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New ICD Configurations

most efficient, with pseudo-DFT ratios ranging from 1 to
1.73.

System proposed by Grace et al6

This S-ICD system has been depicted as an active generator
positioned in the anterolateral axillary line in the 6th inter-
costal space, paired with a parasternal electrode approxi-
mately 3 cm left of the sternal midline. Electrode length has
not been specified. We modeled this configuration as shown
in Figure 3 (right) and varied the length and position of the
parasternal electrode. Holding the can position constant, we
placed a 5-cm electrode in the left parasternal region and
varied its vertical position from T4 to T8, which resulted in
pseudo-DFT ratios of 7.3 to 9.8 compared to the base case,
left parasternal electrode in the left parasternal region and
varying its vertical position from T4 to T8, resulting in
pseudo-DFT ratios from 7.3 to 9.8, compared with the base
case. These values were reduced to 2.3 to 3.1 when the
electrode position was right parasternal. Lengthening the
right parasternal electrode to 10 cm in this right parasternal
position resulted in a further decrease in pseudo-DFT ratios

to 1.6 to 2.0, and use of a 15-cm electrode (extending from
T4 to curve around the xiphoid at T10) resulted in a pseudo-
DFT ratio of 1.22.

Best electrode orientations

Single-electrode orientations
Examples of the most efficient single-electrode situations
modeled are shown in Figure 6, top panels. Similar to the
general vectors that were described by Lai et al,23 orienta-
tions with a generator located on right upper chest can and
a long anterior electrode position on the anterolateral left
lower chest electrode performed well. Left-sided thoracic
generator placement was efficient when the long electrode
coil was extended posteriorly around the chest wall (as in
Lieberman et al,5 and illustrated in panel).

Two-electrode orientations
Exemplary, efficient 2-electrode orientations are shown in Fig-
ure 6, bottom panels. In these configurations, the pseudo-DFT
ratio represents the optimal of permutations of cathode and
anode assignment.

Figure 5 Predicted effects of 2 major
parameters on predicted DFT based on the
general linear model. Left: Effect of in-
crease in Metric A (worsening of align-
ment of shock vector with ventricular
myocardial center of mass) to increase pre-
dicted DFT. Right: Effect of increase in
electrode length to decrease predicted DFT
by smaller increment. DFT ! defibrilla-
tion threshold.

Figure 6 Top panels: Examples of
2-electrode configurations with predicted
DFT ratios. Bottom panels: Examples of
electrode array configurations with pre-
dicted DFT ratios. DFT ! defibrillation
threshold.

696 Heart Rhythm, Vol 7, No 5, May 2010
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Jolley M, et al. Heart Rhythm J May 2010;7(5):692–698
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Stray Metal in Torso

ICD can

LVAD 
Pilcher T, et al. In American Heart Association, Scientific Sessions. November 2013
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Simulation Applications

most efficient, with pseudo-DFT ratios ranging from 1 to
1.73.
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positioned in the anterolateral axillary line in the 6th inter-
costal space, paired with a parasternal electrode approxi-
mately 3 cm left of the sternal midline. Electrode length has
not been specified. We modeled this configuration as shown
in Figure 3 (right) and varied the length and position of the
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left parasternal electrode in the left parasternal region and
varying its vertical position from T4 to T8, resulting in
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electrode position was right parasternal. Lengthening the
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position resulted in a further decrease in pseudo-DFT ratios

to 1.6 to 2.0, and use of a 15-cm electrode (extending from
T4 to curve around the xiphoid at T10) resulted in a pseudo-
DFT ratio of 1.22.

Best electrode orientations

Single-electrode orientations
Examples of the most efficient single-electrode situations
modeled are shown in Figure 6, top panels. Similar to the
general vectors that were described by Lai et al,23 orienta-
tions with a generator located on right upper chest can and
a long anterior electrode position on the anterolateral left
lower chest electrode performed well. Left-sided thoracic
generator placement was efficient when the long electrode
coil was extended posteriorly around the chest wall (as in
Lieberman et al,5 and illustrated in panel).

Two-electrode orientations
Exemplary, efficient 2-electrode orientations are shown in Fig-
ure 6, bottom panels. In these configurations, the pseudo-DFT
ratio represents the optimal of permutations of cathode and
anode assignment.

Figure 5 Predicted effects of 2 major
parameters on predicted DFT based on the
general linear model. Left: Effect of in-
crease in Metric A (worsening of align-
ment of shock vector with ventricular
myocardial center of mass) to increase pre-
dicted DFT. Right: Effect of increase in
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by smaller increment. DFT ! defibrilla-
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2-electrode configurations with predicted
DFT ratios. Bottom panels: Examples of
electrode array configurations with pre-
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threshold.
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Goal:

Verification using a torso tank setup
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Tank Experiments
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Conclusions

Experiments Verify our Simulation

Likely Errors: Conductivity & Registration
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Patient Specific ICD Treatment

OP,>N*,C&+4'",I"+1%&8'",Q*+1(+,
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