Temporal Dilation of Animal Cardiac Recordings Registered to Human Torso Geometry

Karli Gillette, <u>Jess Tate</u>, Brianna Kindall, Wilson Good, Jeff Wilkinson, Narendra Simha, and Rob MacLeod

Department of Bioengineering, University of Utah Scientific Computing and Imaging Institute, University of Utah Medtronic, Inc.

Arrhythmia Detection

Ventricular Tachycardia

SupraVentricular Tachycardia

Atria Fibrillation

Ventricular Fibrillation

Clinical recordings can be difficult and expensive to obtain

Ü

Subcutaneous?

Clinical recordings can be difficult and expensive to obtain

U

Under Rib Cage?

Clinical recordings can be difficult and expensive to obtain

U

Esophageal? Under Rib Cage? Subcutaneous?

Clinical recordings can be difficult and expensive to obtain

U

IntraVenous/Arterial? Esophageal? Under Rib Cage? Subcutaneous?

Clinical recordings can be difficult and expensive to obtain

U

Simulate Potential Field

Calculate ECG Forward Solutions using FEM

U

Source Potentials

U

Decades of experiments

Cardiac surface recordings

Dogs and Pigs

Change in size introduces artifacts

U

Original animal geometry

Registered to human torso geometry

4 mm

 Δ activation times = 20 ms

 Δ activation times = 20 ms

CV = 19 cm/s

CV = 45 cm/s

Original animal geometry

Registered to human torso geometry

4 mm

 Δ activation times = 20 ms

 Δ activation times = 20 ms

CV = 19 cm/s

CV = 45 cm/s

CV is not
maintained.

U

Original animal geometry

Registered to human torso geometry

4 mm

 Δ activation times = 20 ms

 Δ activation times = 47 ms

CV = 19 cm/s

CV = 20 cm/s

Original animal geometry

Registered to human torso geometry

4 mm

 Δ activation times = 20 ms

 Δ activation times = 47 ms

CV = 19 cm/s

CV = 20 cm/s

Original animal geometry

Registered to human torso geometry

4 mm

 Δ activation times = 20 ms

 Δ activation times = 47 ms

CV = 19 cm/s

CV = 20 cm/s

caps Pipeline

caps - Cardiac Arrhythmia Potential Simulation

U

caps Pipeline

caps - Cardiac Arrhythmia Potential Simulation

U

Temporal Dilation Pipeline

Friday, September 23, 16

SC

Global Scaling Factor

Original animal geometry

Registered to human torso geometry

 l_2'

Local Scaling Factors

Original animal geometry

Registered to human torso geometry

 $local(i = 1) = median\left(\frac{l_5}{l'_5}, \frac{l_6}{l'_6}, \frac{l_7}{l'_7}, \frac{l_8}{l'_8}\right)$

U

Local Scaling Factors

Original animal geometry

Registered to human torso geometry

 $local(i=2) = median\left(\frac{l_1}{l'_1}, \frac{l_4}{l'_4}, \frac{l_5}{l'_5}\right)$

U

Local Scaling Factors

Original animal geometry

Registered to human torso geometry

Linear Dilation

Regular Resampling

U

Dilated Cardiac Signals

Friday, September 23, 16

SC

Compare Conduction Velocity

Reported physiological values for CV

Canine (Original)	Canine	Human
33 ± 3 cm/s	21 to 53 cm/s	30 to 100 cm/s

Mean CV after temporal dilation

Torso	Global	Local
1	34 ± 3 cm/s	17 ± 3 cm/s
2	35 ± 3 cm/s	19 ± 3 cm/s

U

Roberts, et al. Circulation Research 1979, Katz Physiology of the Heart 2010

Friday, September 23, 16

SC

Compare Total Activation Time

Reported physiological values for TAT

Canine (Original)	Canine	Human
34 ± 4 ms	20 to 30 ms	30 to 50 ms

Mean TAT after temporal dilation

Torso	Global	Local
1	58 ± 7 ms	266 ± 42 ms
2	54 ± 6 ms	192 ± 24 ms

U

Hill, Moore Circulation 1967, Cassidy, et. al Circulation 1984

Compare Activation Recovery Interval

Reported physiological values for ARI (ms)

Canine (Original)	Canine	Human
165 ± 13 ms	~120 to 220 ms	~170 to 350 ms

Mean ARI (ms) after temporal dilation

Torso	Global	Local
1	270 ± 26 ms	271 ± 24 ms
2	251 ± 1 ms	237 ± 23 ms

U

Haws, Lux Circulation 1990, Yue, et. al Circulation 2004

Global Scaling Activation Times

Original

Torso 1

Torso 2

Friday, September 23, 16

SC

Local Scaling Activation Times

Original

Torso 1

Torso 2

Activation Comparison

Dog Data Mapped to Human Geometry

Durer, et al., Circ 1970

caps Interactive Exploration

Acknowledgements

Advisor Rob MacLeod

Lab Members

Wilson Good Kedar Aras Brett Burton Liz Jurrus

Medtronic Collaborators

Narendra Simha Jeff Wilkinson Josh Blauer Darrell Swenson

CVRTI

Jayne Davis Alicia Blooth Phil Ershler Bruce Steadman Nancy Allen Bonnie Punske

North Eastern University

Dana Brooks Jaume Coll-Font

Support

Medtronic Inc. Nora Eccles Treadwell Foundation NIH P41GM103545

