The Effect of Patient-Specific Cardiac Anatomical Models on ECGI Accuracy

Jess Tate

Jess Tate

ECG Imaging

ECG Imaging

ECG Imaging

ECG Imaging Relies on Accurate Forward Models

Improving Model Generation

Segmentation

Jess Tate

CEI: Modeling Error Workgroup (Consortium for ECG Imaging)

Workgroup is to identify/quantify errors and uncertainties

Jess Tate

Segmentation Error

What is the variability in segmentation?

Jess Tate

Data Collection

OVERVIEW 🖉

This phase is to upload the segmentation of torso, ventricles, left lung, and right lung from the Diahousie CT scan. Four files will need to be submitted simultaneously:

- LLung.nrrd left lung
- RLung.nrrd right lung
- Torso.nrrd Torso surface (everything in the torso should be 1)
- Ventricles.nrrd Ventricular Myocardium (with endo and epicardial surfaces)

Each file will need to be of the same image size and spacing as the original CT scan (512x512x54, 0.7422x0.7422x3). Select all of the files when in the file finder dialogue. You submission will be compared to a "Ground Truth" which is just one of the possible segmentations, so do not worry what your scores or metrics are, but if they are not calculated (it may take several minutes), or if there is an error, you will need to resubmit the segmentations. If you wish to, you can create an empty file (nrrd of the same size with all zeros) to skip one of the tissues. Once all the participants submit a segmentation of each of the tissues, we will create a common segmentation to use for the next stage.

EADERBOARD

Segmentations

CT scan

Segmentation Variation

Jess Tate

Segmentation Variation

Jess Tate

Segmentation Variation

Variance of min distance

Quantify the effect of segmentation variation on ECGI solutions

Jess Tate

Variance Over Time

RV stim

Sinus

LV stim

Jess Tate

Variation Over Time

jess@sci.utah.edu

Total Error

Jess Tate

Total Error

Jess Tate

Variance of Solutions and Meshes

Solution Variance

Variance of Solutions and Meshes

Mesh Variance

Solution Variance

ECGI can be sensitive to segmentation errors

Jess Tate

High variance in ECGI solution corresponds to high variance in Segmentation

Anterior region is more sensitive to segmentation variation

Jess Tate

What's Next?

Shape Analysis

Jess Tate

Uncertainty Quantification

Communicating accuracy of ECG and ECGI

Torso Variability?

Jess Tate

Electrode Variability

Misplaced Leadsets

van Dam, etal. Computing in Cardiology 2013; 40:1175-1178

Electrode Variability

Misplaced Precordial Electrodes

Misplaced Reference Electrodes

van Dam, etal. Computing in Cardiology 2013; 40:1175-1178

Electrode Variability

van Dam, etal. Computing in Cardiology 2013; 40:1175-1178

Jess Tate

Cardiac Source Geometry?

Cardiac Surface

Electrode Location

SC

Jess Tate

Cardiac Source Electrodes?

Missing Coverage? Undersampled?

Jess Tate

Effect of Missing Source Coverage On ECG Forward Simulation

Jess Tate

Source Recording

Epicardial Sock (Ventricle Only)

Test sampling strategies of the atrial region to reduce error in forward simulation

Varied Sampling

SC

ECG Forward Simulation

Effect of No Atrial Sampling

Effect of No Atrial Sampling

Effect of No Atrial Sampling

SC

Effect of Missing Ventricle Sampling

41

NUMBER

Progressive Sampling

Possible Sampling

More electrodes are better

Sparse placement can reduce error

Missing ventricular sampling increases error further

Validation of the ECG Forward Simulation and Subsequent ECGI

Jess Tate

Questions:

Errors in the cardiac electrode placement? Undersampling of the heart?

Jess Tate

Schuler, etal., Tate, etal., FIMH Friday, 16:00

Interpolation

What to do with bad electrodes?

Dogrusoz, etal., CinC 2019

Jess Tate

Registration Pipeline

Bergquist, etal. FIMH Thursday, 11:10

Jess Tate

Improve ECGI

Quantify Uncertainty

Acknowledgements

People

Jaume Coll-Font Sandesh Ghimire Rob MacLeod Karli Gillette Brett Burton Wilson Good Dana Brooks Jaume Coll-Font Thom Oostendorph Steffen Schuler Olaf Dössel Jake Bergquist Peter van Dam Yesim Dogrusov

Data Submissions

Wilson Good Nejib Zemzemi Sophie Giffard-Roisin Eric Perez-Alday Peter van Dam

Datasets

John Sapp and Milan Horáček and Dalhousie University

University Medical Centre Mannheim and the Karlsruhe Institute of Technology

Support

Center for Integrative Biomedical Computing NIGMS NIH P41 GM103545-18

Nora Eccles Treadwell Foundation

Help From

Consortium for ECG Imaging (<u>ecg-imaging.org</u>) Cardiac Arrhythmia Research Package (CARP)

b

Į

More Submission Needed https://challenge.kitware.com/

The image data for a nrrd file is a stream of numbers. The order of the data should iterate x first, then y, then z. If the data is a 3D matrix M of size nx by ny by nz, the data array (D) should match to the matrix index (N[i,j,k]) as:

D[i*nx*ny + j*nx + k] = M[i, j, k]

assuming zero based indexing and i, j, k are the indices for the x, y, z directions respectively. Make sure that the data type field in the header matches the value that the data will be written in. Now to write the file, write the header string, with a new line at the end, then write the data.

If there are questions, do not hesitate to ask.

Stage 2: Mesh Generation

With this stage we will quantify differences in meshing techniques used by different groups. We will be making the meshes based of an average of the submissions from Stage 1, therefore, we will have more details on this stage at a later time.

Stage 3: Forward Transform Matrix

With this stage we will quantify differences in techniques of calculating the forward matrix for ECG used by different groups. Again, we will base this calculation on a common input from the submissions from Stage 2, therefore, we will have more details on this stage at a later time.

PHASES FOR THIS CHALLENGE

② Stage 1: Dalhousie Segmentation	≡
② Stage 1: Auckland Segmentation	≡
O Stage 1: Nijmegen Segmentation	≡

