Surface segmentation for improved isotropic remeshing

John Edwards, Wenping Wang, Chandrajit Bajaj

Department of Computer Science The University of Texas at Austin The University of Hong Kong

International Meshing Roundtable, October 9, 2012

- Motivation and problem statement
- Centroidal Voronoi Tessellation
- Segmentation
- Stitching
- Results

Surface remeshing

- Surface remeshing is the process of transforming one surface mesh into another
- Reasons for remeshing
 - Decimation
 - Triangle quality improvement
- \bullet Many techniques sample the input surface S and then triangulate the points

Sampling density

- Some techniques resample in parameter space [Alliez et al., 2003]
 - Global parametrization can cause distortion
 - Local parametrization: optimization is not global, stitching is required
- Direct sampling techniques require minimum sampling density

- Centroidal Voronoi Tessellation (CVT) is a method of tessellating a space
- It can be formulated as a critical point of the CVT energy function [Du et al., 1999]

$$F(X) = \sum_{i=1}^{n} \int_{\Omega_i} \rho(x) \|x - x_i\|^2 \, d\sigma \tag{1}$$

X = {x_i} is the set of sample points, Ω_i is the Voronoi cell of x_i with respect to the other sample points, ρ is a density function
In the context of surface remeshing:

- Typical density functions are $\rho = 1$ and $\rho = 1/lfs^2$ [Yan et al., 2009]
- We use the Restricted Voronoi Diagram for the final mesh [Du et al., 2003]

- Restricted Voronoi Diagram: each Voronoi Cell is intersected with *S* to form Restricted Voronoi Cell (RVC)
- The dual (called Restricted Delaunay Triangulation, or RDT) is defined as usual
- Obvious problems occur when RVC is not homeomorphic to a topological disk

Two related theorems govern when RDT will be homeomorphic to \boldsymbol{S}

Topological ball property [Edelsbrunner and Shah, 1997]

Each RVC must be a topological disk

r-sampling theorem [Amenta and Bern, 1999]

Each point p on surface S must be within $r \cdot lfs(p)$ of a seed point, where lfs(p) is the local feature size at p

Sampling density

- Required sample density is based on local feature size (*lfs*)
- Ifs measures curvature and thickness (see Levy short course)
- This is a disappointment: it isn't intuitive that flattish regions should still require high sampling density
- An unfortunate artifact of using euclidean distance to approximate geodesic distance

Introducing κCVT

- [Fuhrmann et al., 2010]: $\rho = \sqrt{\kappa}$
- uniform: $\rho = 1$
- Ifs: $\rho = 1/lfs^2$
- $\kappa \text{CVT}: \rho = \sqrt{\kappa}$

• The big question: how can we use κ as the density function while still meeting the sampling theorem?

Segmentation

- Segment surface S such that flattish areas have high lfs
- Let A be a triangle in M_i . Heuristic: partition S into subsurfaces $M = \{M_i\}$ such that the ball $\mathscr{B}(p, r_A)$ centered at any point $p \in A$ will yield a single connected component when intersected with M_i .
 - r_A is an approximation of lfs(A).

Building compatibility table and segmentation

- \bullet Find which triangles are compatible with triangle A
- Given triangle B, let $P_{A,B}$ be the set of all points on A that are within r_A of B (shaded region of 2D triangles in image)

Building compatibility table and segmentation

- Search out from A and use boolean set operations to build "compatibility table"
- Use region merging to find groups of compatible triangles

Subsurface remeshing and stitching

- Remesh each subsurface M_i individually using CVT with $\rho = \sqrt{\kappa}$ (hence the name of our method)
- \bullet Stitch remeshed subsurfaces $\{M^*_i\}$ back together using a search algorithm and cost function

Method overview and <u>results</u>

Results

Remeshing the fish model with 4000 sample points.

- κ CVT performed better than the other two CVT methods in terms of geometric error in every test but one, and showed as much as 20% improvement over the next-best method
- Topological errors were reduced to 0 in every case but one. In that case topological errors were reduced by 30% of next-best method
- Average triangle quality was similar to that of *lfs* method

- So what's the catch?
 - Min triangle quality was reduced, due to stitching
 - Improvement is specific to models with flattish areas that have low local feature size
- Future work
 - Implement feature preservation
 - Perform local CVT on stitching area

Thank you.

References

[Alliez et al., 2003] Alliez, P., de Verdire, E., Devillers, O., and Isenburg, M. (2003). Isotropic surface remeshing. In Share Modeling International. 2003, pages 49-58, IEEE.

[Amenta and Bern, 1999] Amenta, N. and Bern, M. (1999). Surface reconstruction by voronoi filtering. Discrete & Computational Geometry, 22(4):481-504.

- [Du et al., 1999] Du, Q., Faber, V., and Gunzburger, M. (1999). Centroidal voronoi tessellations: Applications and algorithms. SIAM review, pages 637-676.
- [Du et al., 2003] Du, Q., Gunzburger, M., and Ju, L. (2003). Constrained centroidal voronoi tessellations for surfaces. SIAM Journal on Scientific Computing, 24(5):1488-1506.

[Edelsbrunner and Shah, 1997] Edelsbrunner, H. and Shah, N. (1997). Triangulating topological spaces. International Journal of Computational Geometry and Applications, 7(4):365-378.

- [Fuhrmann et al., 2010] Fuhrmann, S., Ackermann, J., Kalbe, T., and Goesele, M. (2010). Direct resampling for isotropic surface remeshing. In Vision, Modeling, and Visualization, pages 9-16.
- [Yan et al., 2009] Yan, D., Lévy, B., Liu, Y., Sun, F., and Wang, W. (2009). Isotropic remeshing with fast and exact computation of restricted voronoi diagram. In Computer graphics forum, volume 28, pages 1445-1454. Wiley Online Library.

Theorem

r-sampling theorem [Amenta and Bern, 1999] If no point p on surface S is farther than $r \cdot lfs(p)$ from a seed point $x \in X$ where r is a constant then the Restricted Delaunay Triangulation induced by X is homeomorphic to S.

- We define $r_p = 2 \cdot \alpha \cdot lfs(p)$ and $r_A = \arg \min_{v_i \in V_A} r_{v_i}$.
- All of our experiments use $\alpha = 1.1$.

Flood fill segmentation

Stitching cost function

 t_c is a candidate "connector"

$$cost(t_c) = \sum_{t \in \mathcal{T}_c} area(t) \cdot Q(t)^{-\gamma}.$$
 (2)

 γ is a user-defined parameter (we used $\gamma = 0.5$) and Q(t) is the triangle quality measure

$$Q_t = \frac{6}{\sqrt{3}} \frac{r_t}{h_t} \tag{3}$$

where r_t and h_t are the inradius and longest edge length of t, respectively.

model	# seeds	method	errors	$\rm H_{mean} \times 10^{3}$	$\rm H_{RMS} \times 10^{3}$	Q _{min}	Qave
Elk	2000	uniform	400	0.94	1.48	0.448	0.884
		/fs	15	1.31	1.76	0.347	0.858
		κCVT	0	0.76	1.00	0.220	0.849
Elk	8000	[Fuhrmann et al., 2010]	0	0.38	0.63	0.058	0.902
		uniform	0	0.24	0.37	0.509	0.916
		/fs	0	0.36	0.49	0.451	0.893
		κCVT	0	0.23	0.34	0.259	0.885
Fish	1000	uniform	95	0.97	0.16	0.525	0.872
		/fs	14	0.91	0.12	0.420	0.830
		κCVT	0	0.82	0.12	0.236	0.809
Fish	4000	[Fuhrmann et al., 2010]	0	0.50	0.85	0.070	0.898
		uniform	11	0.36	0.53	0.580	0.898
		/fs	0	0.36	0.51	0.407	0.864
		κCVT	0	0.36	0.58	0.160	0.863
Club	200	uniform	51	2.94	4.08	0.570	0.842
		/fs	31	4.25	6.36	0.362	0.770
		κCVT	19	3.42	4.92	0.173	0.728
Club	2000	[Fuhrmann et al., 2010]	-	0.74	1.54	~ 0	0.832
		uniform	0	0.39	0.70	0.555	0.893
		/fs	0	0.46	0.85	0.314	0.834
		κCVT	0	0.34	0.62	0.082	0.855