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Surface remeshing

Surface remeshing is the process of transforming one surface mesh
into another
Reasons for remeshing

Decimation
Triangle quality improvement

Many techniques sample the input surface S and then triangulate
the points
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Motivation

uniform lfs κCVT
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Sampling density

Some techniques resample in parameter space [Alliez et al., 2003]

Global parametrization can cause distortion
Local parametrization: optimization is not global, stitching is
required

Direct sampling techniques require minimum sampling density
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CVT remeshing

Centroidal Voronoi Tessellation (CVT) is a method of tessellating
a space

It can be formulated as a critical point of the CVT energy function
[Du et al., 1999]

F (X ) =
n∑

i=1

∫
Ωi

ρ(x)‖x − xi‖2 dσ (1)

X = {xi} is the set of sample points, Ωi is the Voronoi cell of xi
with respect to the other sample points, ρ is a density function

In the context of surface remeshing:

Typical density functions are ρ = 1 and ρ = 1/lfs2 [Yan et al., 2009]
We use the Restricted Voronoi Diagram for the �nal mesh
[Du et al., 2003]
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Sampling density

Restricted Voronoi Diagram: each Voronoi Cell is intersected with
S to form Restricted Voronoi Cell (RVC)

The dual (called Restricted Delaunay Triangulation, or RDT) is
de�ned as usual

Obvious problems occur when RVC is not homeomorphic to a
topological disk
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Sampling density

Two related theorems govern when RDT will be homeomorphic to S

Topological ball property [Edelsbrunner and Shah, 1997]

Each RVC must be a topological disk

r-sampling theorem [Amenta and Bern, 1999]

Each point p on surface S must be within r · lfs(p) of a seed point,
where lfs(p) is the local feature size at p
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Sampling density

Required sample density is based on local feature size (lfs)

lfs measures curvature and thickness (see Levy short course)

This is a disappointment: it isn't intuitive that �attish regions
should still require high sampling density

An unfortunate artifact of using euclidean distance to approximate
geodesic distance
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Introducing κCVT

[Fuhrmann et al., 2010]: ρ =
√
κ

uniform: ρ = 1

lfs: ρ = 1/lfs2

κCVT: ρ =
√
κ

[Fuhrmann et al., 2010] uniform lfs κCVT

The big question: how can we use κ as the density function while
still meeting the sampling theorem?
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Segmentation

Segment surface S such that �attish areas have high lfs
Let A be a triangle in Mi . Heuristic: partition S into subsurfaces
M = {Mi} such that the ball B(p, rA) centered at any point p ∈ A
will yield a single connected component when intersected with Mi .

rA is an approximation of lfs(A).
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Building compatibility table and segmentation

Find which triangles are compatible with triangle A

Given triangle B , let PA,B be the set of all points on A that are
within rA of B (shaded region of 2D triangles in image)
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Building compatibility table and segmentation

Search out from A and use boolean set operations to build
�compatibility table�

Use region merging to �nd groups of compatible triangles
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Subsurface remeshing and stitching

Remesh each subsurface Mi individually using CVT with ρ =
√
κ

(hence the name of our method)

Stitch remeshed subsurfaces {M∗i } back together using a search
algorithm and cost function
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Method overview and results

original uniform lfs

segmented stitches κCVT
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Results
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Results

Remeshing the �sh model with 4000 sample points.

[Fuhrmann uniform lfs κCVT
et al., 2010]
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Results

κCVT performed better than the other two CVT methods in
terms of geometric error in every test but one, and showed as much
as 20% improvement over the next-best method

Topological errors were reduced to 0 in every case but one. In that
case topological errors were reduced by 30% of next-best method

Average triangle quality was similar to that of lfs method
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Results

So what's the catch?

Min triangle quality was reduced, due to stitching
Improvement is speci�c to models with �attish areas that have low
local feature size

Future work

Implement feature preservation
Perform local CVT on stitching area
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Thank you.
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Sampling density theorem

Theorem

r -sampling theorem [Amenta and Bern, 1999] If no point p on surface
S is farther than r · lfs(p) from a seed point x ∈ X where r is a constant
then the Restricted Delaunay Triangulation induced by X is
homeomorphic to S .
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Computation of rA

We de�ne rp = 2 · α · lfs(p) and rA = argminvi∈VA
rvi .

All of our experiments use α = 1.1.
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Flood �ll segmentation
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Stitching cost function

tc is a candidate �connector�

cost(tc) =
∑
t∈Tc

area(t) · Q(t)−γ . (2)

γ is a user-de�ned parameter (we used γ = 0.5) and Q(t) is the triangle
quality measure

Qt =
6√
3

rt

ht
(3)

where rt and ht are the inradius and longest edge length of t,
respectively.
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Results - table

model # seeds method errors Hmean × 10
3 HRMS × 10

3 Qmin Qave θmin θmin,ave

Elk 2000 uniform 400 0.94 1.48 0.448 0.884 22.4 50.8
lfs 15 1.31 1.76 0.347 0.858 19.3 48.7

κCVT 0 0.76 1.00 0.220 0.849 11.7 48.1

Elk 8000 [Fuhrmann et al., 2010] 0 0.38 0.63 0.058 0.902 2.6 52.2
uniform 0 0.24 0.37 0.509 0.916 24.4 53.2

lfs 0 0.36 0.49 0.451 0.893 22.6 51.4
κCVT 0 0.23 0.34 0.259 0.885 15.2 50.9

Fish 1000 uniform 95 0.97 0.16 0.525 0.872 28.6 49.7
lfs 14 0.91 0.12 0.420 0.830 18.3 46.4

κCVT 0 0.82 0.12 0.236 0.809 13.1 45.0

Fish 4000 [Fuhrmann et al., 2010] 0 0.50 0.85 0.070 0.898 2.7 51.8
uniform 11 0.36 0.53 0.580 0.898 26.3 51.7

lfs 0 0.36 0.51 0.407 0.864 19.4 49.1
κCVT 0 0.36 0.58 0.160 0.863 6.5 49.0

Club 200 uniform 51 2.94 4.08 0.570 0.842 30.1 47.4
lfs 31 4.25 6.36 0.362 0.770 13.8 41.8

κCVT 19 3.42 4.92 0.173 0.728 9.2 39.5

Club 2000 [Fuhrmann et al., 2010] - 0.74 1.54 ∼ 0 0.832 ∼ 0 47.5
uniform 0 0.39 0.70 0.555 0.893 32.9 51.5

lfs 0 0.46 0.85 0.314 0.834 12.5 46.8
κCVT 0 0.34 0.62 0.082 0.855 4.5 48.5
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