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Problem statement

Definition
A polyhedron K separates polyhedra P and Q if any path from a point
on ∂Q to a point on ∂P passes through ∂K .

Problem statement
Given arbitrary polyhedra P and Q where ∂Q ∩ ∂P = ∅, find a
separating polyhedron K with the minimum number of facets possible.
K is called an optimal separating polyhedron.
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Motivation - decimation

We wish to decimate a polyhedron to as few facets as possible while
guaranteeing that any point on the decimated polyhedron is no more
than ε from the original polyhedron.
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Motivation - decimation

First offset the polyhedron by ε and −ε.

Note: This is not strictly correct. We should really be using the
Minkowski sum with a ball of radius ε.
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Motivation - decimation

Find an optimal separating polyhedron K .
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Motivation - decimation

K is within ε of the original polyhedron and (hopefully) has fewer
facets.
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2D vs 3D separation

In 2D the problem has been solved for convex polygons
[Aggarwal et al., 1985] and general simple polygons
[Wang and Chan, 1986, Wang, 1991], both in O(n log n) time.
In other words, an optimal separating polygon can be found in
O(n log n) time.
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2D vs 3D separation
The 3D case of finding a separating polyhedron between outer P
and nested Q is NP-hard [Das, 1990, Das and Goodrich, 1997],
even when both polyhedra are convex. But there are
approximation algorithms for convex polygons:

Clarkson [Clarkson, 1993] gives a randomized algorithm for P and
Q convex.
Mitchell and Suri [Mitchell and Suri, 1995] give a deterministic
algorithm (heretofore referred to as Separate(P,Q)) that works
when either of P or Q are non-convex.
Both algorithms find a solution O(log n) times the optimal, where n
is the number of faces in P and Q. In other words, if G is the
optimal separating polyhedron, then

|K | ≤ |G | log (|P|+ |Q|)

where |P| is the number of facets, or facet complexity, of polyhedron
P.

This has been stated as an open problem in computational
geometry [Mitchell and O’Rourke, 2001].

Edwards (Univ. of Texas) Polyhedron separation Sept 7, 2011 10 / 38

background



Outline

1 Problem statement and motivating example

2 Separation of convex polyhedra

3 Separation of arbitrary polyhedra

4 Summary and moving forward

Edwards (Univ. of Texas) Polyhedron separation Sept 7, 2011 11 / 38



Notes

We will restrict our discussion to polyhedra P and Q such that Q
is nested inside P (Q ⊆ P). This results in no loss of generality.
This section discusses Mitchell and Suri’s algorithm and proofs
[Mitchell and Suri, 1995].
Diagrams will mostly be in 2D for simplicity.
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Canonical separator

Either P or Q must be convex.
If P is convex, then we separate P and CH(Q), the convex hull of Q.
If at least Q is convex, then we separate P and Q.
From now on we’ll assume that Q and P are both convex.
We’ll see later that this restriction can be relaxed slightly.

Reminder: a convex polyhedron P can be defined as the
intersection of a set of halfspaces. Let H (P) denote the set of
hyperplanes bounding the facets of P .

Definition
A canonical separator is a convex separator polyedron such that the
hyperplanes bounding its facets are a subset of the hyperplanes
bounding ∂Q.
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Canonical separator

Lemma
There exists a canonical separator of P and Q whose facet-complexity
is at most three times the facet-complexity of an optimal separator

Note: the authors implicitly assume that the optimal separators are convex.

Proof
Let G be a minimum separator

Translate each facet of G towards Q until it is incident with a vertex of Q

Let k ′ be a translated facet incident with vertex v ∈ Q and let
q1, q2, . . . , qs be hyperplanes of Q passing through v .

m+ ⊇
⋂s

i=1 q+
i which implies that m− ⊆

⋃s
i=1 q−i .

By Caratheodory’s Theorem, m− ⊆ q−j ∪ q−k ∪ q−l .

Thus three halfspaces induced by facets of Q can be substituted for each
facet of G .
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The algorithm

Separate(P,Q)
1: C ← C (H (Q))
2: H (K )← ∅
3: while C 6= ∅ do
4: Select a plane qi ∈ H (Q) that max-

imizes |C ∩ S(qi )|
5: H (K )←H (K ) ∪ {qi}
6: C ← C − S(qi )
7: end while
8: return H (K )
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Canonical separator

Lemma
K is a separating polyhedron, or equivalently, Q ⊆ K ⊆ P .

Proof
Let (h1, . . . , ht) = H (K ). Since

⋃t
i=1 h−i ⊃ ∂P we know that⋂t

i=1 h+i = K ⊆ P . Since also H (K ) ⊆H (Q) we see that Q ⊆ K .
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Canonical separator

Theorem
K is an O(log n) approximation of an optimal separator G , or in other
words, |K | = O(|G | log n).

Proof (idea)
It all boils down to the set cover problem. The greedy approach has
been shown to be an O(log n) approximation of the optimal.

Edwards (Univ. of Texas) Polyhedron separation Sept 7, 2011 21 / 38

related work



Outline

1 Problem statement and motivating example

2 Separation of convex polyhedra

3 Separation of arbitrary polyhedra

4 Summary and moving forward

Edwards (Univ. of Texas) Polyhedron separation Sept 7, 2011 22 / 38



Definitions

Let CH(Q) be the convex hull of Q.
Let C be the maximal connected subsets of CH(Q)− Q.
We define the mortise regions of P and Q as
R(P,Q) = {M ∈ C |M ∩ P 6= ∅}.
Given a mortise region R , we define the associated mortise as
M(R) = ∂R − ∂CH(Q). We let M (P,Q) be the set of all mortises.
Define F (P) to be the set of all facets of polyhedron P .
Given a mortise M, we define its associated tenon
T (M) = {f ∈ F (P)|f ∩ CH(M) 6= ∅}. We will use Ti as shortcut
notation for T (Mi ).

Note that a given tenon may not be connected, i.e., P may protrude
into the mortise multiple times.

Note: now we can loosen the restrictions for the convex algorithm:
both polyhedra may be non-convex if there are no mortises.
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The Algorithm

ArbitrarySeparate(P,Q)

1: Q ′ ← ∂CH(Q)
2: P ′ ← ∂P −

⋃
T∈T (P,Q) F (T )

3: KH ← Separate(P ′,Q ′)
4: KM = ∅
5: for all M ∈M (P,Q) do
6: KM

i ← ArbitrarySeparate(M,T (M))
7: KM ← KM ∪ KM

i
8: end for
9: K ← KH − KM

10: return K
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Facet complexity of K

Assume no tenons have “subtenons.” Let GH be the optimal separator
of P ′ and Q ′. Similarly, let GM

i be the optimal separator of Mi and
T (Mi ). Clearly,

|GH |, |GM
i | ≤ |G |

Claim
If all edges in the intersection region of two polyhedra A and B are
convex then |A− B| ≤ |A|+ |B|.

If the claim is true, then

|GH −
⋃
i

GM
i | = |GH − GM | ≤ |GH |+ |GM | ≤ m|G | (1) eqn:9-6-1

where m is the number of mortise regions.
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Facet complexity of K

Let f = F (CH(Q))−F (Q), i.e. the number of facets in the convex
hull of Q that are not on Q. Also let τ =

∑
i |Ti | and µ =

∑
j |Mj |. By

[Mitchell and Suri, 1995], we have a bound on facet complexity of a
separator given convex P and Q. Using this bound we derive the
following:

|KH | = O(GH log (|P| − τ + |Q| − µ+ f ))

|KM
i | = O(GM

i log (|Ti |+ |Mi |))

Rearranging we get

|KH |
cH log (|P| − τ + |Q| − µ+ f )

≤ |GH |

|KM
i |

cM log (|Ti |+ |Mi |)
≤ |GM

i |

for constants cH and cM .
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Facet complexity of K

Now we find a relation of GM with KM :

|GM | =
∑

i

|KM
i |

cM log (|Ti |+ |Mi |)

≥
∑

i |KM
i |

mcM
∑

i log (|Ti |+ |Mi |)

≥
∑

i |KM
i |

mcM log (
∑

i |Ti |+ |Mi |)

≥
∑

i |KM
i |

mcM log (τ + µ)
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Facet complexity of K

|GH |+ |GM | ≥ |KH |
cH log (|P| − τ + |Q| − µ+ f )

+

∑
i |KM

i |
cM log (τ + µ)

=
|KH |cM log2 (τ + µ) +

∑
i |KM

i |cH log (|P|+ |Q|+ f )
cMcH log (|P|+ |Q|+ f + τ + µ)

≥
|KH |cM log (τ + µ) +

∑
i |KM

i |cH log (τ + µ)

cMcH log (|P|+ |Q|+ f + τ + µ)

=
|KH |cM +

∑
i |KM

i |cH

cMcH log (|P|+ |Q|+ f )

|KH |+
∑

i

|KM
i | ≤ |K | = O((|GH |+ |GM |) log (|P|+ |Q|+ f ))

|K | = O(m|G | log (|P|+ |Q|+ f )) (2)
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Facet complexity of K

Bound for convex polyhedra:

|K | = O(|G | log (|P|+ |Q|))

Bound for arbitrary polyhedra:

|K | = O(m|G | log (|P|+ |Q|+ f ))

Reminder:
m = the number of mortises
|G | = the number of facets of the optimal separator
f = the number of facets in CH(Q) that are not in Q
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Implementation

|Q| = 176
|P| = 80
|K | = 28
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Summary and moving forward

Finding separating polyhedra is important in error-bounded
decimation
Current published work finds bounded separating polyhedra in 3D
only if one or both of the polyhedra are convex
Our algorithm finds a separator a factor of m log (|P|+ |Q|+ f )
from the optimal where:

m = the number of mortises
f = the number of facets in CH(Q) that are not in Q

We believe the algorithm is roughly O(n3) but this needs to be
derived
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Caratheodory’s Theorem [Schrijver, 1986]

Theorem
Let a1, . . . , am, b be vectors in n-dimensional space. Then either:

I b is a nonnegative linear combination of linearly independent
vectors from a1, . . . , am, or

II there exists a hyperplane x|cx=0, containing t − 1 linearly
independent vectors from a1, . . . , am, such that cb < 0 and
ca1, . . . , cam ≥ 0, where t is rank(a1, . . . , am, b).

Application: translate m and q1, . . . , qs to the origin. The normals span
R3. By Caratheodory’s Theorem we can say that

m = λ1qj + λ2qk + λ3ql

where λ1, λ2, λ3 ≥ 0. Thus, any point x ∈ m−, or in other words,
mT x < 0, also satisfies λ1qT

j x + λ2qT
k x + λ3qT

l x < 0. Since
λ1, λ2, λ3 ≥ 0, there must be at least one qi such that qT

i x < 0. Thus,
m− ⊆ q−j ∪ q−k ∪ q−l .
Edwards (Univ. of Texas) Polyhedron separation Sept 7, 2011 40 / 38

appendix


	Problem statement and motivating example
	Separation of convex polyhedra
	Separation of arbitrary polyhedra
	Summary and moving forward
	Appendix

