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ABSTRACT
Motivated by the need for correct and robust 3D models of
neuronal processes, we present a method for reconstruction
of spatially realistic and topologically correct models from
planar cross sections of multiple objects. Previous work in
3D reconstruction from serial contours has focused on recon-
structing one object at a time, potentially producing inter-
object intersections between slices. We have developed a
robust algorithm that removes these intersections using a
geometric approach. Our method not only removes inter-
sections but can guarantee a given minimum separation of
objects. This paper describes the algorithm for geometric
adjustment, proves correctness, and presents several results
of our high-fidelity modeling.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling; I.3.7 [Computer Graphics]: Three Di-
mensional Graphics and Realism

1. INTRODUCTION
Much work on 3D reconstruction from planar cross-sectional

data has been done in recent years to the benefit of many ap-
plications. These methods generate a 3D model of an object
from given contours, and many of them are extremely effi-
cient and accurate. These single-component reconstruction
methods are not sufficient, however, when faced with recon-
structing models involving multiple components. This type
of reconstruction is necessary in many different fields, in-
cluding neuronal modeling, surgical planning, and compos-
ite materials simulation. The problem is that reconstruct-
ing components one by one can yield intersections between
components after compositing them into the same model,
regardless of the guarantees made by the algorithm. The in-
tersections occur frequently in data that is highly tortuous
and densely packed, and is exacerbated further by highly
anisotropic data, where the spacing of slices is large com-
pared to the geometric behavior of the objects. The meth-
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ods presented in this paper aim to fill the gap in generating
topologically correct multi-component models while main-
taining the accuracy of existing single-component methods.

Our ultimate goal is to better understand the brain through
accurate modeling and simulation of neuronal processes (e.g.
axons, dendrites, glial cells). Previously this modeling has
been done using the simplified cases of treating the dendritic
arbor as a series of cylinders. However, serial section trans-
mission electron microscopy (ssTEM) reveals highly complex
geometries among neuronal processes, including high tortu-
osity, varying caliber, spiny protrusions and extremely tight
packing. Our work of simulating neuronal electrophysiologi-
cal function at high resolution requires very accurate and
topologically correct 3D reconstructions of neuronal pro-
cesses. These reconstructions can be used in a variety of
modeling experiments using high-fidelity versions of the tra-
ditional cable model approach [11] or, more recently, an
approach based on meshless Weighted Extended B-spline-
based finite element methods [10].

The source data for generating these neuronal reconstruc-
tions is generally ssTEM imagery. Neuronal contours are
generated from these images by neurobiology experts who
trace out the contours using a variety of tools [24]. Pixel
spacing in the xy plane of neuronal ssTEM images is roughly
2-5 nm, while spacing between slices is closer to 45 nm.
Extracellular spacing (spacing between neuronal processes)
is on the order tens of nanometers [25, 19]. This close
spacing, combined with the comparatively large distance
between slices can cause inter-object intersections between
slices when using single-component reconstruction techniques.
This topological incorrectness prohibits any type of multi-
component analysis based on finite element methods.

We have developed an intersection removal method that
acts in concert with any surface reconstruction method, pro-
vided it conforms to several criteria. Our approach is to re-
move intersections by moving triangle vertices and induced
points along the axis orthogonal to the slice plane. This
approach can remove intersections efficiently and without
causing additional intersections. Using an approach that
moves vertices in the slice plane is possibly more intuitive,
but yields considerably greater computational complexity
[3].

We first give a brief outline of work that has been done
both in single component and multi-component surface re-
construction from cross-sectional contour data (Section 2).
We then build up a set of rules and theorems to prove cor-
rectness and robustness of our algorithm (Section 3), fol-
lowed by a discussion of the surface removal algorithm in-
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Figure 1: Overview of single component reconstruction. (a) Single component reconstruction pipeline. Con-
tours are first traced onto images, then a component is reconstructed from the contours. (b) A multi-
component model generated by multiple calls to a single component reconstruction algorithm. (c) A subset
of the reconstruction in (b) that shows the surfaces of multiple components between two slices after inter-
section removal. See also figure 8(a).

cluding complexity bounds (Section 4). We then present
results of our implementation (Section 5).

2. RELATED WORK
A large amount of work has been done to solve the single-

component reconstruction problem. Fuchs et al. [15] pre-
sented the problem and proposed a solution based on trian-
gulations guided by a toroidal graph. Barequet and Sharir
[6] introduced a method using linear interpolations between
slices of medical images. Bajaj et al. [2] expanded on their
work by using medial axes to tile regions with no legal slice-
to-slice tiling. Oliva et al. [22] specifically targeted difficult
objects (objects with multiple branches, holes, and other ir-
regularities) and used Voronoi diagrams to construct topo-
logically correct surfaces.

Somewhat more recent works interpolate contours using
2D skeletons in valid tile regions [5], Delaunay triangulation
[26] and contour morphing [21]. Most works use some type
of linear interpolation and thus require a smoothing post-
processing step. One approach that performs non-linear
smoothing during tiling is found in [7]. Other recent ap-
proaches reconstruct surfaces from non-parallel contours [20,
9, 8].

A different class of approaches that work directly from im-
age data rather than contours exist, such as energy-minimizing
3D snakes [18] and a 3D extension to path cost-minimizing

LiveWire [14]. These approaches require a level of user in-
teractivity, however, and often don’t scale well to massive
datasets with large numbers of components.

Surprisingly little work has dealt with the issue of inter-
sections between multiple components. Bajaj and Gillette
[3] produced a method for removing intersections by remov-
ing contour overlaps in intermediate planes. This algorithm
uses an inflated medial axis surface to separate mid-slice
contours, but there is no guaranteed bound on the number
of mid-slice contours to be separated. In addition, branching
of components (where a single contour in one slice correlates
to multiple contours in an adjacent slice) is treated in a pre-
processing step, where branch points are moved as needed
to enable intersection removal. Our algorithm has provably
finite computational bounds and it also handles branching
of components without treating them as a special case.

Of course, there are many algorithms that perform gen-
eral boolean set operations on surfaces [17]. Our algorithm,
however, is able to perform intersection removal inline and
thus require far less computation than the comparatively
heavy-weight methods. It is restricted to intersections be-
tween slices and can make correctness guarantees based on
knowledge of the source contours. Intersection discovery and
most other elements of the algorithm are performed primar-
ily using inexpensive 2D geometry calculations. So by using
this method over more general methods we get large compu-
tational savings as well as surfaces conforming to constraints
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imposed in the initial single component reconstruction.

3. RULES
Our method is correct and robust and, in addition, it has

bounded computational complexity and requires neither pa-
rameter optimization nor refinements. The only modifica-
tions made to the original surface are the addition of in-
duced points and moving of points parallel to the axis or-
thogonal to the image plane, which we call the z axis. We
prove that moving these points in z in a constrained manner
can remove intersections without causing additional inter-
sections among other components. In addition, our method
can guarantee a minimum separation distance of δ. This is
an important guarantee for applications that are sensitive
to inter-component spacings.

We state here criteria on which our method relies, as well
as various theorems which prove correctness and complete-
ness. We define the xy plane to be the plane of the original
images (and slice contours), and the z axis to be perpendic-
ular to the xy plane. For simplicity, we assume that each
component has a unique color and each element belonging to
that component (e.g. contour, boundary) inherits the same
color. So if two contours have different colors, they belong
to different components.

Criterion 1. The reconstructed surface is a piecewise
closed surface of polyhedra.

Criterion 2. Any vertical (parallel to the z axis) line
segment between two adjacent slices intersects a single com-
ponent exactly 0 or 1 times, or along exactly one line seg-
ment.

Criterion 3. Slicing the reconstructed surface on any of
the original slices produces exactly the input contours.

Criterion 4. All contours on the same slice have a min-
imum separation distance of δ.

Criterion 5. A contour cannot be nested inside a differ-
ent colored contour.

Criteria 1-3 are borrowed from [2] and are required to
ensure high quality and topologically correct surfaces. Cri-
terion 1 ensures that each component surface given to our
algorithm are topologically correct and water-tight. Note
that this does not guarantee that intersections between com-
ponents won’t exist. Criterion 2 also applies only to single
components and helps to avoid topologies that are unlikely.
Without it, a host of additional correspondences are possi-
ble, most of which are incorrect. In order to avoid additional
complexity and a large number of false positive correspon-
dences, this criterion is carried through into our work. It
assumes, however, that the slice spacing is close enough to
enable reasonable reconstructions even with the criterion in
place. Criterion 3 ensures that interpolation is bounded by
only that required to generate a likely topology and avoids
adding information to the original contours.

We enforce criterion 4 by adding a pre-processing step to
our algorithm – that of separating contours by δ. Of course,
if the application prohibits this then either δ can be de-
creased or application-specific contour separation methods
can be used.

Figure 2: s1 and s2 are two adjacent slices and the
lower plane is an arbitrary xy plane showing con-
taining contours of various points. p2 and p3 are on
the green component, while p1 cannot be according
to lemma 1. C (p1) = ∅, C (p2) = {c1, c2}, C (p3) = {c2}.

Criterion 5 is currently required as nested contours of dif-
ferent colors are not currently supported. In other words,
components are treated as solids without any nested compo-
nents. Note that this does not preclude nested contours of
the same color, which can occur when there are concavities
in the surface.

Our algorithm works on slice pairs. That is, all compo-
nents on a pair of slices are tiled, and then intersections
occuring between slices are removed. The algorithm then
proceeds to the next pair of slices. In the following discus-
sion, it is assumed that the data we are dealing with lies
on and between a pair of adjacent slices. We also deal with
only two components at a time, Cg and Cy, the green and
yellow components, respectively. We will see that working
with only two components at a time is justified.

Proofs of the following lemmas and theorems can be found
in the appendix.

Definition 1. Suppose p′ is the projection of point p onto
the xy plane. We say that contour c is a containing contour
of p if p′ is inside or on the boundary of c′ (see figure 2).
We define C (p) to be the set of all containing contours of
point p and C

g(p) to be C (p) restricted to all green contours
{cg

i }, i.e., C
g(p) = C (p) ∩ {cg

i }.

Lemma 1. Suppose pg is a point on the surface ∂Cg of
component Cg. Then 1 ≤ |C (pg)| ≤ 2.

This lemma states that any point on a surface must have
at least one containing contour (of any color) but no more
than two. In figure 2, p1 has no containing contour and so
cannot exist on the surface of the reconstructed component.

Lemma 2. If |C (pg)| = 2 then the two contours in C (pg)
lie on separate slices.

Definition 2. Sg is the set of all points pg ∈ ∂Cg such
that |C g(pg)| = 2. These points lie “sandwiched” between
two green contours. Similarly, Ug is the set of all points
pg ∈ ∂Cg such that |C g(pg)| = 1. These points have no
containing contour on one of the slices. For a point pg ∈ Ug,
we call its single containing green contour the penumbral
contour P(pg).
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Figure 3: Conflict points are detected and removed by moving the points along the z axis. pg and py are
corresponding conflict points. The conflict is removed by moving pg and py in the z direction by sgǫ and syǫ,
respectively (equation 2) to produce new points p̄g and p̄y.

In figure 2, P(p3) = c2 and the penumbral contour for
the other two points is undefined.

As it happens, points in Sg cannot lie on the inside of
both contours, but must lie on the boundary of at least one,
but this distinction is not necessary for our analysis here.

Definition 3. Suppose pg ∈ Ug. Then Z (pg) is the z
coordinate value for P(pg). We call this the z-home value
for pg. Z (qg) is undefined for all qg /∈ Ug.

Definition 4. Consider a sphere of radius δ centered at
a point p. Consider also the cylinder of radius δ about the
vertical line segment from p to p′ where p′ is the projection
of p onto the slice at Z (p). The union of the open sphere
and open cylinder is called the buffer region B(p) of p.

Definition 5. Point pg ∈ Ug is called a conflict point if
there is some point py ∈ Uy such that py ∈ B(pg).

Conflict points are points at which two components are
closer than δ or at which some point py is inside or on the
surface of two components.

Lemma 3. No point pg ∈ Sg can be a conflict point.

Lemma 4. Let pg ∈ ∂Cg be a conflict point. Then there
is no other point qg ∈ ∂Cg such that pg ′ = qg ′.

This lemma shows that a point p can conflict with points
of only one other component. This is important because it
frees us to deal with only component pairs. That is, we are
guaranteed that if component A and component B intersect,
there is no other component C that intersects in the same
region. This naturally leads to the algorithm described in
section 4, in which conflict points are found and dealt with
between pairs of components.

Theorem 1. Two components Cg and Cy are within δ
distance of each other if and only if there is at least one
conflict point on the surface of either component.

Corollary 1. If two components Cg and Cy intersect
then there is at least one conflict point on the surface of
either component.

By this theorem and corollary we see that removing all
conflict points between two components is necessary and suf-
ficient to guarantee that the components are not intersecting
and are separated at every point by at least δ.

Theorem 2. Moving any point pg ∈ Ug in the direction
of Z (pg) will not generate any additional conflict points
among any pair of components.

This theorem is important to justify removing conflict
points between pairs of components. If it wasn’t so then
the algorithm would be computationally far more complex
as we would have to continuously check previously resolved
components for additional conflict points after any modifi-
cation is made in the region.

Theorem 3. Conflict points exist on the triangulated sur-
faces of two components if and only if at least one conflict
point exists either at a triangle vertex or along a triangle
edge of either component.

4. IMPLEMENTATION
Our algorithm removes conflict points in a manner con-

forming to theorem 2, i.e., no additional conflict points are
introduced at any step. And since removing all conflict
points at locations defined in theorem 3 effectively removes
all conflict points, our algorithm is bounded by the number
of those locations.

The algorithm removes conflict points between pairs of
components. We rely on theorem 2 to justify working with
only two components at a time: resolving conflict points
between two components will not increase the number of
conflict points among any other pair of components.

In addition to working with only two components at a
time, we also deal only with reconstructions between two
given slices at a time. There are no component intersections
on the slices themselves (by criteria 3 and 4), and the algo-
rithm does not modify any points on the slices. So the con-
tours on the slices act as natural boundary points between
intra-slice reconstructions, even after intersection removal.

The algorithm is as follows:

1. Separate contours in slices zi and zi+1

2. Run single component tiling on each component in
slices

3. Determine conflict points

4. Trace cut from conflict point to its exit in a triangle

5. Triangulate (planar) polygons

6. Adjust z values

We now describe each step in detail.
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(a) (b)

(c) (d)

Figure 4: Contour intersection removal. (a) shows
the original contours and (b) shows the contours af-
ter dilation by δ/2. In (c) the dilated contours have
been clipped and (d) shows the final result after ero-
sion.

Slice contour separation
Our 2D contour intersection removal algorithm is a simple
and efficient algorithm aimed at separating contours by a
value δ (see figure 4). All contours in a given slice are first
dilated by δ/2 after which proper intersections between con-
tours (proper, in this case, meaning intersections such that
a segment from one contour touches both the interior and
exterior of another contour) are found using a sweep line and
marked. We are guaranteed that there are an even number
of intersections as only proper intersections are marked. In-
tersection points are paired up such that the mid-point of the
line segment defined between two intersections is in the inte-
rior of two contours. For each of these pairs, the intersecting
contours are clipped along this line segment. The contours
are then eroded back to roughly their original shape minus
the clipped areas.

This approach is simple and fast, but it does have its
failings. For one, it doesn’t support intersections of more
than two contours. This is, of course, possible, but gener-
ally doesn’t happen often in the data we have dealt with.
Another side effect is a smoothing of the contours, which is
dependent on δ. In our case this is actually desirable, as the
contours we generally deal with are rather noisy, which is
why we have to perform the intersection removal in the first
place.

Single component reconstruction
The single component reconstruction algorithm we use is
found in [2]. It takes planar contours in adjacent slices as
input and outputs a series of triangles, or “tiles”, forming
a surface between the contours. It supports branching and
conforms to all of the criteria as they apply to single com-
ponent reconstructions.

Determine conflict points
Once all components between two slices are found, we use a
modified sweep line to find all tile edges of different colors

(a) (b)

(c) (d)

Figure 5: Steps of intersection removal algorithm.
(a) Conflict points on the green tile are detected.
(b) Cut paths are traced. (c) New polygons are
induced by cut paths. The polygons are colored for
clarity. (d) After triangulation of the polygons

.

that are closer than δ in the xy plane. In addition, all tile
vertices that are inside of a tile of another component (still in
the xy projection of the tiles) are considered. We call these
potential conflict points“approach”points. They are marked
and stored in a data structure that maps the approach point
to the two tiles and every edge passing through the point.
There will usually be exactly two edges unless the approach
point is at a tile vertex, in which case the number of edges
is greater since every tile vertex touches at least two tiles.

We consider conflict points at only these approach points.
We determine whether a point is conflicting or not by ex-
amining the minimum distance between the different colored
edges on which the approach points lie. Then, if the mini-
mum distance is less than δ, we mark each approach point
as conflicting.

Figure 5(a) shows a yellow tile and three green tiles. The
algorithm finds all approach points (black dots) and then
determines which of these are conflict points (red dots).

Trace tile cuts
The algorithm for tracing tile cuts is as follows:

For each conflict point, we must trace out cut polylines
that we will use to induce new polygons that will then be
triangulated. The way this is done is to start at a conflict
point p and find its projection onto the yellow component
to get py (line 3). py will be on a yellow tile’s boundary.
Now follow the points on the boundary of the tile that have
been marked as intersections from py to the exit point where
the yellow tile exits the green tile (lines 8-10). Each point
encountered in this trace are added to the polyline (line 14).

This can be seen visually in figure 5(a). Point p1 is a
conflict point. The algorithm builds an ordered array of
points following the yellow tile from p1 all the way to point
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(a) (b)

(c) (d)

Figure 6: Examples showing various interesting cases of intersection. (a) A classic intersection except that
the back green tile is vertical. (b) A case where conflict points occur at a tile vertex rather than intersections
between tile edges. (c) A slightly more complicated case containing conflict points both at tile edges and at
vertices. (d) Intersection removal of a branching topology. The yellow component branches from the top slice
to the bottom slice and the gray component is the opposite, resulting in a complex intersection that cannot
be removed by simply shifting in the xy plane.

Algorithm 1 TRACE CUTS

1: cuts := empty array of polylines
2: for all points p in conflict points do
3: py := projection of p onto yellow component
4: ty := yellow tile containing py

5: tg := green tile containing pg

6: polyline := empty array of points
7: push p onto polyline
8: dir := direction to travel on ∂ty to go to interior of tg

9: boundary := ordered intersections on ∂ty

10: for all approach points qy in boundary do
11: if qy ′ ∈ tg ′ ∪ ∂tg ′ then
12: qg := projection of qy onto green component
13: q := qg ′

14: push q onto polyline
15: end if
16: end for
17: push polyline onto cuts
18: end for
19: return cuts

p8. Then it loops over each point in the array checking to
see if the current point p is inside of the projection of the
green tile t1

′. If it is, then the point is added to the cut. So
the cut from point p1 = [p1, p2, p3]. All cuts can be shown
in red in figure 5(b).

Cut polylines are specific to a tile. So cuts for the green
component’s tiles are first found, and then cuts for the yellow
component. These polylines are superimposed onto the tiles
to generate a set of induced polygons (figure 5(c)). Even
though the cuts are different for green tiles vs. yellow tiles,
the projection of green tiles and cuts will be identical to that
of the yellow.

Figure 5 shows an interesting case in that if the induced

polygons are triangulated naively, an illegal triangulation
can result. Consider point p4 in the figure. There will be
a triangle vertex at this point due to the triangulation of
tile t2. If, then, it is not a vertex in the triangulation of
tile t3, then the triangulation will not be legal. Because of
this, the algorithm checks for any point on a tile edge that
is involved in the triangulation of any adjacent tile, and
induces that point onto all adjacent tiles. This ensures legal
triangulations.

Triangulate polygons
At this point we have polygons that are ready to be trian-
gulated into a new induced surface. An intuitive approach
would be to simply run a constrained Delaunay 2D trian-
gulation on the xy projection of all induced points on the
tile. This has two problems: first, the tiles can be vertical
and thus the projections of the triangles are degenerate and
second, inducing points on edges of triangles causes a large
number of collinear points.

The first problem can be addressed by checking to see if
the tile is vertical before triangulation. If it is, then rotate by
90 degrees and then triangulate. Happily, the tiles are still
coplanar and so we can safely rotate the tile with induced
points without worry of causing additional degeneracies.

The second problem is more troublesome. The combined
problem of collinear points coupled with numerical error
causing possible triangle edges outside of the original tile re-
quires something more than a naive approach. Our solution
is to maintain a data structure mapping points to the edges
of the original tile from which they were induced. Now a nu-
merically error-prone check for collinearity is perfectly safe
by simply doing a hash lookup for each point and comparing
the original edges. If all three edges are the same then the
points are collinear. If not, then they are not collinear, pro-
vided the original tiling algorithm returns non-degenerate
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(a) (b)

Figure 7: Calculation of ǫ. A and B are vectors from qy to the original conflict points. Ā and B̄ are vectors
from qy to the resolved conflict points. ǫ is calculated using these vectors and input minimum separation
distance parameter δ.

tiles (which it does in our case).
We used a simple ear-cutting algorithm [23] using this

data structure to ensure legal triangulations. Even with the
check, an additional modification is required to ensure nu-
merical stability. That is to first generate triangles involving
at least one unused collinear point. Without this, the result
often includes very long thin triangles if at least one induced
point is very close to an existing vertex.

Adjust z values
The result of triangulating induced polygons is an induced
triangulated surface, which still has conflict points between
components. At this point we can adjust z values of all con-
flict points in the new triangulation to separate component
surfaces. Each conflict point p is checked and its two asso-
ciated component points pg and py are given new z values
as follows:

pg
z =

pg
z + py

z

2
+ sgǫ (1)

where

sg =



−1 zg > zy

1 zg < zy (2)

py
z is calculated similarly.
ǫ and δ are related but distinct. δ is the input parameter

of minimum separation distance between components. ǫ is
the distance along the z axis to move conflict points such
that the new surfaces will be separated by δ. Determining
ǫ to achieve the desired minimum distance δ between com-
ponents is done as follows. A conflict point py is either an
induced point on an edge or a vertex. Let B be the vector
py − qy where qy is either an induced point or vertex such
that py

z is between qy
z and Z (py). See figure 7. Further, let

A be the vector pg − qy. Now let p̄y = {py
x, py

y, py
z + syǫ}

and p̄g = {pg
x, pg

y, pg
z + sgǫ}. And lastly, B̄ = p̄y − qy and

Ā = p̄g − qy. Distance d is

d =
|Ā × B̄|

|B̄|
(3)

Substituting for Ā and B̄ and assuming that sg = 1 we
get

d2 = ((Ay(Bz − ǫ) − (Az + ǫ)By)2

+ ((Az + ǫ)Bx − Ax(Bz − ǫ))2

+ (AxBy − AyBx)2)/(B2
x + B2

y + (Bz + ǫ)2) (4)

Factoring ǫ yields a quadratic:

0 = ǫ2((Ay + By)2 + (Ax + Bx)2 − d2)

+ ǫ(2)((Ax + Bx)(AzBx − AxBz)

−(Ay + By)(AyBz − AzBy) − d2Az)

+ (AyBz − AzBy)2 + (AzBx − AxBz)
2

+(AxBy − AyBx)2 − d2(B2
x + B2

y + B2
z) (5)

We then substitute δ in for d and find the two roots for ǫ.
It is possible that both roots yield shifts in the direction of
Z (pg). This occurs when the surface intersections are gross
enough to cause conflict points that are more than δ apart.
So we choose the solution for ǫ with the greatest value and
then multiply by sg (since we assumed that sg = 1).

There is a denominator on the right hand side of (5) which
we have omitted for brevity. But it should be clear from
(4) that the denominator is zero only when B̄ is degenerate
which cannot happen since py is moved in the direction of
Z (py) for ǫ > 0.

Theorem 4. ǫ < |pg − Z (pg)| and ǫ < |py − Z (py)|.

This theorem bounds ǫ by the distance from the conflict
points to the slices. In other words, no value of ǫ can cause a
point shift in z such that the point crosses a slice boundary.
This is important because any such shift would cause the
reconstruction to violate criterion 3, not to mention all the
criterion’s dependent guarantees.

Computational complexity
The computational complexity of our algorithm is bounded
by the number of conflict points found. The maximum num-
ber of conflict points between the boundaries of two trian-
gles is 12: 6 for the xy-plane intersections and 6 for the
vertices. Thus, if a reconstruction generates m components,
each with ni triangles, then the maximum number of con-
flict points is 12ninj where ni and nj are the two largest
numbers of triangles in a single component. We state the
computational complexity, then, as being O(n2) where n is
the largest number of triangles in a single component.

In practice we have found that there are far fewer con-
flict points, even in highly tortuous datasets. The recon-
struction shown in figure 9 used 21 slices. Between slices
4-5 there were 1352 total triangles before intersection re-
moval. Among these triangles there were 1532 detected
conflict points. Tiling these two slices without intersection
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(a) (b) (c)

Figure 8: Results of running intersection removal on various portions of neuronal contour data. (a) Inter-
section removal of intersections shown in figure 1(c). (b) Before and after intersection removal with triangle
edges visible. (c) Result of intersection removal is shown on top of the original ssTEM data.

(a) (b) (c) (d)

Figure 9: Results of running intersection removal on two axons that intersect. (a) Two axons whose re-
constructions intersect between slices. (b) Zoomed in with part of the top axon cut away to reveal the
intersection. (c) Result of intersection removal. (d) After smoothing.

(a) (b) (c) (d)

Figure 10: Results of running intersection removal on two axons that intersect with a third axon in close
proximity. (a) Three axons coming very close to each other in the same region. (b) With part of the axons
cut away to reveal the intersection between two of the axons. Wireframe is shown superimposed on the
surface. (c) Result of intersection removal. Notice the bump in the upper-left box left over from removing
intersections. (d) After smoothing.
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removal took 1.07 seconds. Adding intersection removal in-
creased the time to 1.59 seconds.

Smoothing
One additional step in our pipeline is that of smoothing
the surfaces. Initial surface reconstruction can introduce
numerically-troublesome thin triangles, and the intersection
removal adds O(n2) triangles. So at completion of intersec-
tion removal we run the surfaces through our quality im-
provement pipeline, which includes edge contraction using
the QSlim software package [16] after which we decimate
[27] and improve triangles [4]. These tasks are done using a
library version of our Level Set Boundary Interior and Ex-
terior Mesher [12] which is also embedded in our Volume
Rover software package [13].

5. RESULTS AND DISCUSSION
We have implemented a fixed-ǫ version of the intersection

removal algorithm along with a slightly modified version of
the single component reconstruction algorithm found in [2].

Figure 6 shows some interesting cases of intersection be-
tween tiles (though it is by no means exhaustive). Figure
6(a) shows intersection of a vertical tile. This requires the
tile to be rotated by 90 degrees before being re-triangulated
after new points are induced. 6(b) and (c) show conflict
points at only tile vertices and not xy-plane intersections.
As can be seen this case is handled since conflict points are
checked at tile vertices in addition to xy-plane intersections.
6(d) shows a branching case. The yellow tile is branching
from one contour above to two contours below, while the
gray tile is branching opposite. The intersection is removed
without treating the branching structure as a special case.
In fact, most cases of egregious intersections in real neuronal
data were caused at locations where branching occurred. All
three examples in figure 8 involve branching of at least one
of the components.

Figure 8 shows results of intersection removal from re-
constructions of the hippocampal region of the brain. The
contours used were hand-traced from 4K x 4K pixel resolu-
tion ssTEM images. Image pixels are approximately 2 nm
square and inter-slice spacing is 45 nm. We show results
from various regions of the dataset at different slices and
using different components. The intersection removal algo-
rithm is run immediately after all components between two
slices are reconstructed. Only one pass over conflict points
is made and, as can be seen, no additional conflict points
are generated. The actual number of conflict points was sig-
nificantly fewer than the upper bound in each case, roughly
1/10th of the O(n2) upper bound in cases where the com-
ponents intersect.

Without correct topologies, multiple component model-
ing is severely limited, and this work provides a solution to
this important problem. Using single component reconstruc-
tions that adhere to certain guidelines, the method presented
in this paper can remove intersections between components
correctly and robustly. It also guarantees a minimum sep-
aration distance between all components. The algorithm is
efficient, performing the intersection removal in O(n2) time
and using highly efficient 2D geometric calculations.

One improvement that needs to be made is the removal
of criterion 5. This criterion prohibits intersection removal
between nested components. In the case of neuronal model-
ing, so-called intracellular components such as endoplasmic

reticulum and mitochondria are treated separately. But to
get a truly accurate model, these will need to be included.
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APPENDIX
Our proofs rely on an additional theorem from [2], which we
restate here in a slightly weaker formulation, but sufficient
for our purposes:

Theorem 5. ([2], Theorem 2) For every point pg on the
surface ∂Cg of the green component, 1 ≤ |C g(pg)| ≤ 2.

Proof of lemma 1. Since |C (pg)| ⊃ |C g(pg)|, then 1 ≤
|C g(pg)| by theorem 5. We prove that |C g(pg)| ≤ 2 by con-
tradiction. Suppose |C g(pg)| > 2. Then by the pigeonhole

principle, at least 2 contours must exist on some adjacent
slice. These contours share the projection pg

s onto the slice
of point pg

s . This violates criterion 4.

Proof of lemma 2. If the 2 containing contours exist
on the same slice, then they share the projection pg

s onto
the slice of point pg

s . This violates criterion 4.

Proof of lemma 3. This is a proof by contradiction.
Consider a point pg ∈ Sg. Suppose that pg is a conflict point.
Then there exists some point py such that py ∈ B(pg) (for
the moment, set aside the fact that Z (pg) is undefined). By
lemma 1 we know that the projection of point pg can have no
more than 2 containing contours. By virtue of being in Sg,
pg indeed has 2 containing contours, both of which belong
to the green component by definition. Since py ∈ B(pg), the
projections of py onto each adjacent slice are within δ of the
projections of pg. Then the projection of py onto C (py) (by
theorem 5 there must be at least one) is within δ of a green
contour C (pg) which contradicts criterion 4. Thus no point
py exists and pg is not a conflict point.

Proof of lemma 4. By lemma 3, pg ∈ Ug and thus can-
not be on a vertical tile edge. Then, by criterion 2, a vertical
line passing through pg passes through no other point.

Proof of theorem 1. We first prove that if a conflict
point pg ∈ ∂Cg exists, then the two components are, at
some point, within δ of each other. Let pg ∈ ∂Cg be a
conflict point. Let Γ be the vertical path from pg to the
slice at Z (pg). By definition of a conflict point, Γ will pass
within δ of some point py ∈ ∂Cy before reaching the slice.
By criterion 2, Γ intersects ∂Cg exactly once, at pg, and
since every point inside the planar contour C (pg) is inside
the green component, every point on Γ between pg and the
projection of pg onto Z (pg) is inside the green component.
Therefore, some point qg ∈ (Γ ∪ Cg) is within δ of ∂Cy.

If two components are within δ of each other, then by
definition there exists a conflict point.

Proof of corollary 1. If pg is the intersection point
between two components it is by definition a conflict point.

Proof of theorem 2. Let pg ∈ Ug and let p̄g be pg

shifted by ǫ in the direction of Z (pg). B(p̄g) ⊂ B(pg) and
therefore {py|py ∈ B(p̄g)} ⊂ {qy|qy ∈ B(pg)}. Therefore
the number of conflict points will only decrease.

Proof of theorem 3. We prove this by contradiction.
Suppose there exists a single pair of conflict points pg ∈ ∂Cg

and py ∈ ∂Cy on the interiors of triangles tg ∈ ∂Cg and
ty ∈ ∂Cy, respectively. Further, suppose that every point
p ∈ (∂Cg ∪ ∂Cy) is not a conflict point. Then |pg − py| < δ
while the minimum separation distance between ∂Cg and
∂Cy is at least δ. This violates planarity of the triangles,
and therefore there must be some conflict point p ∈ (∂Cg ∪
∂Cy).

Proof of theorem 4. By definition, the projection pg ′

of pg onto the slice at z = Z (pg) lies inside or on the bound-
ary of a green contour. It can lie on a boundary only if
pg ∈ Sg, so by lemma 3 we know that pg ′ lies on the interior
of a green contour. Since the contours are separated by δ,
and qy lies on a yellow contour, then |pg ′ − qy| > δ. Thus
there is some point p̄g on the vertical line between pg and

pg ′ such that |Ā×B̄|

|B̄|
= δ proving the first statement. The

second follows with a similar argument.
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