Introduction

Implantable cardioverter defibrillators (ICD) are
considered a mature technology, but they are not
optimized for use In pediatrics or patients with
abnormal geometries [2], nor are they optimized
to prevent excessive energy output, which can
cause unnecessary damage [3].

We have developed a simulation to predict the
electric field during the discharge of the ICD and
calculate the energy required for defibrillation,
or defibrillation threshold (DFT) [4-6]. DFTs ob-
served clinically and predicted by the simulation;
this approach also compares the surface poten-
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tials generated by the simulation with actual body
surface potential measurements during ICD dis-
charge.

Our simulations are patient specific and we com-
pared clinically recorded DFTs and ICD potential
maps to the corresponding simulated values for a
cohort of four patients. Standard clinical testing
provided the DF T values for each case. Potential
maps were measured using a 32 lead system op-
timized for recording ICD potentials by applying a
limited lead selection algorithm [7].

Results

he mapping system developed for recording ICD surface potentials demonstrated high accuracy when tested on simulated poten-

tials. The mean absolute error was 30 £ 20 V on a 500 V shock, correlation 0.9998 + 3x10*, relative error 0.04 = 0.06 %, and rela-
tive RMS error 0.6 £ 0.3 % (Figure 1). The level of accuracy was similar to previous applications of the algorithm [7].

Recorded and simulated discharge potentials were qualitatively and quantitatively similar indicating high overall accuracy. Figure

3 illustrates this, but there were noticeable

differences apparent near the device location, i.e. the left shoulder. Summary statistics

also show high accuracy with a mean correlation of 0.96 £ 0.02, relative error of 12 £ 5 %, relative RMS error of 7 £ 2 %. Individual
shocks exhibited moderate to high accuracy (Figure 4b-d).

he simulation predicted two patient’s DF Ts within the clinical range and one just outside the clinical range. However, results from
the 17 yo showed the largst differences between measured and simulated DFT values (Figure 4a). Interestingly, this patient also ex-

hibited the highest error in the potential comparisons.

Methods

Limited Lead Selection: To capture the entire body surface potential maps from a finite set of leads that also avoided the
sterile field and defibrillation patches, we carried out a statistical estimation apporach [7]. Training data from previous simu-
lations provided the necessary information to derive a 32-lead system, which was tested using separate simulated test data

(Figure 1).

Data Acquistion: Surface potentials using the 32-lead system and DF Ts were acquired from four patients identified for |ICD
implantation and then compared to values predicted by the patient specific simulation (Figure 2). During the ICD testing,
DFTs were found by sequentially increasing the shock energy until successful defibrillation, providing an minimum and maxi-

mum bounds for the actual DFT.

Patient Specific Models: were generated for each patient from a full torso, high resolution MRI or CT obtained prior to the
|ICD implantation. Segmentation of relevant organs and tissues (Seg3D) and numerical mesh generation (SCIRun) provided
the necessary geometric models. The ICD was then electronically placed in the torso model as indicated by post-operation
X-rays. The simulation pipeline was performed on each patient (SCIRun) to predict the surface potentials and DFTs. The
predicted surface potentials were compared to the measured potentials using the metrics correlation (o), relative error (RE),
and relative RMS error (E). Seg3D and SCIRun can be downloaded from software.sci.utah.edu.
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Figure 3. Sample comparisons of measured (left) and simulated (right) ICD discharge potentials. Each pair of potential maps

corresponds to a separate subject.
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Figure 4. Comparison of the DF Ts and discharge potentials obtained clinically to predictions from the simulation. A) Clinically
determined DFT ranges and the predicted DFT. B-D) metrics comparing simulated potential maps to those reconstructed
from surface recordings. Comparisons between maps from individual shocks as well as the average for each patient are

shown for the B) correlation (o), C) relative error (RE), and D) relative RMS error (E).

Discussion

The 32-lead body surface mapping system, customized for this application, proved to be suitable means of acquiring discharge
potentials during ICD testing.

Validation studies indicated a generally high level of agreement between measured and simulated discharge potentials (Figures
3&4), which adds confidence to the simulation and provides support for previous findings obtained using the pipeline [4-6].

Though this validation study showed high overall accuracy, it also suggests areas for improvement. The patient with greatest DFT
error correlated with the highest surface potential error (Figure 4), indicating that an increase in accuracy of the potential field distri-
bution may increase accuracy of the predicted DFT. One possible source of error is the inaccurate representation of the conductivi-
ties of tissues. A previous study [8], as well as our preliminary explorations in conductivities suggests that small changes in the con-
ductivity values, especially of the myocardium and blood, can significantly alter the potential distribution. Another source of error
Is the assumption of isotropic, passive conductivity of the heart, which ongoing studies seek to resolve [9].
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Figure 1. Limited lead selection algorithm implementation and typical error. A) Limited
lead selection algorithm allows for full surface potential maps to be taken using only 32
lead locations [7]. B) Typical absolute error when simulated surface potentials are used
as input into the optimized mapping system. Potentials are based on an ICD shock
magnitude of 500 V.

Figure 2. Obtaining body-surface
potentials. 32 Surface leads were
placed at pre-determined loca-
tions. Sample recordings are also
shown.
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