Effect of Segmentation Variation on ECG Imaging

Jess Tate, Nejib Zemzemi, Wilson Good, Peter van Dam, Dana Brooks, Rob MacLeod

> University of Utah Inria Bordeaux Sud Ouest Radboud Nijmegen University Northeastern University

ECG Imaging

CEI: Modeling Error Workgroup (Consortium for ECG Imaging)

Jess Tate

CEI: Modeling Error Workgroup (Consortium for ECG Imaging)

Quantify the effects of error

Jess Tate

Geometry

Jess Tate

Geometry

Segmentation

Jess Tate

Segmentation Error

Data Collection

OVERVIEW 🖉

This phase is to upload the segmentation of torso, ventricles, left lung, and right lung from the Diahousie CT scan. Four files will need to be submitted simultaneously:

- LLung.nrrd left lung
- RLung.nrrd right lung
- Torso.nrrd Torso surface (everything in the torso should be 1)
- Ventricles.nrrd Ventricular Myocardium (with endo and epicardial surfaces)

Each file will need to be of the same image size and spacing as the original CT scan (512x512x54, 0.7422x0.7422x3). Select all of the files when in the file finder dialogue. You submission will be compared to a "Ground Truth" which is just one of the possible segmentations, so do not worry what your scores or metrics are, but if they are not calculated (it may take several minutes), or if there is an error, you will need to resubmit the segmentations. If you wish to, you can create an empty file (nrrd of the same size with all zeros) to skip one of the tissues. Once all the participants submit a segmentation of each of the tissues, we will create a common segmentation to use for the next stage.

EADERBOARD

Segmentations

CT scan

Segmentation Variation

Jess Tate

Segmentation Variation

Variance of min distance

Quantify the effect of segmentation variation on ECGI solutions

Jess Tate

Variance Over Time

RV stim

Sinus

LV stim

Jess Tate

Variation Over Time

Total Error

Jess Tate

Total Error

Jess Tate

Variance of Solutions and Meshes

Solution Variance

Variance of Solutions and Meshes

Mesh Variance

Solution Variance

ECGI can be sensitive to segmentation errors

Jess Tate

High variance in ECGI solution corresponds to high variance in Segmentation

High variance in ECGI solution corresponds to high variance in Segmentation

Anterior region is more sensitive to segmentation variation

Jess Tate

What's Next?

Shape Analysis

Jess Tate

What's Next?

Shape Analysis

Jess Tate

What's Next?

Uncertainty Quantification

Jess Tate

Improve ECGI

Quantify Uncertainty

AcknowledgementsPeopleData SubmissionsJaume Coll-FontWilson GoodSandesh GhimireNejib ZemzemiSophie Giffard-RoisinEric Perez-Alday

Clinical Data

John Sapp and Milan Horáček and Dalhousie University

Support

Center for Integrative Biomedical Computing NIGMS NIH P41 GM103545-18

Jess Tate

Consortium for ECG Imaging (ecg-imaging.org)

Peter van Dam

More Submission Needed https://challenge.kitware.com/

The image data for a nrrd file is a stream of numbers. The order of the data should iterate x first, then y, then z. If the data is a 3D matrix M of size nx by ny by nz, the data array (D) should match to the matrix index (N[i,j,k]) as:

D[i*nx*ny + j*nx + k] = M[i, j, k]

assuming zero based indexing and i, j, k are the indices for the x, y, z directions respectively. Make sure that the data type field in the header matches the value that the data will be written in. Now to write the file, write the header string, with a new line at the end, then write the data.

If there are questions, do not hesitate to ask.

Stage 2: Mesh Generation

With this stage we will quantify differences in meshing techniques used by different groups. We will be making the meshes based of an average of the submissions from Stage 1, therefore, we will have more details on this stage at a later time.

Stage 3: Forward Transform Matrix

With this stage we will quantify differences in techniques of calculating the forward matrix for ECG used by different groups. Again, we will base this calculation on a common input from the submissions from Stage 2, therefore, we will have more details on this stage at a later time.

PHASES FOR THIS CHALLENGE

② Stage 1: Dalhousie Segmentation	≡
② Stage 1: Auckland Segmentation	≡
O Stage 1: Nijmegen Segmentation	≡

