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Abstract

Motivated by the need for correct and robust 3D models of neuronal processes, we present a method for reconstruction
of spatially realistic and topologically correct models from planar cross sections of multiple objects. Previous work
in 3D reconstruction from serial contours has focused on reconstructing one object at a time, potentially producing
inter-object intersections between slices. We have developed a robust algorithm that removes these intersections using
a geometric approach. Our method not only removes intersections but can guarantee a given minimum separation dis-
tance between objects. This paper describes the algorithm for geometric adjustment, proves correctness, and presents
several results of our high-fidelity modeling.

1. Introduction

Much work on 3D reconstruction from planar cross-
sectional data has been done in recent years to the ben-
efit of many applications. These methods generate a
3D model of an object from given contours, and many
of them are extremely efficient and accurate. These
single-component reconstruction methods are not suf-
ficient, however, when faced with reconstructing mod-
els involving multiple components. This type of recon-
struction is necessary in many different fields, including
neuronal modeling, surgical planning, and composite
materials simulation. The problem is that reconstruct-
ing components one by one can yield intersections be-
tween components after compositing them into the same
model, regardless of the guarantees made by the algo-
rithm. The intersections occur frequently in data that is
highly tortuous and densely packed, and is exacerbated
further by highly anisotropic data, where the spacing of
slices is large compared to the geometric behavior of
the objects. The methods presented in this paper aim
to fill the gap in generating topologically correct multi-
component models while maintaining the accuracy of
existing single-component methods.

Our ultimate goal is to better understand the brain
through accurate modeling and simulation of neuronal
processes (e.g. axons, dendrites, glial cells). Previ-
ously this modeling has been done using the simpli-
fied cases of treating the dendritic arbor as a series of
cylinders. However, serial section transmission elec-
tron microscopy (ssTEM) reveals highly complex ge-

ometries among neuronal processes, including high tor-
tuosity, varying caliber, spiny protrusions and extremely
tight packing. Our work of simulating neuronal electro-
physiological function at high resolution requires very
accurate and topologically correct 3D reconstructions of
neuronal processes. These reconstructions can be used
in a variety of modeling experiments using high-fidelity
versions of the traditional cable model approach [13] or,
more recently, an approach based on meshless Weighted
Extended B-spline-based finite element methods [11].

The source data for generating these neuronal recon-
structions is generally ssTEM imagery. Neuronal con-
tours are generated from these images by neurobiol-
ogy experts who trace out the contours using a variety
of tools [30]. Pixel spacing in the xy plane of neu-
ronal ssTEM images is roughly 2-5 nm, while spac-
ing between slices is closer to 45 nm. Extracellular
spacing (spacing between neuronal processes) is on the
order tens of nanometers [31, 23]. This close spac-
ing, combined with the comparatively large distance
between slices can cause inter-object intersections be-
tween slices when using single-component reconstruc-
tion techniques. This topological incorrectness pro-
hibits any type of multi-component analysis based on
finite element methods.

We have developed an intersection removal method
that acts in concert with any surface reconstruction
method, provided it conforms to several criteria. Our
approach is to remove intersections by moving triangle
vertices and induced points along the axis orthogonal
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Figure 1: Overview of our automated neuronal reconstruction process. We begin with EM (TEM and SEM) images of the brain. We contour
neuronal processes in 2D then generate each process individually. Finally we put everything together for a complete 3D reconstruction. See also
figure 13(a).

to the slice plane. This approach can remove intersec-
tions efficiently and without causing additional intersec-
tions. Using an approach that moves vertices in the slice
plane is possibly more intuitive, but yields considerably
greater computational complexity [3].

We have also developed improvements to the single-
component reconstruction approach, including dealing
with several cases of numerical degeneracies and trian-
gle shape improvement in some cases.

We first give a brief outline of work that has been
done both in single component and multi-component
surface reconstruction from cross-sectional contour data
(Section 2). We then build up a set of rules and theorems
to prove correctness and robustness of our algorithm
(Section 3), followed by a discussion of the single-
component reconstruction improvements and intersec-
tion removal algorithm (Section 4). We then present
results of our implementation (Section 5) followed by
conclusions and future work (Section 6).

2. Related work

A large amount of work has been done to solve the
single-component reconstruction problem. Fuchs et
al. [17] presented the problem and proposed a solu-
tion based on triangulations guided by a toroidal graph.
Barequet and Sharir [6] introduced a method using lin-
ear interpolations between slices of medical images.
Bajaj et al. [2] expanded on their work by using me-
dial axes to tile regions with no legal slice-to-slice tiling.
Oliva et al. [27] specifically targeted difficult objects
(objects with multiple branches, holes, and other irreg-
ularities) and used Voronoi diagrams to construct topo-
logically correct surfaces.

Somewhat more recent works interpolate contours
using 2D skeletons in valid tile regions [5], Delaunay
triangulation [33] and contour morphing [26]. Most
works use some type of linear interpolation and thus
require a smoothing post-processing step. One ap-
proach that performs non-linear smoothing during tiling

is found in [7]. Other recent approaches reconstruct sur-
faces from non-parallel contours [25, 10, 8, 9]. The
approaches in [9] and [32] are notable because they
use implicit methods based on distance functions and
radial basis functions, respectively, and naturally han-
dle multiple components. This is elegant, but im-
plicit approaches can be troublesome when it comes
to generating a geometric surface, as determining at
what resolution to discretize the level-set isn’t always
straightforward. In addition, small components can be
overwhelmed mid-slice by larger components and thus
capped off at the slices rather than carried through the
unknown inter-slice region. [25] uses a geometric ap-
proach but requires expensive calculation of both the
arrangment of slices and the medial axis.

A different class of approaches that work directly
from image data rather than contours exist, such as
energy-minimizing 3D snakes [22] and a 3D exten-
sion to path cost-minimizing LiveWire [16]. These ap-
proaches require a level of user interactivity, however,
and often don’t scale well to massive datasets with large
numbers of components.

Surprisingly little work has dealt with the issue of
intersections between multiple components. Bajaj and
Gillette [3] produced a method for removing inter-
sections by removing contour overlaps in intermediate
planes. This algorithm uses an inflated medial axis sur-
face to separate mid-slice contours, but there is no guar-
anteed bound on the number of mid-slice contours to be
separated. In addition, branching of components (where
a single contour in one slice correlates to multiple con-
tours in an adjacent slice) is treated in a pre-processing
step, where branch points are moved as needed to enable
intersection removal. Our algorithm has provably finite
computational bounds and it also handles branching of
components without treating them as a special case.

Of course, there are algorithms that use erosion mor-
phological operators together with general boolean set
operations on surfaces to solve the intersection problem
[19]. These approaches, however, are more computa-
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tionally expensive and don’t preserve constraints im-
posed on the original initial single component recon-
struction.

3. Rules

Our intersection removal algorithm is correct and ro-
bust and, in addition, it has bounded computational
complexity and requires neither parameter optimization
nor iterative mesh refinement. The only modifications
made to the original surface are the addition of induced
points and moving of points parallel to the axis orthog-
onal to the image plane, which we call the z axis. Re-
stricting movement of offending points to the z axis we
can provably remove intersections without causing ad-
ditional intersections among other components. Allow-
ing points to be moved in the x-y plane may yield bet-
ter surfaces, but complicates intersection removal sig-
nificantly. We discuss this in section 6. Our method
can also guarantee a minimum separation distance of δ.
This is an important guarantee for applications that are
sensitive to inter-component spacings.

Preconditions

We state here criteria on which our method relies, as
well as various theorems which prove correctness and
completeness. We define the xy plane to be the plane
of the original images (and slice contours), and the z
axis to be perpendicular to the xy plane. For simplicity,
we assume that each component has a unique color and
each element belonging to that component (e.g. contour,
boundary) inherits the same color. So if two contours
have different colors, they belong to different compo-
nents.

Criterion 1. The reconstructed surfaces are piecewise
closed polyhedra.

Criterion 2. Any vertical (parallel to the z axis) line
segment between two adjacent slices either intersects a
single component exactly once or not at all. Any inter-
section occurs either at a point or along a line segment.

Criterion 3. Slicing the reconstructed surface on any of
the original slices produces exactly the input contours.

Criterion 4. All contours on the same slice have a min-
imum separation distance of δ.

Criterion 5. A contour cannot be nested inside a differ-
ent colored contour. (This applies only to intersection
removal. See discussion below.)

Criteria 1-3 are borrowed from [2] and are required to
ensure high quality and topologically correct surfaces.
Criterion 1 ensures that each component surface given
to our algorithm are topologically correct and water-
tight. Note that this does not guarantee that intersec-
tions between components won’t exist. Criterion 2 also
applies only to single components and helps to avoid
topologies that are unlikely. Without it, a host of addi-
tional correspondences are possible, most of which are
incorrect. In order to avoid additional complexity and a
large number of false positive correspondences, this cri-
terion is carried through into our work. It assumes, how-
ever, that the slice spacing is close enough to enable rea-
sonable reconstructions even with the criterion in place.
Criterion 3 ensures that interpolation is bounded by only
that required to generate a likely topology and avoids
adding information to the original contours.

We enforce criterion 4 by adding a pre-processing
step to our algorithm – that of separating contours by
δ. Of course, if the application prohibits this then ei-
ther δ can be decreased or application-specific contour
separation methods can be used.

Criterion 5 is currently required as intersection re-
moval between nested contours of different colors is not
currently supported. In other words, components are
treated as solids without any nested components. While
this is a requirement of our current algorithm, we ex-
pect this criterion to be removed in future versions. See
section 6. Note that this does not preclude nested con-
tours of the same color, which can occur when there are
concavities in the surface.

Properties

Armed with these five preconditions we show that our
algorithm has certain desirable properties that we men-
tioned earlier in the section and restate here for empha-
sis.

1. No more than two components can intersect in the
same region (see lemma 5), so intersections can be
resolved between components pair by pair.

2. Removing intersections in one region will not
cause intersections in other regions (see theorem
2).

3. Pulling intersecting components apart at a finite
number of appropriately chosen vertices will re-
solve all intersecting regions (see theorem 3).

We now argue these properties formally. In the fol-
lowing discussion, it is assumed that the data we are
dealing with lies on and between a pair of adjacent
slices. We also deal with only two components at a
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Figure 3: Conflict points are detected and removed by moving the points along the z axis. pg and py are corresponding conflict points. The conflict
is removed by moving pg and py in the z direction by sgε and syε, respectively (equation 3) to produce new points p̄g and p̄y.

Figure 2: s1 and s2 are two adjacent slices and the lower plane is an
arbitrary xy plane showing containing contours of various points. p2
and p3 are on the green component, while p1 cannot be according to
lemma 1. C (p1) = ∅, C (p2) = {c1, c2}, C (p3) = {c2}.

time, Cg and Cy, the green and yellow components, re-
spectively. Lemma 5 shows that working with only two
components at a time is justified. Proofs of the follow-
ing lemmas and theorems can be found in the appendix.

Definition 1. Suppose p′ is the projection of point p
onto the xy plane. We say that contour c is a containing
contour of p if p′ is inside or on the boundary of c′ (see
figure 2). We define C (p) to be the set of all containing
contours of point p and C g(p) to be C (p) restricted to
all green contours {cg

i }, i.e., C g(p) = C (p) ∩ {cg
i }.

Lemma 1. Suppose pg is a point on the surface ∂Cg of
component Cg. Then 1 ≤ |C (pg)| ≤ 2.

This lemma states that any point on a surface must
have at least one containing contour (of any color) but
no more than two. In figure 2, p1 has no containing
contour and so cannot exist on the surface of the recon-
structed component.

Lemma 2. If |C (pg)| = 2 then the two contours in
C (pg) lie on separate slices.

Definition 2. S g is the set of all points pg ∈ ∂Cg such
that |C g(pg)| = 2. These points lie “sandwiched” be-
tween two green contours. Similarly, Ug is the set of all
points pg ∈ ∂Cg such that |C g(pg)| = 1. These points
have no containing contour on one of the slices. For a
point pg ∈ Ug, we call its single containing green con-
tour the penumbral contour P(pg).

In figure 2, P(p3) = c2 and the penumbral contour
for the other two points is undefined.

As it happens, points in S g cannot lie on the inside of
both contours, but must lie on the boundary of at least
one, but this distinction is not necessary for our analysis
here.

Definition 3. Suppose pg ∈ Ug. Then Z (pg) is the z
coordinate value for P(pg). We call this the z-home
value for pg. Z (qg) is undefined for all qg < Ug.

Definition 4. Consider a sphere of radius δ centered at
a point p. Consider also the cylinder of radius δ about
the vertical line segment from p to p′ where p′ is the
projection of p onto the slice at Z (p). The union of
the open sphere and open cylinder is called the buffer
region B(p) of p.

Definition 5. Point pg ∈ Ug is called a conflict point if
there is some point py ∈ Uy such that py ∈ B(pg).

Conflict points are points at which two components
are closer than δ or at which some point py is inside or
on the surface of two components.

Lemma 3. No point pg ∈ S g can be a conflict point.

Lemma 4. Let pg ∈ ∂Cg be a conflict point. Then there
is no other point qg ∈ ∂Cg such that pg′ = qg′.

Lemma 5. Let pg ∈ ∂Cg be a point conflicting with at
least one point on another component Cy. Then for all
components Ci such that i , g and i , y, Ci∩B(pg) = ∅.

4



Lemma 5 shows that a point p can conflict with points
of only one other component. This is important because
it frees us to deal with only component pairs. That is,
we are guaranteed that if component A and component
B intersect, there is no other component C that inter-
sects in the same region, even though C may intersect A
and/or B elsewhere. In other words, there are no triple
intersections. This naturally leads to the algorithm de-
scribed in section 4, in which conflict points are found
and dealt with between pairs of components.

Theorem 1. Two components Cg and Cy are within δ
distance of each other if and only if there is at least one
conflict point on the surface of either component.

Corollary 1. If two components Cg and Cy intersect
then there is at least one conflict point on the surface of
either component.

By this theorem and corollary we see that removing
all conflict points between two components is necessary
and sufficient to guarantee that the components are not
intersecting and are separated at every point by at least
δ.

Theorem 2. Moving any point pg ∈ Ug in the direction
of Z (pg) will not generate any additional conflict points
among any pair of components.

This theorem is important to justify removing conflict
points between pairs of components. If it wasn’t so then
the algorithm would be computationally far more com-
plex as we would have to continuously check previously
resolved components for additional conflict points after
any modification is made in the region.

Theorem 3. Conflict points exist on the triangulated
surfaces of two components if and only if at least one
conflict point exists either at a triangle vertex or along
a triangle edge of either component.

4. Implementation

Our algorithm removes conflict points in a manner
conforming to theorem 2, i.e., no additional conflict
points are introduced at any step. And since removing
all conflict points at locations defined in theorem 3 ef-
fectively removes all conflict points, our algorithm is
bounded by the number of those locations.

The algorithm removes conflict points between pairs
of components. We rely on theorem 2 to justify work-
ing with only two components at a time: resolving con-
flict points between two components will not increase

(a) (b)

(c) (d)

Figure 4: Contour intersection removal. (a) shows the original con-
tours and (b) shows the contours after dilation by δ/2. In (c) the di-
lated contours have been clipped and (d) shows the final result after
erosion.

the number of conflict points among any other pair of
components.

In addition to working with only two components at
a time, we also deal only with reconstructions between
two given slices at a time. This is appropriate given that
inter-slice interpolation is linear. There are no compo-
nent intersections on the slices themselves (by criteria
3 and 4), and the algorithm does not modify any points
on the slices. So the contours on the slices act as natu-
ral boundary points between intra-slice reconstructions,
even after intersection removal.

The algorithm is as follows:

1. Separate contours in slices zi and zi+1

2. Run single component tiling on each component in
slices

3. Determine conflict points
4. Trace cut from conflict point to its exit in a triangle
5. Triangulate (planar) polygons
6. Adjust z values

We now describe each step in detail.

Slice contour separation
Our 2D contour intersection removal algorithm is a

simple and efficient algorithm aimed at separating con-
tours by a value δ (see figure 4). All contours in a given
slice are first dilated by δ/2 after which proper inter-
sections between contours (proper, in this case, mean-
ing intersections such that a segment from one contour
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touches both the interior and exterior of another con-
tour) are found using a sweep line and marked. We are
guaranteed that there are an even number of intersec-
tions as only proper intersections are marked. Intersec-
tion points are paired up such that the mid-point of the
line segment defined between two intersections is in the
interior of two contours. For each of these pairs, the in-
tersecting contours are clipped along this line segment.
The contours are then eroded back to roughly their orig-
inal shape minus the clipped areas.

This approach is simple and fast, but it does have
its failings. For one, it doesn’t support intersections of
more than two contours. This is, of course, possible, but
generally doesn’t happen often in the data we have dealt
with. Another side effect is a smoothing of the contours,
which is dependent on δ. In our case this is actually de-
sirable, as the contours we generally deal with are rather
noisy, which is why we have to perform the intersection
removal in the first place.

Single component reconstruction
The single component reconstruction algorithm we

use is adapted from [2]. It takes planar contours in ad-
jacent slices as input and outputs a series of triangles,
or “tiles”, forming a surface between the contours. It
supports branching and conforms to all of the criteria
as they apply to single component reconstructions. The
algorithm proceeds roughly as follows:

Given contours in adjacent slices,

1. find all contours with the same object labels
2. of these contours, find contours that correspond to

(overlap with) each other
3. determine penumbral regions of corresponding

contours
4. construct tiling between contours in penumbral re-

gions (figure 5(a))
5. construct tiling in untiled regions (figure 5(b))

We defer to [2] for in-depth description of the algo-
rithm except for three degenerate cases of tiling and the
final step, where untiled regions are resolved.

There are three tiling cases that we detect and handle
in our algorithm that aren’t discussed in the original pa-
per. These are degeneracies that we have found to occur
in our data that we handle as special cases in order to
make the tiling algorithm more robust with resorting to
ε-perturbation. We discuss them informally and sketch
our solutions. The first occurs when a chord is proposed
as shown in figure 6(a). Here the projection of a chord
(a, b) intersects with the projection of a vertex c in an-
other contour. This chord is legal according to the orig-
inal theorems, but can cause problematic tilings, e.g. if

a chord (c, b) is proposed and accepted then criterion 2
will be violated. We detect this case and consider the
chord (a, b) illegal.

The second case occurs when edges from adjacent
contours overlap along a segment. Consider directional
arrows on each contour traveling counter-clockwise. In
the overlapping case shown in figure 6(b) the arrows
along the overlapping segment will be pointing differ-
ent directions. The nature of this problem is such that
it is difficult to solve in the context of the overall algo-
rithm. As it happens rarely, our algorithm reports when
it occurs and the regional tiling is corrected manually.

The third case occurs when a contour vertex a over-
laps with an adjacent contour c, but both vertices adja-
cent to a are on the same side of the boundary of c, as in
figure 6(c). We detect this case and treat a as if it were
non-overlapping.

We use a novel algorithm to triangulate untiled re-
gions. Untiled regions occur when no legal slice chord
can be placed between a vertex of contour ci and a ver-
tex of contour c j. The approach to tiling these regions is
to first approximate the medial axis of the projection of
the region. We do this by decomposing the region into
convex polygons. Once we have the convex decompo-
sition, we connect the centers of each sub-polygon with
the midpoints of the corresponding cut lines. See the
dashed lines in figure 5(b). We then place the approxi-
mate medial axis into space between the slices and tile
using chords from the vertices of the untiled region to
the approximate medial axis line.

In the description thus far, our untiled region reso-
lution algorithm matches that reported in [2]. But the
previous approach uniformly placed the medial axis at
z = (zi + zi+1)/2. This ensures that the criteria are met
(specifically criterion 3), but can cause bad triangles
(see figure 7(a)). Since the sub-polygons produced in
the decomposition algorithm need meet only the crite-
rion that they are convex, they can be arbitrarily bad,
including sliver triangles and other undesirable shapes.
When the centers of these sub-polygons are raised be-
tween the slices the tiling is jagged.

Ideally, medial axis vertex height should be interpo-
lated using the vertices of the untiled regions. There are
various interpolation approaches using barycentric co-
ordinates for non-convex polygons [20, 21, 24]. In order
to meet criterion 3 however, no point v ∈ Ω\∂Ω where Ω

is the untiled region and ∂Ω is the region boundary, can
lie on zi or zi+1. Thus any barycentric approach would
require that, given v, there must be at least one vertex
v j on each slice z j such that the barycentric coordinate
λ j(v) , 0. A simple formulation of this requirement is
λi(v) , 0 for all i and all points v ∈ Ω \ ∂Ω.
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(a) (b)

Figure 5: Single-component tiling algorithm. (a) shows the tiling af-
ter stage one of the algorithm. As highlighted in yellow in (b), there
remains an untiled region that is then tiled by connecting contour edge
segments to the medial axis of the untiled region. Our algorithm inter-
polates points of the medial axis to the appropriate locations between
slices to avoid undesired artifacts, as shown in figure 7.

a

b
c

(a)

a

b

(b)

a

(c)

Figure 6: Three cases now detected and handled in augmented algo-
rithm. The lower contour is solid while the upper contours are dashed.
(a) The proposed chord (a, b) is now correctly labeled as illegal due
to its intersection with vertex c. (b) No chords are legal between con-
tours between a and b. (c) Vertex a is no longer tiled directly to the
lower contour.

We use a simple algorithm to ensure that each point
on the medial axis lies strictly between the slices. Let S
be the union of the set of vertices of the polygon and the
set of vertices of the medial axis. We compute Sibson’s
natural neighbor coordinates [29] for each vertex of the
medial axis, such that the z-value at a medial axis vertex
v is

vz =
∑
p∈S

λp(v)pz (1)

We then compute vz for every vertex v of the medial
axis. At this point, at least one medial axis vertex u
will be strictly in-between the slices, but many vertices
may remain on the slices. But since vertices of the me-
dial axis are neighbors of each other, we can iteratively
perform interpolation and the z-value of u will propa-
gate down the medial axis. At most n iterations, where
n is the number of medial axis vertices, are required to
ensure that all vertices are strictly between slices. The
results are shown in 7(b): the regions are smoothed out
while still meeting criterion 3.

Determine conflict points

Once all components between two slices are found,
we use a modified sweep line to find all tile edges of
different colors that are closer than δ in the xy plane.

(a) (b)

Figure 7: Results of improvement to single contour reconstruction
algorithm. 7(a) Shows jaggies resulting from the original algorithm
placing medial axis vertices of untiled regions halfway between the
two slices. 7(b) Our algorithm produces a more pleasing result by
interpolating the medial axis points.

(a) (b)

(c) (d)

Figure 8: Steps of the intersection removal algorithm. Conflict points
are red while non-conflict approach points are black. (a) Conflict
points on the green tile are detected. (b) Cut paths are traced. Note
that cut paths occur along the yellow tile’s edge and are only between
two points of which at least one is a conflict point. Thus (p3, p4) is a
cut path while (p4, p5) is not. (c) New polygons are induced by cut
paths. The polygons are colored for clarity. (d) After triangulation of
the polygons.
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In addition, all tile vertices that are inside of a tile of
another component (still in the xy projection of the tiles)
are considered. We call these potential conflict points
“approach” points. They are marked and stored in a data
structure that maps the approach point to the two tiles
and every edge passing through the point. There will
usually be exactly two edges unless the approach point
is at a tile vertex, in which case the number of edges is
greater since every tile vertex touches at least two tiles.

We consider conflict points at only these approach
points. We determine whether a point is conflicting or
not by examining the minimum distance between the
different colored edges on which the approach points
lie. Then, if the minimum distance is less than δ, we
mark each approach point as conflicting.

Figure 8(a) shows a yellow tile and three green tiles.
The algorithm finds all approach points (black dots) and
then determines which of these are conflict points (red
dots).

Trace tile cuts

The algorithm for tracing tile cuts is as follows:

Algorithm 1 TRACE CUTS
1: cuts := empty array of polylines
2: for all points p in conflict points do
3: py := projection of p onto yellow component
4: ty := yellow tile containing py

5: tg := green tile containing pg

6: polyline := empty array of points
7: push p onto polyline
8: dir := direction to travel on ∂ty to go to interior

of tg

9: boundary := ordered intersections on ∂ty

10: for all approach points qy in boundary do
11: if qy′ ∈ tg′ ∪ ∂tg′ then
12: qg := projection of qy onto green component
13: q := qg′

14: push q onto polyline
15: end if
16: end for
17: push polyline onto cuts
18: end for
19: return cuts

For each conflict point, we must trace out cut poly-
lines that we will use to induce new polygons that will
then be triangulated. The way this is done is to start at
a conflict point p and find its projection onto the yellow
component to get py (line 3). py will be on a yellow
tile’s boundary. Now follow the points on the boundary

of the tile that have been marked as intersections from
py to the exit point where the yellow tile exits the green
tile (lines 8-10). Each point encountered in this trace are
added to the polyline (line 14).

This can be seen visually in figure 8(a). Point p1 is
a conflict point. The algorithm builds an ordered array
of points following the yellow tile from p1 all the way
to point p8. Then it loops over each point in the array
checking to see if the current point p is inside of the
projection of the green tile t1′. If it is, then the point is
added to the cut. So the cut from point p1 = [p1, p2, p3].
All cuts can be shown in red in figure 8(b).

Cut polylines are specific to a tile. So cuts for the
green component’s tiles are first found, and then cuts
for the yellow component. These polylines are super-
imposed onto the tiles to generate a set of induced poly-
gons (figure 8(c)). Even though the cuts are different for
green tiles vs. yellow tiles, the projection of green tiles
and cuts will be identical to that of the yellow.

Figure 8 shows an interesting case in that if the in-
duced polygons are triangulated naively, an illegal tri-
angulation can result. Consider point p4 in the figure.
There will be a triangle vertex at this point due to the
triangulation of tile t2. If, then, it is not a vertex in the
triangulation of tile t3, then the triangulation will not
be legal. Because of this, the algorithm checks for any
point on a tile edge that is involved in the triangulation
of any adjacent tile, and induces that point onto all ad-
jacent tiles. This ensures legal triangulations.

Triangulate polygons

At this point we have polygons that are ready to be
triangulated into a new induced surface. An intuitive
approach would be to simply run a constrained Delau-
nay 2D triangulation on the xy projection of all induced
points on the tile. This has two problems: first, the tiles
can be vertical and thus the projections of the triangles
are degenerate and second, inducing points on edges of
triangles causes a large number of collinear points.

The first problem can be addressed by checking to see
if the tile is vertical before triangulation. If it is, then
rotate by 90 degrees and then triangulate. Happily, the
tiles are still coplanar and so we can safely rotate the tile
with induced points without worry of causing additional
degeneracies.

The second problem is more troublesome. The com-
bined problem of collinear points coupled with numer-
ical error causing possible triangle edges outside of the
original tile requires something more than a naive ap-
proach. Our solution is to maintain a data structure
mapping points to the edges of the original tile from
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(a) (b)

Figure 9: Examples showing two interesting cases of intersection. The left figure of (a) shows a classic intersection between yellow and green tiles.
The right figure shows the resolution of the intersection. The left figure of (b) shows a slightly more complicated case containing conflict points
both at tile edges and at vertices. On the right is shown the resolution.

(a) (b)

Figure 10: Calculation of ε. A and B are vectors from qy to the original conflict points. Ā and B̄ are vectors from qy to the resolved conflict points.
ε is calculated using these vectors and input minimum separation distance parameter δ.

which they were induced. Now a numerically error-
prone check for collinearity is perfectly safe by sim-
ply doing a hash lookup for each point and compar-
ing the original edges. If all three edges are the same
then the points are collinear. If not, then they are not
collinear, provided the original tiling algorithm returns
non-degenerate tiles (which it does in our case).

We used a simple ear-cutting algorithm [28] using
this data structure to ensure legal triangulations. Even
with the check, an additional modification is required
to ensure numerical stability. That is to first generate
triangles involving at least one unused collinear point.
Without this, the result often includes very long thin tri-
angles if at least one induced point is very close to an
existing vertex.

Adjust z values
The result of triangulating induced polygons is an

induced triangulated surface, which still has conflict
points between components. At this point we can adjust
z values of all conflict points in the new triangulation
to separate component surfaces. Each conflict point p
is checked and its two associated component points pg

and py are given new z values as follows:

pg
z =

pg
z + py

z

2
+ sgε (2)

where

sg =

{
−1 zg > zy

1 zg < zy (3)

py
z is calculated similarly.

ε and δ are related but distinct. δ is the input param-
eter of minimum separation distance between compo-
nents. ε is the distance along the z axis to move con-
flict points such that the new surfaces will be separated
by δ. Determining ε to achieve the desired minimum
distance δ between components is done as follows. A
conflict point py is either an induced point on an edge
or a vertex. Let B be the vector py − qy where qy is
either an induced point or vertex such that py

z is be-
tween qy

z and Z (py). See figure 10. Further, let A be
the vector pg − qy. Now let p̄y = {py

x, py
y, py

z + syε} and
p̄g = {pg

x, pg
y , pg

z + sgε}. And lastly, B̄ = p̄y − qy and
Ā = p̄g − qy. Distance d is

d =
|Ā × B̄|
|B̄|

(4)

Substituting for Ā and B̄ and assuming that sg = 1 we
get

9



d2 =((Ay(Bz − ε) − (Az + ε)By)2

+ ((Az + ε)Bx − Ax(Bz − ε))2

+ (AxBy − AyBx)2)/(B2
x + B2

y + (Bz + ε)2) (5)

Factoring ε yields a quadratic:

0 = ε2((Ay + By)2 + (Ax + Bx)2 − d2)
+ε(2)((Ax + Bx)(AzBx − AxBz)

− (Ay + By)(AyBz − AzBy) − d2Bz)

+(AyBz − AzBy)2 + (AzBx − AxBz)2

+(AxBy − AyBx)2 − d2(B2
x + B2

y + B2
z ) (6)

We then substitute δ in for d and find the two roots
for ε. It is possible that both roots yield shifts in the
direction of Z (pg). This occurs when the surface inter-
sections are gross enough to cause conflict points that
are more than δ apart. So we choose the solution for ε
with the greatest value and then multiply by sg (since
we assumed that sg = 1).

There is a denominator on the right hand side of (6)
which we have omitted for brevity. But it should be
clear from (5) that the denominator is zero only when B̄
is degenerate which cannot happen since py is moved in
the direction of Z (py) for ε > 0.

Theorem 4. ε < |pg −Z (pg)| and ε < |py −Z (py)|.

This theorem bounds ε by the distance from the con-
flict points to the slices. In other words, no value of ε
can cause a point shift in z such that the point crosses a
slice boundary. This is important because any such shift
would cause the reconstruction to violate criterion 3, not
to mention all the criterion’s dependent guarantees.

Computational complexity

The computational complexity of our algorithm is
bounded by the number of conflict points. The maxi-
mum number of conflict points between the boundaries
of two triangles is 12: 6 for the xy-plane intersections
and 6 for the vertices. For m components, each with
ni triangles, the maximum number of conflict points is
12nin j where ni and n j are the two largest numbers of
triangles in a single component. Thus, the computa-
tional complexity is O(n2) where n is the largest number
of triangles in a single component.

In practice we have found that there are far fewer con-
flict points, even in highly tortuous datasets. Statistics
of the reconstruction of which a small part is shown in
figure 13(c) is reported on line 1 of table 1. Between

(a) (b)

Figure 11: (a) An apical dendrite before smoothing. (b) After smooth-
ing. The number of triangles composing the final, smoothed surface
is a parameter. In this example the number of triangles was cut to
roughly half the original number.

(a) (b)

Figure 12: Shows the effects of varying the separation distance δ pa-
rameter when reconstructing two axons that come very close in one
region. (a) Separation δ = 0. (b) δ = 40 nm. Note that the surfaces
are changed only in the region of close approach.

two of the slices there were 21330 total triangles before
intersection removal. Among these triangles there were
7691 detected conflict points. Our testing of our most
tightly-packed data showed similar ratios of number of
triangles to number of conflict points.

Smoothing

One additional step in our pipeline is that of smooth-
ing the surfaces. Initial surface reconstruction can intro-
duce numerically-troublesome thin triangles, and the in-
tersection removal adds O(n2) triangles. So at comple-
tion of intersection removal we run the surfaces through
our quality improvement pipeline, which includes edge
contraction using the QSlim software package [18] af-
ter which we decimate [34] and improve triangles [4].
These tasks are done using a library version of our Level
Set Boundary Interior and Exterior Mesher [14] which
is also embedded in our Volume Rover software pack-
age [15].

5. Results

We have implemented both the single component
contour tiler and intersection removal algorithm.
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(a) (b) (c)

Figure 13: Results of running intersection removal on various portions of neuronal contour data. (a) Before and after intersection removal at branch
point. (b) Result of intersection removal is shown on top of the original ssTEM data. (c) Shows prevalence of intersections. This small portion of
the data alone has at least eight component intersections.

(a) (b) (c) (d)

Figure 14: Results of running intersection removal on two axons that intersect. (a) Two axons whose reconstructions intersect between slices. (b)
Zoomed in with part of the top axon cut away to reveal the intersection. (c) Result of intersection removal. (d) After smoothing.

dataset slices tiling num num intersection final num smoothing
time triangles intersections removal triangles time

CA1 (axons) 115-116 79.2s (46%) 21330 7691 85.1s (49%) 48778 7.8s (4%)
CA1 (all) 61-62 503.3s (40%) 37849 26965 759.7s (59%) 105434 9.2s (1%)

CA3 150-151 90.9s (86%) 9812 52 13.5s (13%) 10078 1.4s (1%)

Table 1: Table of tiling timing and triangle statistics. Tiling time includes 2D contour curation and single contouring. Tests were performed on a
Linux Kubuntu workstation with an Intel Xeon quad core CPU at 3.20 GHz with 4 GB memory. The CA1 dataset (figure 1) was taken from the
hippocampal region of the brain and has 452 axons and about 50 dendrites. The CA3 dataset is unreleased.
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Figure 11 zooms in on a dendrite to show the effect
of our smoothing algorithm, and figure 12 shows the
effects of varying the separation distance δ parameter.

Figure 9 shows some interesting cases of intersection
between tiles (though it is by no means exhaustive). Fig-
ure 9(a) shows intersection of a vertical tile. This re-
quires the tile to be rotated by 90 degrees before being
re-triangulated after new points are induced. 9(b) shows
conflict points at only tile vertices and not xy-plane in-
tersections. As can be seen this case is handled since
conflict points are checked at tile vertices in addition to
xy-plane intersections.

Figure 13 shows results of intersection removal from
reconstructions of the hippocampal region of the brain.
The contours used were hand-traced from 4K x 4K pixel
resolution ssTEM images. Image pixels are approxi-
mately 2 nm square and inter-slice spacing is 45 nm.
We show results from various regions of the dataset at
different slices and using different components. The in-
tersection removal algorithm is run immediately after
all components between two slices are reconstructed.
Only one pass over conflict points is made and, as can be
seen, no additional conflict points are generated. These
results show a number of interesting things: 1) Every
intersection except for one in figure 13(c) occur where
one or both components is branching. This highlights
the power of handling branching cases smoothly. 2)
Figure 13(b) shows the mesh triangles and it is clear
that new triangles are only induced from original trian-
gles. It also shows that are large number of triangles
are generated in intersection removal. 3) Figure 13(c) is
striking in that it shows just how prevalent these inter-
sections can be when using a linear interpolation recon-
struction approach on tightly-packed anisotropic data.
In that small region of the data (three slices and approx-
imately 5 µ2) there are more than eight distinct inter-
secting regions, some of them grevious. We emphasize
that any interpolatory single-component reconstruction
method will run into this problem. Our algorithm de-
tects and removes every intersection while maintaining
original tiling criteria.

Figure 14 shows reconstructed data in the large. Two
axons come in close proximity with each other, caus-
ing an intersection as can be seen in 14(b) after cutting
away part of the red axon. The intersection is repaired
in 14(c) and 14(d) shows the results of smoothing after
intersection removal.

Figure 15 shows a complex dendritic structure with
nested endoplasmic reticulum (ER). While both struc-
tures are neuronal, their geometries are vastly different,
with the ER looking far more fractured than the bulbous
branching of the dendrite. Our algorithm is oblivious to

such varied geometries and handles each correctly.
Table 1 shows various statistics of our tests on neu-

ronal data. In our most tightly-packed data (CA1), in-
tersection removal took up roughly half the time and
increased the number of total triangles to about double
the original number. As noted earlier, the number of in-
tersections was generally far less than the n2 theoretical
maximum.

An eventual goal is to reconstruct a global brain
model, or even, somewhat more modestly, a reason-
ably large region of the brain. It turns out that both of
these goals are ambitious, as the physical slicing and
EM imaging process yields only very small data foot-
prints [12]. But we are well-positioned to tackle the re-
construction challenge once the data becomes available
as our algorithm will handle any arbitrary topologies
and complicated geometries present in different brain
regions. Also, as discussed in section 6, the algorithm
will scale to support full brain reconstructions.

Figure 15: A zoomed-in view of the apical dendrite shown with trans-
parency to reveal interior endoplasmic reticulum.

6. Discussion and future work

Without correct topologies, multiple component
modeling is severely limited, and this work provides a
solution to this important problem. This problem has
not received significant attention due to the nature of
data used in reconstructions in the past – automatic re-
moval of intersections could be done manually because
there were generally very few such intersections. But
with the advent of reconstructions of tortuous, densely
packed and anisotropic data, the importance of an au-
tomatic and robust method has increased. This paper
presented just such a method. Using single compo-
nent reconstructions that adhere to certain guidelines,
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the method presented in this paper can remove intersec-
tions between components correctly and robustly, pre-
serving the guarantees of the single-component recon-
struction method: the output surface is water-tight, and
any cross-section through an original slice yields pre-
cisely the input contours. It also guarantees a minimum
separation distance between all components. This is
important when dealing with e.g. neuronal data, as a
rough idea of the average distance between components
is generally well known.

The algorithm is efficient, performing the intersection
removal in roughly the same amount of time as the orig-
inal reconstruction by using efficient 2D geometric cal-
culations. The algorithm is also scalable in the number
of slices, since it reconstructs and resolves intersections
slice-by-slice. Scalability in the number and complex-
ity of components is slightly less straightforward, as
the current implementation stores in memory all com-
ponents between two slices. While this has not caused
any problems in practice, it is possible that a very large
number of components would not fit in computer mem-
ory. In this case, a simple heuristic could partition com-
ponents into overlapping regions and work with them
region-by-region.

Moving intersection points only in the z-axis enables
proofs of correctness and solves the intersection prob-
lem, but it also restricts the algorithm. Enabling move-
ment in the x-y plane may make it possible to produce
smoother surfaces and better-behaved triangles from the
intersection removal process. We are interested in de-
termining whether the same correctness guarantees can
be made while allowing conflict point movement in any
direction. Of course, our smoothing process greatly im-
proves any poor triangulations, but our current smooth-
ing algorithm, which uses geometric flow, does not
respect inter-component spacing restrictions. A con-
strained smoothing algorithm would be beneficial.

Our algorithm does produce a large number of trian-
gles in the process of removing intersections, and some
of these triangles are poorly shaped. However, we have
shown that our smoothing software is highly effective
at transforming the surfaces into triangulations suitable
for visualization and analysis. One question that needs
to be addressed is how much does smoothing affect the
minimum separation distance guaranteed by the inter-
section removal algorithm. We are interested in finding
a quantitative measure and whether the error introduced
is acceptable.

Another improvement that needs to be made is the
removal of criterion 5, that a contour cannot be nested
inside a different colored contour. This criterion pro-
hibits intersection removal between nested components.

In the case of neuronal modeling, so-called intracellular
components such as endoplasmic reticulum and mito-
chondria are treated separately. But to get a truly accu-
rate model, these will need to be included.

A fundamental issue still exists with criterion 2,
which states that a vertical line cannot pass through
more than one of a component’s boundaries between
any two given slices. This means that with very high
anisotropy, an oblique component may be disconnected
because its contours that in reality correspond may not
be labeled as corresponding in the algorithm. As this
criterion is a basis for many of our theorems and guaran-
tees, an approach to resolving it may be to add a special
case.

There are a number of interesting generalizations that
may be possible in the framework of these methods.
One is support of incomplete contours, which could
generate either open polyhedra in the unknown regions,
or closed polyhedra, thereby closing the original con-
tour.

Another generalization is support for non-parallel
slices. This would require re-visiting the fundamen-
tal theoretical guarantees of the single-component algo-
rithm. The follow-up question would be whether the in-
tersection removal algorithm could enjoy versions of the
same guarantees our current parallel-slice version does,
e.g., no more than two components can intersect in the
same region, all intersection points can be resolved by
resolving a finite number of intersections, etc.

The contribution described in this paper is part of
a larger effort to build “analysis-ready” surface recon-
structions, that is, geometric models that are water-tight
and topologically correct and that have low aspect ra-
tio triangles and bounded error, among other properties.
As shown, reconstructions using the method described
here satisfy the first three of the properties. The last,
that of quantifying and bounding the surface error, is a
challenging but important next step.
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Appendix A. Proofs of theorems

Our proofs rely on an additional theorem from [2],
which we restate here in a slightly weaker formulation,
but sufficient for our purposes:

Theorem 5. ([2], Theorem 2) For every point pg on the
surface ∂Cg of the green component, 1 ≤ |C g(pg)| ≤ 2.

Proof of lemma 1. Since |C (pg)| ⊃ |C g(pg)|, then 1 ≤
|C g(pg)| by theorem 5. We prove that |C g(pg)| ≤ 2
by contradiction. Suppose |C g(pg)| > 2. Then by the
pigeonhole principle, at least 2 contours must exist on
some adjacent slice. These contours share the projec-
tion pg

s onto the slice of point pg
s . This violates criterion

4.
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Proof of lemma 2. If the 2 containing contours exist on
the same slice, then they share the projection pg

s onto
the slice of point pg

s . This violates criterion 4.

Proof of lemma 3. This is a proof by contradiction.
Consider a point pg ∈ S g. Suppose that pg is a con-
flict point. Then there exists some point py such that
py ∈ B(pg) (for the moment, set aside the fact that
Z (pg) is undefined). By lemma 1 we know that the
projection of point pg can have no more than 2 contain-
ing contours. By virtue of being in S g, pg indeed has 2
containing contours, both of which belong to the green
component by definition. Since py ∈ B(pg), the projec-
tions of py onto each adjacent slice are within δ of the
projections of pg. Then the projection of py onto C (py)
(by theorem 5 there must be at least one) is within δ of a
green contour C (pg) which contradicts criterion 4. Thus
no point py exists and pg is not a conflict point.

Proof of lemma 4. By lemma 3, pg ∈ Ug and thus can-
not be on a vertical tile edge. Then, by criterion 2, a
vertical line passing through pg passes through no other
point.

Proof of lemma 5. By definition of a conflict point,
there exists some py such that pg′ = py′. By lemma
4, pg and py are the only points lying on the vertical line
passing through them. In addition, these two points are
unique, as the addition of a third point on the vertical
line would violate theorem 5 and lemma 1.

Proof of theorem 1. We first prove that if a conflict
point pg ∈ ∂Cg exists, then the two components are,
at some point, within δ of each other. Let pg ∈ ∂Cg be
a conflict point. Let Γ be the vertical path from pg to
the slice at Z (pg). By definition of a conflict point, Γ

will pass within δ of some point py ∈ ∂Cy before reach-
ing the slice. By criterion 2, Γ intersects ∂Cg exactly

once, at pg, and since every point inside the planar con-
tour C (pg) is inside the green component, every point
on Γ between pg and the projection of pg onto Z (pg)
is inside the green component. Therefore, some point
qg ∈ (Γ ∪Cg) is within δ of ∂Cy.

If two components are within δ of each other, then by
definition there exists a conflict point.

Proof of corollary 1. If pg is the intersection point be-
tween two components it is by definition a conflict
point.

Proof of theorem 2. Let pg ∈ Ug and let p̄g be pg

shifted by ε in the direction of Z (pg). B( p̄g) ⊂ B(pg)
and therefore {py|py ∈ B(p̄g)} ⊂ {qy|qy ∈ B(pg)}.
Therefore the number of conflict points will only de-
crease.

Proof of theorem 3. We prove this by contradiction.
Suppose there exists a single pair of conflict points
pg ∈ ∂Cg and py ∈ ∂Cy on the interiors of triangles
tg ∈ ∂Cg and ty ∈ ∂Cy, respectively. Further, suppose
that every point p ∈ (∂Cg ∪ ∂Cy) is not a conflict point.
Then |pg − py| < δ while the minimum separation dis-
tance between ∂Cg and ∂Cy is at least δ. This violates
planarity of the triangles, and therefore there must be
some conflict point p ∈ (∂Cg ∪ ∂Cy).

Proof of theorem 4. By definition, the projection pg′ of
pg onto the slice at z = Z (pg) lies inside or on the
boundary of a green contour. It can lie on a boundary
only if pg ∈ S g, so by lemma 3 we know that pg′ lies
on the interior of a green contour. Since the contours
are separated by δ, and qy lies on a yellow contour, then
|pg′−qy| > δ. Thus there is some point p̄g on the vertical
line between pg and pg′ such that |Ā×B̄|

|B̄| = δ proving
the first statement. The second follows with a similar
argument.
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