
ings: a) that the limited lead selection and estimation algorithm can be
applied with high accuracy to capture the shock potential over the
entire torso, b) that patient-specific simulation of defibrillation can
generate surface potentials that are qualitatively and quantitatively
similar to those obtained in measurements, and c) that simulations can
predict DFT values comparable to those found clinically. These findings
support the effectiveness of our simulation pipeline in predicting

defibrillation in humans.
This study contains a new application of a well established ap-

proach, using limited lead selection and a body-surface potential re-
construction algorithm to estimate potential maps during ICD shocks.
The lead selection algorithm suggested electrode placement locations
that were as close as feasible to the electrical sources and sinks (the ICD
and active leads), which is similar to findings using the same approach
to identify limited leads to capture cardiac sources [31]. We found that
the number of leads for which the error statistics became stable was
approximately 60, compared to 30 found in Lux et al. [31,42]. How-
ever, the error using 30 leads to measure ICD shocks was still accep-
tably low (Fig. 4), supporting our decision to use existing 32-lead ac-
quisition systems. Another important finding was that the estimation
was insensitive to changes in the specific limited lead set identified by
the algorithm, which allowed us to add clinically dictated constraints
on electrode placement, constraints that varied from case to case. A
final finding was that using simulations of defibrillation to create the
training data to identify viable limited leadsets was successful. Our
results are supported by a previous application of the limited lead and
estimation approach in the setting of activation mapping on the epi-
cardium of the heart from leads located in the coronary veins [43]. All
these results support the utility and robustness of this approach and
encourage further applications.

This study also provides unique and compelling validation of the
utility of simulation to predict defibrillation potentials in a patient
specific manner. The comparison between simulated and measured
values exhibited a high correlation, demonstrating that the simulation
predicted generally accurate spatial distributions of defibrillation po-
tentials. The level of normalized E and the correlation associated with
the subset comparisons were similar to those from animal validation
experiments in which an ICD was discharged in situ and potentials
measured at several locations in the torso [41]. Also, the full potential
maps estimated from recorded potentials were qualitatively and quan-
titatively similar to simulated potential maps (Section 3.2, Figs. 6 and
7). The errors in the comparison of the full maps were lower than those
for the comparison of only the measured potentials, indicating that the
estimation algorithm itself may contribute to reducing the error. A
possible reason for this improvement is that the estimation algorithm
captures features of the simulated defibrillation potentials, driving the
estimation closer to the simulated distributions and improving the ac-
curacy. Despite the possible bias, using estimated potential maps for
evaluation allows for potential field comparison at locations on the
torso that are likely impossible to directly record with contact elec-
trodes, most notably near the ICD device, which is the location with the
highest potentials amplitudes. However, Tables 2 and 3 show that high
accuracy in comparisons with only the measured potentials generally
correlates to high accuracy in the predicted full potential maps, in-
dicating that the potential maps are driven by the recorded potentials.

A comparison of clinical and simulated DFTs further supports the
accuracy of the simulation at the same time as it provides insight into
the limitations of the model (Section 3.3). Generally, there was high
agreement between the predicted and observed DFTs, which is similar
to our previous findings [22]. However, there was a notable exception
with one of the 17-year-old patients. This patient experienced the
highest error in DFT comparison (Table 4), the highest potential map
RE (Fig. 7), and a high E . A possible explanation for this exceptional
result is that the cardiac anatomy of this patient was vastly different
from normal due to major cardiac reconstruction of the atria, which
could have significantly altered both the myocardium and scar tissue
near the heart to affect the DFT. We chose this case to explore (albeit
superficially) the impact of heart conductivity on the DFT and found
that by reducing conductivity by a factor of 10, the DFT dropped to a
value of 9.1 J, within the measured range, indicating that there may
also be underlying tissue conductivity changes, such as scar formation
or fibrosis, in addition to geometric changes that may need to be in-
cluded in the model. A further potential source of error in predicting

Table 2
Metrics of comparison of the limited lead recordings and the simulated po-
tentials at the corresponding location. Each row contains the results from a
single test shock and there were variable numbers of test shocks from each
subject.

Subject age shock max ρ RE E

6 yo 216 V 0.96 37.9% 19.2%
279 V 0.956 42.8% 20.5%

8 yo 279 V 0.959 12.3% 13.4%
395 V 0.962 10.6% 12.4%
483 V 0.977 5.83% 8.07%
624 V 0.962 11.6% 13.1%

9 yo 405 V 0.974 27.9% 18.8%
573 V 0.972 25.8% 18%

15 yo 216 V 0.991 10.4% 10.1%
279 V 0.991 13.2% 11.5%
395 V 0.991 10.8% 10.4%
483 V 0.991 13.9% 11.7%

16 yo 395 V 0.938 26.7% 18%
583 V 0.93 19% 14.2%

17 yo 286 V 0.976 32.2% 22.3%
405 V 0.976 26.3% 20.2%
496 V 0.976 35.4% 23.1%

17 yo 483 V 0.978 16.3% 13.6%
624 V 0.975 15.9% 13.2%
738 V 0.976 13.5% 12.4%

29 yo 405 V 0.948 11% 9.81%
496 V 0.944 11.2% 10.1%
573 V 0.949 10.7% 9.67%
701 V 0.936 12.8% 10.9%

32 yo 279 V 0.983 25.8% 15.8%
395 V 0.983 25.9% 16.2%
432 V 0.982 47.3% 21.4%
624 V 0.983 19.7% 14.4%
738 V 0.983 19.8% 14.2%

mean 458 V 0.969 20.4% 14.7%
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DFTs comes from Rantner et al. [44], who questioned the ability of the
critical mass hypothesis [45] to accurately predict defibrillation. Al-
though they tested only one case, our single outlier case may provide
further evidence that in some patients, the critical mass hypothesis may
not be sufficient to predict the effect of defibrillation. This one case does
not diminish the importance of the finding that the direct comparisons
of DFTs predicted DFTs close to clinically observed values for all other
patients (Table 4). With such high accuracy, we can show that in at
least a substantial proportion of our cases, the critical mass hypothesis

used in our model could accurately predict DFT.
We do not claim that these results support the critical mass hy-

pothesis as an underlying explanation of the mechanisms of defibrilla-
tion, but rather aimed to apply it as an efficient estimation tool to
calculate DFTs and measure the effectiveness of defibrillation. There
are other mechanistic explanations that more completely explain many
of the more intricate tissue behaviors during defibrillation, such as the
virtual electrode hypothesis [46]. Calculating the DFT with these other
underlying assumptions often require computationally costly methods

Fig. 6. Surface potential comparison between the reconstruction obtained from surface recordings and the original, patient specific simulation. The results show a
single shock for all 9 subject and include the limited leads (black circles) selected during the ICD implantation for each subject. The absolute error is included for each
patient.
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such as bidomain simulation with active cell models to describe both
the fibrillation and defibrillation wave-fronts and test multiple shock
amplitudes for each ICD placement for success [44,47,48]. However, in
the setting of guiding a clinical decision about ICD placement or set-
tings it is necessary to be able to rapidly, ideally within seconds,
evaluate many configurations, which, in turn, requires the efficiency of
an approach like estimating DFTs based on the critical mass hypothesis.
We welcome further progress in identifying new, efficient metrics of
defibrillation and our computational pipeline is flexible enough to in-
corporate such improvements.

The occasional disparity of the error metrics in this study reveal the
recurring challenge of comparing complex, three and four-dimensional
results, of defining error metrics that capture the features that are most
relevant to how the results will be used. For instance, there is an order
of magnitude difference between the amplitudes of many of the mea-
sured potentials, differences not always reflected in the simulations and
likely a product of controllable measurement error. Such amplitude

fluctuations can combine with the mathematics of error metrics to re-
sult in distortions of the error metrics. In the calculation of RE, for
example, simply swapping the nominally correct values between the
measured and the simulated values can change the resulting error
metrics by as much as a factor of two. Metrics that are less sensitive to
these types of ambiguities, such as correlation and DFT, can provide less
sensitive measures of the accuracy of simulations and comparisons, but
come with their own bias and distortion.

The results of this study show that the simulation pipeline we have
developed is generally accurate, but some areas can be improved spe-
cifically in the patient-specific model. Many assumptions and sources of
error contribute to the discrepancies apparent in the computation of
both potentials and DFTs, e.g., patient geometry and conductivity va-
lues. Previous studies suggest that the model is highly sensitive to
changes in the myocardium and blood conductivity, i.e., that these
factors can most affect the potential distribution on the torso surface
[34]. However, animal studies also suggest only a modest change in
error when such conductivities are modified, even when a voltage drop
is applied to the interface of the defibrillator [41]. Therefore, scalar
changes in conductivity values may not provide a sufficient improve-
ment in the simulation to significantly reduce error.

One additional source of error is the anisotropy of conductivity in
the heart. In the current model, the myocardium was modeled as an
electrically isotropic tissue. Previous studies of propagation of excita-
tion have shown a marked increase in accuracy in the predicted electric
field by including the anisotropy of the heart [36,37]. It is also evident
from other studies that the myocardial fiber direction significantly af-
fects the electric field around and through the myocardium [49].
Adding anisotropy to the myocardium based on fiber direction will
likely change the electric field around the heart and may provide a
significant change in the surface potentials, thereby increasing the ac-
curacy of our model to predict the electric field in the torso.

The subjects used in this study were cases following corrective
surgery for congenital cardiac defects, and therefore much younger

Table 3
Metrics relating the simulated potential maps to the maps generated from the
surface recordings. Each row contains the results from a single test shock and
there were variable numbers of test shocks from each subject.

Subject age shock max ρ RE E

6 yo 216 V 0.991 18.6% 9.0%
279 V 0.982 26.9% 10.8%

8 yo 279 V 0.967 6.5% 5.1%
395 V 0.97 6.0% 4.8%
483 V 0.996 1.0% 2.0%
624 V 0.967 7.0% 5.0%

9 yo 405 V 0.985 6.28% 4.16%
573 V 0.976 6.19% 3.94%

15 yo 216 V 1.000 6.8% 5%
279 V 0.999 10.9% 6.3%
395 V 0.998 12.9% 6.9%
483 V 0.998 16.8% 7.9%

16 yo 395 V 0.978 7.8% 5.0%
583 V 0.964 7.3% 4.5%

17 yo 286 V 0.996 23.5% 7.7%
405 V 0.996 22.9% 7.7%
496 V 0.995 31.2% 8.8%

17 yo 483 V 0.997 15.2% 7.7%
624 V 0.998 12.1% 6.7%
738 V 0.994 13.5% 7.2%

29 yo 405 V 0.994 2.0% 2.5%
496 V 0.99 2.2% 2.7%
573 V 0.988 2.7% 2.9%
701 V 0.978 4.6% 3.5%

32 yo 279 V 0.994 15.3% 5.2%
395 V 0.992 18.4% 5.7%
432 V 0.988 30.2% 7.0%
624 V 0.99 19.3% 6.0%
738 V 0.987 20.5% 6.1%

mean 458 V 0.990 12.9% 5.6%

Fig. 7. Mean accuracy for each subject expressed by A) correlation (ρ), B) relative error (RE), and C) normalized RMS error (E ). Error bars indicate standard
deviation.

Table 4
Comparison of the DFTs found during clinical testing and predicted by simu-
lation via the critical mass hypothesis. Biphasic pulses were used in clinical
defibrillation testing and the peak electric field from both phases was used to
satisfy the critical mass hypothesis for the prediction.

Subject age Empirical DFT Predicted DFT

6 years 0–3 J 2.7 J
8 years 10–15 J 8.31 J
9 years 10–15 J 14.5 J
15 years 3–5 J 5.2 J
16 years 14.6–20.7 J 20 J
17 years 5–10 J 19.9 J
17 years 20–25 J 26.8 J
29 years 15–20 J 18 J
32 years 10–12 J 12.9 J

J. Tate et al. Computers in Biology and Medicine xxx (xxxx) xxx–xxx

7

79



than typical ICD recipients. They also differed from typical ICD re-
cipients in that the causes of their arrhythmias were rooted in their
congenital defects and the subsequent corrective surgery and not, for
example, myocardial infarcts suffered in adulthood. While their dis-
eases were pediatric, many of the subjects were at least teenagers and
two were mature adults (29 and 32 years of age) so that factors of torso
size and organ development were similar to patients in the aging po-
pulation. Our results also showed that patient-specific applications of
this modeling approach were accurate across a range of patient sizes
and cardiac anatomical abnormalities. Clinical experience also suggests
that these types of patients would likely benefit most from the patient-
specific modeling of their ICD placement [20,35]. Placement of ICDs in
adults with arrhythmias originating from other structural or non-
structural causes have become largely standardized and successful so
that such patient-specific modeling is less justified. Finally, our ap-
proach modeling the patient geometry and function is highly adaptable
and so could be easily modified for more typical adult cases.

Another use of the simulation pipeline would be to test the affects of
variations in patient geometry, tissue conductivity [34], and ICD posi-
tion and type [23,35] on the expected DFT and the resulting BSPMs.
The simulation framework we describe could be used to vary any
number of patient geometry parameters, including: heart size, wall
thickness, torso size, and any other change in the geometry of the pa-
tient and then to evaluate the changes in DFTs and BSPMs. By testing a
wide range of geometric parameters in a rigorous and systematic
fashion, some general trends could emerge that may provide guidance
to physicians placing ICDs in patients with abnormal geometries. We
have previously carried out similar studies using our model to derive
general clinical guidelines for ICD placement [23].

The accuracy demonstrated in this study provides important vali-
dation of our simulation approach and of the application of estimation
of potentials to this new domain. High agreement in potential field
recordings and DFT comparisons shows that such simulations can ac-
curately predict the electric potentials on the surface of the body and
likely throughout the torso. The main application of this model is to
improve ICD use in a patient-specific case, for example, patients with
abnormal cardiac anatomy. More generally, there is a pressing need for
optimization of ICD placement for pediatric cases or subcutaneous ICD
configurations [23]. The accuracy of our simulation compared to re-
corded potentials demonstrated in this study provides confidence in our
simulation pipeline, which could further the usefulness of ICD for many
patients. We also note that all elements of the software described in this
study are part of an open-source software suite created for bioelectric
field simulations. The software is available completely freely at http://
www.sci.utah.edu/cibc-software.html.
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CHAPTER 6

CONCLUSIONS

Arrhythmias are a major individual and public health concern whose mechanistic un-

derstanding and treatment remain incomplete [1]. One can improve the understanding,

detection, and treatment of arrhythmias with computer models, but these models must

be robustly validated. The studies performed as part of this dissertation have developed

and applied novel approaches to validation and also revealed insights into strategies for

validating and improving computer models of arrhythmias, specifically simulations of

defibrillation and ECG forward simulations.

We performed studies to validate two computational pipelines: the ECG forward prob-

lem and defibrillation simulation. For the ECG forward problem, our results provided

some insights into methods that may improve future validation studies and suggest im-

plications for the more clinically relevant ECG imaging (ECGI). Our studies to validate the

defibrillation pipeline were completely novel and quantified the errors with the pipeline

we have developed and used previously; the results support its use as a tool to guide

defibrillation treatment in patient-specific cases.

6.1 ECG Forward Simulation
As outlined in specific aim 1 (Section 1.1), one of the goals of this dissertation was to

evaluate and reduce the error in the ECG forward simulation from incomplete sampling of

the atria. We tested various approaches to sampling the epicardial potentials on the atrial

surface and evaluated the effect of these strategies on the computed BSPMs (Chapter 3).

The results of this study led to three major findings: complete sampling of the epicardial

potentials is needed to accurately predict the BSPM, some sampling strategies are more

effective than others, and the possible error due to missing cardiac samples is great enough

to account for the errors reported previously [2], [3] and observed in our own studies.

It is clear from the work shown in Chapter 3 that reducing the spatial coverage of
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epicardial samples from the ECG forward simulation will produce errors in the body-

surface potentials, regardless of geometry or activation profile (Figs. 3.2, 3.3, and 3.4).

Therefore, sampling only the ventricular epicardium is insufficient for generating accurate

ECG forward simulations, and we have yet to adequately predict the missing values.

Adding a small number of sampling locations on the atria did, in general, reduce the

error in the simulated BSPMs (Fig. 3.5), motivating our studies to identify better sampling

strategies in experimental settings.

In our analysis of various sampling strategies, we identified several that effectively

reduced error in the simulated BSPMs with fewer sampling locations. In general, the more

distributed strategies, such as the uniform distribution, produced less error in the simula-

tion BSPMs given the same number of sampling locations (Fig. 3.5). Another strategy that

performed well much of the time consisted of adding additional sampling locations to both

the atrial roof and the AV plane. These distributed strategies likely performed well because

they facilitated approximating the missing potentials during subsequent interpolation in

the forward simulation pipeline. The distributed strategies reduce the maximum distance

between known potential values, so that interpolation is more likely to preserve local

fluctuations. Even among the successful sampling strategies, each had several practical

limitations. The several vessels attached to the atria prohibit the use of a sock to completely

cover the epicardial surface in an in situ setting. These vessels also limit the possible

locations for a plaque electrode array and preclude the use of a uniform or full pericardial

sampling strategy. However, a combination of a plaque electrode and a larger ventricle

sock could approximate the combined atrial roof and AV plane strategy. The torso-tank

preparations offer more opportunities, especially by means of a cardiac cage, which could

be used to sample potentials near the epicardium and completely surrounding the heart.

Comparing the errors we determined in the simulated BSPM caused by missing atrial

sampling locations to previously published ECG forward simulation validation studies [2],

[3] indicated that this single source of error may not fully account for the error previously

reported. We had to remove at least a few ventricular samples in order to observe errors

at the error level previously reported. Without more details from the investigators, we can

only speculate that previous attempts to validate the ECG forward simulation pipeline

were missing not only epicardial atrial sampling but also some ventricular sampling.
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More fruitful than trying to diagnose past errors is the impact of the findings of Chap-

ter 3 for future validation studies. Such studies should ensure that the ventricular epi-

cardium is completely sampled with the cardiac sock or other electrode array and that

some sampling occurs on the atrial epicardium. Strategies to sample the atrial surface

include plaque electrodes or a cardiac cage.

These findings also have implications for how researchers validate ECGI methods us-

ing forward simulated BSPM data [4]–[7]. Our findings suggest that the computed BSPMs

used as inputs in these ECGI pipelines may contain errors due to inadequate cardiac

sampling, which biases the tuning of the constraints in the ECGI inverse problem and can

possibly alter the levels of accuracy achieved. Using ECG forward simulation data to test

ECGI implementations is just one example that shows how improving the validation of

the ECG forward simulation will also help improve ECGI techniques. The data collected

as part of this research will be valuable in ECGI tuning and validation studies that are

already underway.

6.1.1 Future Work

This dissertation outlined new guidelines to source sampling for ECG forward sim-

ulation validation studies (Chapter 3). Natural next steps include implementing these

guidelines in experiments with recorded torso surface potentials. We propose (and are

carrying out) new animal studies with two experimental preparations: closed-chest and

torso-tank.

The proposed closed-chest in situ animal experiments are designed to further evaluate

the effect of source sampling on the ECG forward problem. The proposed protocol would

involve recording epicardial potentials with cardiac sock and atrial plaque electrode arrays

together with simultaneous body-surface potentials. Using systematically varied subsets

of the epicardial recordings as sources, we hope to identify specific sensitivities on the

location and density of epicardial sampling. Such experiments will be unique in their

anatomical and physiological fidelity and provide new validation data for many questions

related to both sampling of cardiac bioelectricity and the forward and inverse problems in

electrocardiography.

The proposed torso-tank experiments are designed with similar goals to those using
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the closed-chest animal experiments: to further evaluate the effect of source sampling

within the ECG forward solution using unique ground truth measurements. The main

difference in the torso-tank experiments is the lack of fidelity to the intact animal, which is

traded off against the extensive access to the heart. The torso-tank protocol allows many

forms of measurement, including cardiac sock, extracardiac cage, and torso-tank electrode

arrays. The cardiac cage provides near full epicardial sampling of the heart (Fig. 6.1), which

enables repeat analysis of any sampling strategy and would further test the findings in this

dissertation. The addition of a cardiac sock within the cage will help quantify the effect

of the spatial smoothing that occurs in the short distance from the epicardium to the cage

and the subsequent effect on the ECG forward simulation and ECGI. These data will be

especially important because they can help develop interpolation strategies to minimize

error in the ECG forward simulation from missing cardiac source recordings.

With the cardiac sources more fully characterized, we can analyze other aspects of the

ECG forward simulation pipeline to better quantify the origins of error. Previous reports

Fig. 6.1. Cardiac cage to record near epicardial potentials in a torso-tank filled with
electrolyte.
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from our group and others have described the effect of the position of the heart in the

torso on the ECG forward simulation [8] and ECGI [9], [10], but these findings have been

based only on ventricular epicardial source recordings. Using full pericardial sampling of

sources in similar studies could provide better quantification of geometric errors because

of the reduced residual error in the predicted body-surface potentials for ECG forward

simulations.

Previous studies have tested ECGI methods on computed from sources only on the ven-

tricle [4]–[7], and therefore a natural extension of the findings in the dissertation would be

to quantify the difference between using BSPMs computed with full pericardial sampling

and epicardial ventricle-only sampling in ECGI pipelines. This study would need similar

data to those used in Chapter 3, simulated pericardial potentials, or potentials recorded

from a cardiac cage. In addition to changes in recomputed cardiac sources, the optimized

regularization parameters used in the ECGI methods may also change.

6.2 Defibrillation Simulation
Another goal of this dissertation was to validate the potential fields predicted by the

defibrillation simulation using clinical and animal experiment recordings, as outlined in

specific aims 2 and 3 (Section 1.1). We recorded potential fields generated by an ICD with

two setups: a torso-tank preparation to record potentials within the heart and on the torso

surface (Chapter 4) and with patients undergoing ICD implantation and testing to record

surface potentials and DFTs (Chapter 5). The simulation showed high overall accuracy

in predicting measured potential fields, including within the myocardium (Chapter 4) and

with patient BSPM (Chapter 5). Additionally, the simulation was able to accurately predict

the DFT in a majority of cases, suggesting that the critical mass hypothesis is sufficient to

compute the DFT for a majority of patients (Table 5.4, Chapter 5). However, the outlier

in this case combined with those of Rantner et al. [11] indicates that the critical mass

hypothesis may not always sufficiently predict the DFT of a patient. In these cases, more

complex modeling may be required [11]–[14]. Nevertheless, the accuracy of the simulation

in predicting the potential field and the DFT shows that it can be used to effectively predict

the behavior of defibrillators.

The findings of Chapter 4 and 5 suggest several ways to improve the simulations
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to provide more agreement in validation studies and to improve accurate predictions to

encourage its use as a clinical tool. The conductivity assumptions used in our pipeline can

cause errors in the results [15], especially due to the assumption of isotropic conduction

through the myocardium [16], [17]. Adding anisotropy is likely to alter the potential

distributions through the torso. The inclusion of boundary conforming meshes in patient

models may also increase the accuracy of the potential field and computed DFTs by pro-

ducing more accurate electric field predictions [18].

The findings presented in this discussion support trends and predictions made in pre-

vious studies using simulation to predict ICD behavior in patients [19], [20]. These studies

have evaluated several aspects of the ICD implantation strategy with the goal of establish-

ing trends in ICD behavior. The findings have shown that, in most cases, the trend in pre-

dicted DFT matched what was clinically and experimentally observed (Chapters 4 and 5),

which further supports the claims set forth in the previous reports, such as the effect of

patient size on DFT with subcutaneous electrodes [19]. Furthermore, the findings in this

study also showed that both predicted and observed DFTs are generally correlated with

the size of the patient, which also agrees with experimental and clinical findings [21], [22].

The ability of the simulation to predict general trends in the relationship in size, and also

the exceptions to the trend (Chapter 5), support the ability of the simulation to provide

important patient-specific guidance while planning ICD implantation positions.

6.2.1 Future Work

Closed-chest animal experiments could provide complementary validation of the de-

fibrillation simulation and would build upon the studies performed in this dissertation

(Chapters 4 and 5). Although similar experiments have been conducted in the past [16],

[17], [23], [24], our approach could provide a combination of subject-specific geometry

and high spatial sampling. The protocol would involve recording in the myocardium with

plunge needles, on the cardiac surface with a sock electrode array, and on the torso surface

with contact electrodes to compare to predicted values. DFTs could also be measured and

compared to predicted values using this preparation.

In addition to improving the validation of the defibrillation simulation, we could also

improve the pipeline by including anisotropic conductivity throughout the heart. Adding



88

anisotropy could alter the potential distribution throughout the torso and on the body

surface [15]. It might also produce potential distributions and predicted DFTs that match

even more closely our experimentally recorded data. The fiber directions could be esti-

mated using a rule-based approach [25], [26], and one could also test the response of the

simulated potentials and DFTs to changes in the distribution of the fiber orientation. Such

experiments could provide insight into the sensitivity of the defibrillation simulation to

fiber orientation.

As discussed in Section 6.2, the critical mass hypothesis may not accurately predict the

DFT for every patient, which suggests the need for more advanced biophysical models

[12], [27], [28] in some instances. If we could identify patients who are likely to have inac-

curate predictions based on the critical mass hypothesis, we could reduce computational

cost by performing only the more complex models on the patients who need it (Fig. 6.2).

To determine methods of categorizing these patients, we would need to collect medical

imaging and DFTs after receiving an ICD, and use statistical shape analysis on segmented

hearts to compare statistical trends of patients for whom the critical mass hypothesis is

and is not accurate. Differences in the shape statistics could provide a basis for stratifying

patients who need an ICD to determine which simulation pipeline would achieve the best

predictions of the DFT.

Pre-Op Scans

Segmentation Torso Potentials

DFT with Critical Mass

DFT with Bidomain

Fig. 6.2. Ideal pipeline for predicting defbrillation. The pipeline would use the critical
mass hypothesis for most patients and a more computationally expenisive bidomain sim-
ulation when needed.
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