
Noname manuscript No.
(will be inserted by the editor)

Joel Daniels II · Tilo Ochotta · Linh K. Ha · Cláudio T. Silva

Spline-Based Feature Curves from Point-Sampled
Geometry

the date of receipt and acceptance should be inserted later

Abstract Defining sharp features in a 3D model facil-
itates a better understanding of the surface and aids
geometric processing and graphics applications, such as
reconstruction, filtering, simplification, reverse engineer-
ing, visualization, and non-photo realism. We present a
robust method that identifies sharp features in a point-
based model by returning a set of smooth spline curves
aligned along the edges. Our feature extraction lever-
ages the concepts of Robust Moving Least Squares to lo-
cally project points to potential features. The algorithm
processes these points to construct arc length param-
eterized spline curves fit using an iterative refinement
method, aligning smooth and continuous curves through
the feature points. We demonstrate the benefits of our
method with three applications: surface segmentation,
surface meshing and point-based compression.

Keywords Feature extraction · Moving least squares ·
Point-based modeling · Robust statistics · B-splines

1 Introduction

Digital scanner technology has become more affordable
and accurate, increasing its popularity and utility. These
scanners collect a dense sampling of points, with mechan-
ical probes or lasers, to generate a virtual representation
of a physical form. Consequently, geometric processing
of point clouds is becoming increasingly important.

The preservation of sharp features is a primary concern
for many geometric computations and modeling applica-
tions. In this context, a feature is described as the discon-
tinuity in the surface normals evaluated on the model,

Scientific Computing and Imaging Institute
University of Utah
72 S Central Campus Drive, 3750 WEB
Salt Lake City, UT 84112 USA
Tel.: +1-801-585-1867
Fax: +1-801-585-6513
E-mail: {jdaniels ochotta lha csilva}@sci.utah.edu

where the G1 continuity is not maintained. Identification
of these edges facilitates a better understanding of the
model improving filtering [7, 26], reconstruction [22], re-
sampling [4], simplification [9, 12], smoothing [8, 15] and
visualization [2] methods.

Features can be computed through the investigation of
changes in the normals of neighboring discrete surface
data, i.e. polygonal facets or vertices. The most simple
method is to implement a threshold test that identi-
fies potential feature edges where normals differ above
some tolerance level across adjacent samples. However,
the implementation of such detection techniques is not
straightforward, since in most cases, normals and con-
nectivity are not provided in point data sets and their
reconstruction is a nontrivial problem, especially when
sharp features must be preserved.

The noise inherent in scanned models presents a sec-
ond major challenge to feature edge extraction in point
clouds. The identification of feature lines is complicated
in the presence of noise due to the fact that the large sur-
face gradients appearing in regions with sharp features
are similar to those found in noisy areas.

In this paper, we present an algorithm to define a set
of curves that are aligned along the feature edges of
a point cloud. The pipeline, illustrated in Figure 1, is
an extension of our earlier feature extraction method
for point-based models described in Daniels et al. [5].
However, algorithmic modifications are proposed to im-
prove accuracy and reduce noise within the extracted
curves near acute feature edges and on low quality point
clouds. Furthermore, the altered approach uses an iter-
ative least square fitting of B-spline curves to perform
smoothing in place of the previous principle component
analysis (PCA) based relaxation.

Our algorithm is based upon the framework of Robust
Moving Least Squares (RMLS) surfaces [8]. A number
of potential feature points are selected, identified by the
RMLS operator to be near to possible features. One is-
sue with the RMLS is the inability to reconstruct smooth

Fig. 1 The feature extraction pipeline (left to right) for a given point cloud, projects candidate points, identified near
potential features, to the intersection of locally fit RMLS surfaces. Approximating polylines are grown through the projected
data and guide the creation of arc length parameterized B-spline feature curves.

features. The projection method produces jagged edges
that cannot be used without further processing to con-
struct smooth feature curves. Therefore, a feature grow-
ing strategy constructs polylines used to parameterize
and guide the creation of spline curves smoothly fit to the
RMLS projected edge points. Our algorithm accounts for
poor sampling quality, due to noise or low point densi-
ties, by connecting the created polylines across gaps to
construct a set of complete feature splines.

The advantage of our approach is that, in contrast to
other feature extraction work [11], our input data con-
sists of a set of unorganized points (possibly affected by
noise) that approximate the original surface. We assume
that no attribute information, e.g., normal vectors, are
given a priori. In the presence of closed loops, we are able
to segment the point-based model into multiple surface
regions that are enclosed by the feature curves. Addition-
ally, our segmentation scheme improves the performance
of previously developed point-based algorithms, includ-
ing surface meshing and compression.

In Section 2, we review related research in feature identi-
fication. Section 3 describes our feature extraction pipeline.
In Section 4, we apply our results to improve surface
segmentation, mesh reconstruction and the point-based
compression. Section 5 analyzes experimental results, and
lastly, final conclusions are presented in Section 6.

2 Related Work

2.1 Mesh-Based Feature Extraction

Multiple techniques have investigated the identification
of feature edges on polygonal models. Hubeli et al. [13]
create a multi-resolution framework and normal-based

classification operators to define a set of edges on which
a thinning process extracts feature lines. Watanabe et al.
[24] use discrete differential geometry operators to com-
pute approximations of the mean and Gaussian curva-
tures. Whereas, Hildebrandt et al. [11] use anisotropic fil-
tering on discrete differential geometric approximations
of third order derivatives of the surface mesh. Both tech-
niques [11, 24] build a set of feature edges from the ex-
trema triangles. Attene et al. [4] identify chamfer trian-
gles to reconstruct sharp features on meshes. They insert
new vertices on the edges and faces of these triangles and
project the points to the intersection of planes fit to the
surrounding surfaces.

The underlying assumption of connectivity and normals
associated with the vertices of the mesh is not available
for point-based models. In order to extract feature lines
from point clouds using these techniques, a connectiv-
ity construction method (surface reconstruction) must be
applied in a preprocessing step. The construction of con-
nectivity is non-trivial, computationally expensive, and
moreover, the success of feature extraction relies on the
ability of the polygonal meshing procedure to accurately
build the sharp edges.

2.2 Point-Based Feature Extraction

Feature line extraction from point-based models is not
straightforward in the absence of connectivity and nor-
mal information. Pauly et al. [21] use covariance analysis
of the distance-driven local neighborhoods to flag poten-
tial feature points. By varying the radius of the neighbor-
hoods, they develop a multi-resolution scheme capable
of processing noisy input data. Gumhold et al. [10] con-
struct a Riemann graph over local neighborhoods and use

covariance analysis to compute weights that flag points
as potential creases, boundaries, or corners. Both tech-
niques [10, 21] connect the flagged points using a mini-
mum spanning tree and fit curves to approximate sharp
edges. Demarsin et al. [6] compute point normals us-
ing principal component analysis (PCA) and segment
the points into groups based on the normal variation in
local neighborhoods. A minimum spanning tree is con-
structed between the boundary points of the assorted
clusters, which is used to build the final feature curves.

These techniques are capable of extracting point cloud
features by connecting existing points; thus, their accu-
racy depends on the sampling quality of the input model.
In contrast, our method relies on projecting points onto
sharp edges, yielding more accurate approximations of
features in the original surface.

Jenke et al. [14] identify sharp features to improve their
Bayesian statistic based reconstruction algorithm. While
their method uses a similar curvature test to identify
potential edge regions, their classification method limits
identification to complete edges. We are able to define
edges that dissipate as the two defining surfaces smooth
towards a single surface. Additionally, our classification
method is computed on the original data set; whereas,
[14] performs an optimized smoothing on the geometry.
A related technique is proposed by Lipman et al. [18],
who use a data-dependent MLS technique to segment
the neighborhoods based on regularity detectors.

3 Feature Extraction Algorithm

3.1 Preliminaries

Our method operates on an unorganized set of points
P = {(x, y, z)T } ⊂ R3 that sample some original surface
S. Note that we do not rely on attributes, such as asso-
ciated point normal vectors or connectivity information.
Given P, we compute S to be the Moving Least Squares
(MLS) surface defined by a projection operator Ψ that is
applied to an arbitrary point p ∈ R3 in order to project
it onto the surface, Ψ(p) ∈ S. Each point on the surface
projects onto itself, S = {p | p = Ψ(p)}.

There are several options of selecting the projection op-
erator Ψ , originally proposed by Levin [17] and more
recently modified by [1–3, 8]. Most variants implement
the projection of a point p ∈ R3 through finding a plane
H that approximates a local neighborhood around p in
the set P. Specifically, the plane H is defined by a point
q ∈ R3 and a normal n, H = H(n, q) = {x ∈ R3 | 〈x −
q, n〉 = 0, ‖n‖ = 1}, and found, such that the sum of

(a) (b)

(c) (d)

Fig. 2 RMLS sub-neighborhoods are computed indepen-
dently for each point, which creates jagged edges, (a) and
(b), due to the fact that nearby points may construct dif-
ferent neighborhoods; this leads to a disagreement on the
configuration of the intersecting surfaces, (c) and (d).

weighted squared distances of points in P to the plane
H, is minimized:

(n, q) = arg min
(n,q)

∑
p∈P

〈n, p− q〉2θ(‖p− q‖), (1)

where θ(·) is an exponentially decreasing weighting func-
tion, e.g., θ(s) = e−s2/h2

, which assigns larger weights to
points near q. The parameter h defines the spatial scale
of θ. Once H is found, it serves as a reference for a lo-
cal Cartesian coordinate system with origin in q and two
span vectors that are orthogonal to n. Then, a bivariate
polynomial g of a given degree is fit in order to find the
projected point Ψ(x), which is above q and on the surface
S. This polynomial fitting corresponds to finding

arg min
g

∑
p∈P

‖p− pg‖2θ(‖p− q‖), (2)

where pg denotes the projection of p onto the polyno-
mial g in direction of the plane normal n, and θ(·) is the
previously defined weighting function.

The MLS projection relies on the minimization of (1) and
(2), which includes Gaussian weighting of points in the
local neighborhoods. This weighting leads to a smooth-
ing effect that corrects noise and outliers in the set P, but
simultaneously removes sharp features. The RMLS vari-
ant [8] was developed to solve this problem by consider-
ing iteratively constructed neighborhoods based on sta-
tistical analyzes of the corresponding point distributions.
In particular, they use least median of squares, which is
a regression method to minimize the median of absolute
residuals between the point set and the fit. Their forward

Fig. 3 The residual r(p) is computed as the maximum dis-
tance between the points in the neighborhood around p and
the polynomial fit f , whereas the distances are considered in
direction of the plane normal n.

search algorithm grows multiple MLS neighborhoods in
order to find smooth, flat, and outlier free regions (sub-
neighborhoods) for the final MLS projection.

This approach is inherently capable of detecting noise by
disregarding outliers during the surface fitting phase, and
defines sharp features. Moreover, it reduces the smooth-
ing effect of the traditional MLS projection and improves
numerical stability. However, the drawback is that the
clustering is computed independently for all points, which
may lead to situations where nearby points do not grow
to identical sub-neighborhoods, resulting in jagged edges.
Figure 2a and 2b illustrate the feature edge noise due to
RMLS projections. Figure 2c and 2d show two different
sub-neighborhood segmentations for one point set that
leads to different configurations of the feature region.

To overcome this problem, we propose to construct fea-
ture curves that accurately approximate the RMLS pro-
jected points. Our goal is to extract continuous and com-
plete spline curves that smoothly annotate features on
the model despite RMLS and sample related noises. The
following is the five-step algorithm:

1. (Section 3.2) Extract points from P that are near
potential features,

2. (Section 3.3) Use RMLS to fit multiple surfaces to
the neighborhoods of these points and project each
point to its nearest intersection between the surfaces,

3. (Section 3.4) Generate an initial set of feature poly-
lines that approximate the projected points,

4. (Section 3.5) Reconstruct corners and complete gaps
in the initial polyline approximations,

5. (Section 3.6) Define an arc-length parameterization
over the projected points based on the initial feature
polylines to which spline curves can be fit.

The following subsections discuss the algorithmic details
of each of the five steps.

(a) (b)

Fig. 4 Identification of potential feature points for the Fan-
disk model; the threshold τ is used to adjust the number
of points retained near potential features; the automatically
computed threshold τ = 0.057 (a) and a manually adjusted
threshold τ = 0.014 (b).

3.2 Identifying Potential Edge Regions

To identify potential edge regions, we adopt the method
of Fleishman et al. [8]. Given a point p ∈ P, they con-
sider the neighborhood N (p) ⊂ P that is used for the
polynomial fit of the MLS projection. Considering the
polynomial f over the reference plane H that is defined
by point q and normal n, they evaluate the maximum
polynomial residual r in a neighborhood around p,

r(p) = max
x∈N (p)

‖x− xf‖,

where xf corresponds to the projection of x onto f in
direction of the plane normal n, see Figure 3.

For sharp features, r becomes reasonably large because
many point sampled along the sharp edge lift away from
the polynomial. Based on this observation, they straight-
forwardly define any point p ∈ P to be a potential fea-
ture point, if r(p) > τ for some user defined threshold τ .
Note that strong outliers will also record large r; how-
ever, they are eliminated during the RMLS projection
stage (discussed in Section 3.3).

The identification of potential feature points relies on
an appropriate selection of the threshold τ . We extend
the pipeline in [8] by using an automatic computation
method, which produces an adaptive threshold. In par-
ticular, we found that setting τ to the mean residual
value taken over all points in P, τ = 1

|P|
∑

p∈P r(p), leads
to good results. Moreover, we allow the user to modify τ
manually, using an interactive tool. Figure 4 shows the
Fandisk model after identifying potential feature points
using different values for the threshold τ . The output of
the identification procedure is a set of potential feature
points, i.e. F = {p ∈ P | r(p) > τ}.

3.3 Projecting Points to Edges

We use the RMLS procedure to project the points p ∈ F
towards the features, generated a projected feature edge

cloud E . The output of the procedure is the definition
of several surfaces fit to the points in the neighborhood
around p. The number of surfaces describes the feature
types in the region.

If RMLS returns a single surface, then this implies that
no feature was detected and the high residual was pro-
duced by outliers. Two surfaces or more surface indicate
the presence of a sharp feature. We now use Newton’s
method, as in [21], to project p onto the intersection of
the two surfaces closest to p, yielding an edge point e
that may be inserted into the projected edge cloud E .

If the distance between the original point p and its can-
didate projection point e, ‖p− e‖, is less than the radius
of the RMLS neighborhood, then e is added to E . The
culling process reduces noise within the set of projected
points E , especially near acute features or on noisy mod-
els. The purpose is to keep only the projected points
whose feature is well defined by the neighborhood of the
original point.

However, in practice we found that regions of E have low
sample densities due to the culling of projected points.
This becomes problematic during the feature approxi-
mation stage, subsection 3.4, by creating large gaps be-
tween extracted polylines. To accommodate for the lost
points, we visit the projected points e ∈ E and upsam-
ple their neighborhoods. The upsampling process adds
points along the eigenvector v0 that corresponds to the
largest eigenvalue of the neighborhood of e, N ∈ E ,
e ± α · v0. The scalar value α is based on the growth
step size defined in Section 3.4. Upsampled points are
only computed if the computed eigenvectors v0, v1 and
v2, with associated eigenvalues λ0 ≥ λ1 ≥ λ2, are highly
correlated, λ0/(λ0 + λ1 + λ2) > β. This computation
is adapted from the surface variation computation used
by [20] to analyze the variation of a curve. The mod-
els and results presented in this paper experienced good
results with α = 0.75 and β = 0.7.

3.4 Feature Polyline Propagation

At this stage of the pipeline, the set of feature points E
is unorganized and contains no topological information.
In many practical applications, however, continuous fea-
ture curves are desired. The goal of the feature poly-
line propagation technique is to approximate the feature
points with a set of polylines. Because these polylines
will guide the future parameterization of E and iterative
spline curve fitting, they are not expected to be smooth;
instead, we rely on the spline curves to smooth noise in
the point set E .

We build a polyline construction algorithm based on
Lee’s method [16], which works as follows. The user de-
fines the maximum allowable segment length smax as an

(a) (b) (c) (d)

Fig. 5 Curve growing starts at a seed point, finds all points
in a user specified radius, projects them to the major eigen-
vector, computes a weighted average step direction, and adds
a new point to the approximating feature polyline. The pro-
cessed points are removed and the method is repeated.

input parameter to control the coarseness of the feature
polylines. The feature polyline is initialized at a random
seed point p, where the PCA for points in the neighbor-
hood N (p) ⊂ E with radius smax is computed, Figure
5(a). All points pi ∈ N (p) are projected onto the line
defined by p and the eigenvector that corresponds to the
largest eigenvalue of N (p), yielding points p′i. Lee’s grow-
ing scheme attaches the two points pj , pk ∈ N (p) with
the furthest corresponding projections p′j and p′k in op-
posite directions from p.

However, to grow smoother approximating polylines, we
opt to compute a current step vector vc that is a weighted
average of the neighborhood points:

vc =
∑
i=0

θ(‖p′i − p‖) · pi − p

‖pi − p‖
.

The points are weighted inversely based on their pro-
jected distance along the eigenvector, θ(s) = e−s2/s2

max ,
and the final vector vc is normalized. A new polyline
vertex is added to the feature at pj = p + smax · vc, il-
lustrated in Figure 5(b). The procedure is repeated at
the pj , Figure 5(c), until no points remain in the growth
direction. The process is re-seeded at p and repeated in
the opposite growth direction 5(d).

To prevent rounding corner regions by growing onto mul-
tiple feature edges and to reduce the noise in the ap-
proximating feature polylines, an additional termination
condition is required. A growth vector vg stores an aver-
age direction based on previous step vectors. To commit
a new point pj , the angle between the current step vec-
tor vc and the growth vector vg must be below a defined
threshold, 〈vg, vc〉 ≤ cos(α). For our purposes, α = 30◦
provided an adequate angle threshold. After the point is
committed to the feature polyline, the growth vector vg is
updated, accumulating the step vectors vg = (vg +vc)/2.

For our models we found that best results are achieved
by starting the feature growing procedure at edge points
with highly correlated neighborhood eigenvectors. Our
implementation maintains a priority queue that sorts all

edge points p ∈ E according to their eigenvector cor-
relation. Given eigenvalues λ0 ≥ λ1 ≥ λ2, the correla-
tion term for a point is computed as λ0/(λ0 + λ1 + λ2).
This sorting term seeds the feature growth at points fur-
thest away from corner regions in E where the correlation
terms become smaller.

To create a feature line, we remove the first element from
the queue and apply the propagation algorithm as de-
scribed above. Once the feature points are connected,
we remove the elements from the queue that correspond
to points within the neighborhoods N (p) of processed
points p. As long as the queue is not empty, there are
unvisited feature points remaining thus continuing fea-
ture line creation.

The polyline growing scheme approximates the projected
cloud E ; however, it is not yet complete due to gaps that
occur in regions with poor sample quality. We observed
that in these regions there are multiple separated poly-
lines that describe single features. The next stage of our
pipeline addresses this problem by connecting close fea-
ture curves to produce complete polylines.

3.5 Completing Feature Curves

In this stage, the feature lines are merged to produce
complete approximating polylines through the RMLS
projected cloud E . By inspecting the end points of each
feature, the completion stage inspects gaps between mul-
tiple polylines and regions where new corners should be
constructed. Connecting the polylines is important as
these lines will guide the construction of the final fea-
ture spline curves.

Our feature completion method is driven by a directional
search approach. As illustrated in Figure 6, we consider
the tangent vector that is evaluated for an end point
by fitting a cubic polynomial to the last four points at
each end of the feature polyline. An alternative approach
evaluates the direction of the last segment of the curve;
however, we found that a cubic fit smooths perturbations
for better results.

For each end point p, we search for other feature points
that are within the cone formed by the tangent vector
at p and a predefined aperture angle. We search for the
three cases in Figure 6: gap completion (a), corner cre-
ation (b), and edge splitting (c). The search algorithm
finds the closest vertex of the feature polylines that exists
within the volume of the search cone that is within the
distance αsmax. The scalar α should be adjusted based
on the sampling quality along the features of the cloud.
In practice we found that repeating the feature comple-
tion by iteratively increasing α over the range [0, 1.5]
accommodates for the projection based noise.

(a) (b) (c)

Fig. 6 Feature completion analyzes the end points of each
feature curve to complete gaps between multiple features (a),
merge multiple polylines into a corner (b), or split a single
feature into two thus forming a new corner point (c).

Figure 6(a) shows an example for the case of gap comple-
tion, which occurs due to poor sampling quality, i.e. the
distance between two end points is larger than smax. To
resolve this problem, we merge any two polylines with
end points that are within αsmax distance of each other
and have corresponding tangent vectors that point to
opposing directions within the aperture angle.

A corner is created, Figure 6(b), when multiple feature
polylines are detected within the search cone. For three
feature lines fi,j,k with end points pi,j,k within the search
cone and converging tangents, a corner point is evaluated
using the RMLS surfaces fit to the neighborhood of the
midpoint, (pi +pj +pk)/3. Similar to the edge projection
procedure, Newton’s method is used to evaluate the in-
tersection of the three RMLS defined surfaces. Then the
features fi,j,k are connected to the computed corner.

Edge splitting and corner creation occurs if the end point
of a feature polyline fi projects to an interior point p of
another feature line fj , Figure 6(c). The feature fj is split
into two feature polylines, fk and fl, at p and a corner
point c is identified within the region using Newton’s
method on the RMLS defined surfaces. The three feature
polylines fi, fk, and fl are joined at the corner point c.
This case resolves situations where a single polyline grew
onto multiple features despite our threshold tests.

If no vertices of feature lines are found during the direc-
tional search, then we declare the end point to belong to
a dissipating feature edge, and no connection operation
is performed.

After the end points have been resolved the feature curves
are considered complete. Note that the feature polylines
are often very coarse, with many perturbations. In the
following section we discuss how the feature polylines are
used to estimate an appropriate arc-length parameteri-
zation for the feature projected curves. In this manner,
spline-based fitting and refinement will smooth the final
feature curves.

3.6 Spline-based Fitting and Smoothing

The output of the feature extraction algorithm is a set of
continuous spline curves fit to E guided by the approxi-
mating feature polylines. To this point we have defined
a set of feature polylines F = {fi} that approximate
RMLS feature edges through a projected point cloud E .
The spline fitting procedure segments E based on prox-
imity of feature polylines, assigns parameter values to
the segmented points, then uses a iterative least squares
fitting procedure to define the spline curves.

The segmentation of E into multiple sub-clouds is based
on the user defined neighborhood size smax, used earlier
as a step size for the polyline growth. A point e ∈ E is
projected to each feature polyline fi, yielding the point
e′i. The point e is inserted into the sub-cloud Ẽi if:

1. the distance between e and e′i is less than the specified
distance, ‖e− e′i‖ < smax,

2. e′i is the nearest projected point to e, ∀j, ‖e′j − e‖ >
‖e′i − e‖.

Next, the points within each segmented sub-cloud Ẽi are
assigned parameter values in order to fit spline feature
curves. A point e ∈ Ẽi is assigned a parameter value
based on the ratio of the arc-length distance of its pro-
jection on fi, e′i, along the feature polyline and the over-
all length of fi. In this manner, all computed parameter
values are bounded between [0, 1].

The spline curves are created for each segmented sub-
cloud using an iterative approach that refines the defin-
ing knot vector until the curve is within bounded dis-
tance tolerances. For a sub-cloud Ẽi with associated pa-
rameter values Ui, a spline curve S with the knot vector
k = {ki}N

i=0 is defined using a least squares fit. The fit-
ting procedure is initialized with the minimal uniform
closed knot vector describing a cubic B-spline curve, k =
{0, 0, 0, 0, 1, 1, 1, 1}.

Iterative refinement of the final curve is determined by
comparing measured distances between Ẽi and S. The
refined knot vector knew is initially equivalent to k. Dis-
tance comparisons are made by evaluating the two points
pe and ps at the parameter values between each consec-
utive non-equal pair of knot values, u = (ki + ki+1)/2
on Ẽi and S respectively. While evaluation of ps is well
defined through B-spline evaluation, we further describe
the approximation of Ẽi(u) as a weighted average of the
sub-cloud points,

pe =

∑
j θ(|uij − u|) · eij∑

j θ(|uij − u|)
,

where, the weighting function is θ(x) = e−x2/α2
and α is

a user defined fall-off term. If the distance between pe and
ps is greater than a defined tolerance, ‖pe − ps‖ ≥ smax

(a)

(b)

(c)

Fig. 7 The feature polyline fi guides the construction of
the spline curve fit to the edge projected sub-cloud Ei (a).
An initial spline curve is fit to the arc-length parameterized
cloud (b), and iteratively refined until the curve describes the
points within a distance threshold (c).

(the step size previously used for the polyline growth),
then a new knot u is inserted into the knot vector knew.

A new spline curve is fit with the knot vector knew, thus
refining the feature curve definition. The distance com-
parisons are iteratively repeated until no new parameters
are inserted into the knot vector knew. The refinement
of the spline curve converges towards a locally weighted
average of the RMLS projected point cloud E ; which, in
practice accurately annotates the feature edges.

4 Applications

The output of our method is a set of connected and
smoothed polylines that identify the sharp features of
a point-sampled surface. We are also able to extract sur-
face patches that are bounded by the feature lines. In
this section, we will show the benefits of applying the
feature line information as input data for methods that
rely on point sets. We focus on surface segmentation,
reconstruction and shape compression.

We demonstrate the effectiveness of our feature extrac-
tion technique using point models that represent ma-
chine parts with sharp edges where feature extraction
can be well-defined. We emphasize that all data sets
consist only of a set of 3D points, and do not assume
associated normal vectors for the geometry.

4.1 Surface Segmentation

Surface segmentation algorithms dissect a model into
multiple regions that each describe a common compo-
nent section. While several techniques exist, specifically
for point-based models [25, 27], our approach differs in

that we do not compute surface approximations, nor-
mals, or other differential properties. By leveraging ex-
tracted edge curves, this segmentation algorithm defines
multiple feature aligned surface regions by comparing
only Euclidean distances between neighbor points.

Our point-based segmentation method operates directly
on 3D point data and does not require surface normals
nor connectivity. From an input cloud P, the algorithm
begins by flagging all points p ∈ P within a specified dis-
tance r of a feature polyline. Consequently, the points
are classified as boundary points and unvisited points.
The algorithm operates in two steps: first, segmenting
the unvisited points into multiple regions, second merg-
ing boundary points into the nearest point group.

The segmentation is seeded at a random unvisited point
p ∈ P then grown using an advancing wavefront ap-
proach. A priority queue W, representing the wavefront,
is initialized with the neighborhood points of p within a
distance r, sorted by their distance from p. The growth
of the region occurs by processing the top point of W,
pt, until no more points remain within the wavefront.

If the point pt, with a priority distance d, is classified as
unvisited, then we further propagate the wavefront. The
unvisited neighbors of pt are inserted into W; where, the
distance between pt and a neighbor pn is summed with
pt’s priority distance d, ‖pn−pt‖+d, to provide the sort-
ing metric within W. The top point pt is inserted into
the growing region, and classified as visited. Addition-
ally, references are saved to pt’s neighborhood points that
are flagged as boundary points to improve the boundary
resolution performance, later described. When the wave-
front W is exhausted, no new unvisited neighbors exist
for a segmenting region, the process is repeated by seed-
ing at a new unvisited point until the entire cloud is
visited (or a boundary point).

After the unvisited points in P have been segmented
into multiple regions, we resolve the boundary points. A
boundary point is inserted into the region that contains
the closest visited point. Note that these distance com-
putations are saved from computations performed during
the previously described growth phase.

Segmented models, using the described algorithm, are
illustrated in Figure 8 with the splats oriented based
on MLS projected normals for each of the segmented re-
gions. The MLS projections no longer smooths the sharp
edges, instead reconstructs the sharp feature normals.
We further motivate our feature extraction and surface
segmentation results in the following subsections with
surface reconstruction and compression applications.

Fig. 8 The segmentation algorithm dissects the cloud into
multiple feature aligned regions, where the MLS projected
splats for each region reconstruct sharp feature normals on
the model.

4.2 Surface Reconstruction

Triangle meshes are a popular representational form for
models that are commonly used in geometry processing.
The algorithms leverage additional information inherent
in mesh models versus point set surfaces, mainly connec-
tivity, to compute discrete differential operations. Often,
the robustness and efficiency of the algorithms are depen-
dent on the quality of the input mesh. This demand for
high quality mesh structures has motivated the develop-
ment of surface construction and remeshing algorithms.

Schreiner et al. [23] extend the approach in [22] and pro-
posed an advancing-front algorithm that produces high
quality meshes from many different types of source mod-
els, including point-set surfaces. Their approach is based
on defining a guidance field, based on local curvature in-
formation to determine the size of the triangles. Precom-
puting a specific guidance field allows the triangulation
scheme to adapt to areas of high curvature, shrinking
the allowable triangle size as the advancing fronts grow
towards such regions.

The algorithm uses MLS for projection and curvature
computations on point clouds. Consequently, their method
adaptively shrinks the triangle sizes near sharp features
and produces rounded edges. Extending their projection
and guidance field computations by using RMLS enables
reconstructions with sharp features; however, as previ-
ously discussed, this creates jagged edges and additional
computational costs.

In response to this problem, we guide the method by in-
cluding the extracted feature curves with evaluated nor-
mals for the two meeting surfaces. Using these feature

Fig. 9 Results obtained by applying the meshing technique
in [23] to Scalloped Cube (top) and Quarter Piston (bottom);
the left half of each closeup view shows meshes obtained by
the traditional method; the corresponding right halves show
the meshes after initializing the input of [23] with feature
lines extracted with our method.

lines as the initial advancing front, the remeshing system
is able to generate a triangle mesh with sharp features
without changing the MLS methods. Consequently, the
projection computation is not effected, while the algo-
rithm automatically produces models with smooth sharp
features, Figure 9.

Moreover, the feature lines aid the computation of a bet-
ter guidance field. Previously, sharp features compute
large curvature values such that the guidance field scales
the triangles to a very small size to capture an MLS
smoothed region. By initializing the advancing front to
the feature edges, it is known that curvature values com-
puted here are misleading; therefore, larger triangles can
be used to approximate the surface grown from the sharp
edges. Using feature polylines, the reconstructed mesh
has a significantly reduced triangle count, Figure 9.

4.3 Surface Compression

Surface compression is an elementary problem in geome-
try processing, the goal of which is to represent 3D mod-
els compactly for the purpose of space efficient storage
and fast transmission. The task of the encoder is to trans-
form a specific surface representation into a compact bit
stream, which can be decoded at the receiver side in or-
der to re-obtain the original model or an approximation
of it, if the encoding is lossy.

In [19] it was shown that a point model can be com-
pressed by decomposing the input surface into a num-
ber of patches, which are parameterized as height fields

(a) (b)

Fig. 10 The partition of Quarter Piston using the traditional
patch composition method in [19] (a); partition with initial
segmentation (b).

over planar domains and resampled on regular grids.
The resulting images with arbitrary regions of support
are encoded using state-of-the-art wavelet compression
of shaped images. One key feature in their method is
the surface parameterization that is based on a split-
merge partitioning procedure. In the first step, the sur-
face is recursively subdivided until all patches meet some
prescribed surface flatness constraint. In the consequent
phase, adjacent patches are merged as long as the result-
ing patches show height field properties.

Although their method yields a high rate-distortion per-
formance, the approximation quality largely depends on
partition structure. Especially for models with sharp fea-
tures, the constructed partitions show patches that con-
tain the features, rather than identifying the features
as patch boundaries. The drawback of this behavior is
that sharp features within patches correspond to high
frequency components in the corresponding wavelet sig-
nal, which are consequently hard to encode.

To overcome this problem, we propose to guide the parti-
tioning procedure in [19] by the sharp features that were
constructed with our method. In particular, the encoder
receives the input model with attached pre-partition,
which is extracted from the closed curves, see section
3.5. The splitting operations in the partitioning step are
performed on each individual patch in the pre-partition,
while the merging is performed as in the usual setting.

The advantage of this approach is that the features give
the encoder a first guess of the surface structure to build
the patch layout, Figure 10(b). The individual patches
in the resulting partition show an improved structure as
well as more regular boundary shapes. In contrast, the
traditional partitioning method does not recognize edges
sufficiently, leading to patches that wrap around sharp
features, Figure 10(a).

Figure 11 shows compression results for Fandisk (top
row) and Quarter Piston (bottom row) at 2 · 105 points
each. The left images show the original models followed
by two decoded models at different bit rates. For the
Fandisk model we observe heavy compression artifacts

0

1

2

3

 0 0.5 1 1.5 2

R
M

S

bit rate [bpp]

traditional
guided

original (2 · 105 points) 0.08 bpp, Erms = 12.1 0.11 bpp, Erms = 4.53

 0

 1

 2

 3

 4

 5

 0 0.5 1 1.5 2 2.5 3

R
M

S

bit rate [bpp]

traditional
guided

original (2 · 105 points) 0.26 bpp, Erms = 10.1 0.48 bpp, Erms = 2.45

Fig. 11 Rate distortion performance for Fandisk (top row) and Quarter Piston (bottom row); the left figure shows the original
model, followed by two decodings for different rates; the rate-distortion curves show that the compression performance is
significantly increased by applying the partitioning in [19] based on feature aware segmentation in this work (right); the error
is the root-mean-square error in [19].

only at extremely low bit rates, e.g., 0.08 bits per point
(bpp). Slightly increasing the bit rate leads to a signif-
icantly better geometric reconstruction quality. For the
Quarter Piston model (Figure 11 bottom row), however,
we observe that more bits need are needed (0.26 bpp) to
achieve an adequate reconstruction quality. We explain
this behavior by the fact that this model shows more
complex geometric properties that the Fandisk. Further
increasing the bit rate, e.g., to 0.48 bpp, yields recon-
structions that are close to the original model.

5 Experimental Results

We discuss the robustness of our method to noise and
its run time efficiency. Figure 12 shows extracted feature
lines for the piston and chess piece models at different
noise levels. We applied uniform noise to the original
model by shifting each point p by a random vector δ(p)
of restricted length, ‖δ(p)‖ ≤ l. The length l is the noise
level, which is expressed in units of the bounding box
diagonal length dB of the original model.

For low levels of uniform noise, the feature extraction
procedure successfully defines smooth feature curves, as
illustrated in Figure 12. Despite introducing a 0.02dB

uniform noise on the two models, the algorithm extracts
a majority of feature curves within error tolerances of the
actual sharp edges, tested against a hand built feature
model extracted from a triangular mesh. Under levels of
high noise, 0.05dB , differentiation between the uniform
noise and feature edges becomes difficult. Consequently,

weak features, with near planar defining surfaces, are not
clearly extracted by the algorithm.

Further accuracy measurements are presented in Table 1
for the models presented throughout this paper. Ground
truth feature edges are constructed from mesh models
used to generate each of the point clouds in this paper.
Our analysis computes the average and max distance by
projecting the extracted feature splines onto the nearest
ground truth feature curve, and reports their distances
in terms of the length of each model’s bounding box di-
agonal. On average, the distances between the extracted
features and actual features is very small (≤ 0.5% of the
bounding box diagonal dB). Additionally, Table 1 reports
the percent of the extracted feature curves; showing that
the feature extraction algorithm annotates a majority of
the sharp edges on the point-based model. This value is
computed by measuring the percentage of ground truth
feature curve segments with an extracted feature within
distance 0.01dB (1% of the bounding box diagonal).

The total time required to construct the polylines is de-
termined by the number of potential feature points in
data set, since only the feature point identification stage
operates on the complete point set. Table 1 shows run
times for the different stages in our algorithm as run
against several models, carried out on a Pentium4 2 GHz
platform. Our implementation is able to process models
of half a million points within a few minutes, where the
major part of computational costs is required for the
RMLS projection (stages 2).

(a) (b) (c) (a) (b) (c)

Fig. 12 Feature extraction from the chess piece and piston models; features extracted from the original model (a); features
extracted from the original model after applying uniform noise ‖δ(p)‖ ≤ 0.02dB (b), and ‖δ(p)‖ ≤ 0.05dB (c), where dB is
the length of the model bounding box diagonal.

The robust feature extraction produces smooth results,
but can be limited by an extremely poor sampling qual-
ity and by time constraints. High noise levels or sparse
sampling worsens the performance of our method, since
the distinction between sharp features and noisy regions
becomes ambiguous. Because RMLS is computationally
expensive, the algorithm is run as a pre-process and its
output improves the performance of other interactive
methods.

Figure 13 illustrates the algorithm output on several dif-
ferent models with varying feature types. The spline-
based curves fit to the RMLS feature points smooths
the perturbations and noise of the projections and ex-
tracts an accurate representation of the sharp features.
Additionally, note that the extracted feature splines are
coupled with normal vectors. We couple the projected
points with the RMLS evaluated normals during the
feature projection phase. The feature growing method
groups normals of neighboring polyline vertices to es-
tablish consistent vector orientation, which is used to re-
orient the normals in the feature projected cloud. While
fitting splines to the feature edge points, we also fit vector
splines to the point normals, visualized as offset curves
in Figure 13.

6 Conclusions and Future Work

We presented a method for extraction of feature curves
on point-sampled surfaces. Our algorithm leverages the
robust statistical methods of RMLS to project points to
all possible features such that they do not need to be
exactly sampled by the input point cloud. The output
curves are described as complete and smooth and prove
valuable as inputs to existing geometric processing appli-
cations for point clouds. We were able to significantly im-
prove the performance of a previously proposed surface
reconstruction and a point-compression method without
any modifications to their algorithms.

In future work, we aim at improving neighborhood se-
lection methods to speed up MLS methods capable of
detecting and reconstructing sharp features, improving
data segmentation for CAD purposes, and investigat-
ing smoothing and resampling methods to maintain the
sharp features.

Acknowledgments. This work was partially supported by

NSF grants CCR-0310705, CCF-0528201, OISE-0405402, CCF-

0401498, EIA-0323604, IIS-0513692, and OCE-0424602, NIH

grant 573996, the Department of Energy, an IBM Faculty

Award, the Army Research Office, and the DFG Graduiertenkol-

leg 1042 “Explorative Analysis and Visualization of Large

Information Spaces”. L. Ha was partially supported by a

Vietnam Education Foundation fellowship. Special thanks to

John Schreiner for his cooperation and assistance with the

mesh reconstructions, Shachar Fleishman for comments and

suggestions on our work, and Jason Shepherd for providing

several of the models used throughout this paper.

References

1. Alexa, M., Adamson, A.: On normals and projection op-
erators for surfaces defined by point sets. In: Proc. Sym-
posium on Point-Based Graphics, pp. 149–155 (2004)

2. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin,
D., Silva, C.T.: Computing and rendering point set sur-
faces. IEEE Transactions on Visualization and Computer
Graphics 9(1), 3–15 (2003)

3. Amenta, N., Kil, Y.J.: Defining point-set surfaces. ACM
Transactions on Graphics 23(3), 264–270 (2004)

4. Attene, M., Falcidieno, B., Rossignac, J., Spagnuolo, M.:
Sharpen-bend: Recovering curved sharp edges in triangle
meshes produced by feature-insensitive sampling. IEEE
Transactions on Visualization and Computer Graphics
11(2), 181–192 (2005)

5. Daniels, J., Ha, L., Ochotta, T., Silva, C.: Robust smooth
feature extraction from point clouds. In: IEEE Interna-
tional Conference on Shape Modeling and Applications,
pp. 123–136 (2007)

6. Demarsin, K., Vanderstraeten, D., Volodine, T., Roose,
D.: Detection of closed sharp feature lines in point clouds
for reverse engineering applications. Tech. Rep. TW 458,
Department of Computer Science, K.U.Leuven, Belgium
(2006)

Fig. 13 Features extracted with our method; displaying the original point sets without normal information does not show
surface characteristics; our method identifies sharp features and can define oriented surface patches without relying on input
normal vectors.

Model ‖δ(p)‖ τ |F| Run Time [seconds] Analysis
[10−2] (1) (2) (3) (4) (5) Mean Dist. Max Dist. % Extracted

Fandisk 0 1.3 55.7k 191 192 11.5 0.8 0.0 0.0013dB 0.0089dB 99%
Hook 0 0.6 49.6k 207 196 0.7 0.6 2.3 0.0005dB 0.0049dB 100%
Piston 0 0.6 80.3k 146 207 0.3 0.7 9.9 0.012dB 0.19dB 99%

≤ 0.02dB 1.7 97.9k 196 698 1.3 0.7 68 0.0044dB 0.25dB 97%
≤ 0.04dB 3.0 82.2k 169 552 18.9 1.9 29 0.0049dB 0.18dB 90%

Ra 0 1.2 40.8k 159 116 1.0 0.0 1.6 0.0013dB 0.025dB 99%
Rook 0 1.1 99.6k 216 471 5.8 3.0 8.8 0.0022dB 0.046dB 99%

≤ 0.02dB 3.0 112k 250 840 21.7 12 19 0.0025dB 0.055dB 97%
≤ 0.04dB 3.4 124k 296 1337 19.0 18 23 0.0042dB 0.057dB 92%

S-Cube 0 1.75 33.6k 186 324 2.5 0.3 5.6 0.0025dB 0.025dB 100%
Knuckle 0 0.95 70.1k 176 348 10.3 1.3 7.5 0.0010dB 0.026dB 98%

Table 1 Run time performance of our feature extraction implementation for models, illustrated in Figure 13, that contain
500000 points each; the stages in our pipeline correspond to point identification (1), point projection (2), curve propagation
(3), curve completion (4), and spline fitting (5). The analysis includes the mean and max distance from the extracted features
to a ground truth, as well as the percent of actual features identified.

7. Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Im-
plicit fairing of irregular meshes using diffusion and cur-
vature flow. In: Proc. ACM SIGGRAPH, pp. 317–324
(1999)

8. Fleishman, S., Cohen-Or, D., Silva, C.T.: Robust moving
least-squares fitting with sharp features. ACM Transac-
tions on Graphics 24(3), 544–552 (2005)

9. Garland, M., Heckbert, P.S.: Surface simplification using
quadric error metrics. In: Proc. ACM SIGGRAPH, pp.
209–216 (1997)

10. Gumhold, S., Wang, X., McLeod, R.: Feature extraction
from point clouds. In: Proc. 10th International Meshing
Roundtable, Sandia National Laboratories (2001)

11. Hildebrandt, K., Polthier, K., Wardetzky, M.: Smooth
feature lines on surface meshes. In: Proc. Symposium on
Geometry Processing, pp. 85–90 (2005)

12. Hoppe, H.: New quadric metric for simplifying meshes
with appearance attributes. In: Proc. IEEE Visualiza-
tion, pp. 59–66 (1999)

13. Hubeli, A., Gross, M.: Multiresolution feature extraction
for unstructured meshes. In: Proc. IEEE Visualization,
pp. 287–294 (2001)

14. Jenke, P., Wand, M., Bokeloh, M., Schilling, A., Strasser,
W.: Bayesian point cloud reconstruction. Computer
Graphics Forum 25(3), 379–388 (2006)

15. Jones, T.R., Durand, F., Desbrun, M.: Non-iterative,
feature-preserving mesh smoothing. ACM Transactions

on Graphics 22(3), 943–949 (2003)
16. Lee, I.K.: Curve reconstruction from unorganized points.

Computer Aided Geometric Design 17(2), 161–177
(2000)

17. Levin, D.: Geometric Modeling for Scientific Visualiza-
tion, chap. Mesh-independent surface interpolation, pp.
37–49. Springer-Verlag (2003)

18. Lipman, Y., Cohen-Or, D., Levin, D.: Data-dependent
MLS for faithful surface approximation. In: Symposium
on Geometry Processing 2007 (2007)

19. Ochotta, T., Saupe, D.: Compression of point-based 3D
models by shape-adaptive wavelet coding of multi-height
fields. In: Proc. Symposium on Point-Based Graphics,
pp. 103–112 (2004)

20. Pauly, M., Gross, M., Kobbelt, L.P.: Efficient simplifica-
tion of point-sampled surfaces. In: Proc. IEEE Visual-
ization, pp. 163–170 (2002)

21. Pauly, M., Keiser, R., Gross, M.: Multi-scale feature ex-
traction on point-sampled surfaces. Computer Graphics
Forum 22(3), 281–290 (2003)

22. Scheidegger, C.E., Fleishman, S., Silva, C.T.: Triangu-
lating point set surfaces with bounded error. In: Proc.
Symposium on Geometry Processing, pp. 63–72 (2005)

23. Schreiner, J., Scheidegger, C., Fleishman, S., Silva, C.:
Direct (re)meshing for efficient surface processing. Com-
puter Graphics Forum 25, 527–536 (2006)

24. Watanabe, K., Belyaev, A.G.: Detection of salient curva-
ture features on polygonal surfaces. Computer Graphics
Forum 20(3), 385–392 (2001)

25. Woo, H., Kang, E., Wang, S., Lee, K.H.: A new segmen-
tation method for point cloud data. International Journal
of Machine Tools and Manufacture 42, 167–178 (2002)

26. Yagou, H., Ohtake, Y., Belyaev, A.: Mesh smoothing via
mean and median filtering applied to face normals. In:
Proc. Geometric Modeling and Processing – Theory and
Applications, pp. 124–135 (2002)

27. Yang, M., Lee, E.: Segmentation of measured point
data using a parameteric quadric surface approximation.
Computer-Aided Design 31(7), 449–457 (1999)

Joel Daniels received a B.S.
in Computer Science from the
University of New Hampshire
in 2003, graduating summa
cum laude, and a M.S. in Com-
puter Science from the Uni-
versity of Utah in 2005. He
is currently working toward a
PhD degree in the School of
Computing at the University
of Utah as a research assistant
for the Geometric Design and
Computation group headed by
Elaine Cohen. His primary re-
search interests include geo-
metric modeling challenges, es-

pecially addressing the differ-
ences between discrete and continuous representations.

Tilo Ochotta received a
Diploma degree in Computer
Science from the University of
Leipzig, Germany in 2002 and
a Ph.D. degree in Computer
Science from the University of
Konstanz, Germany in 2007.
He is now a Postdoctoral
Research Associate at the
Scientific Computing and
Imaging (SCI) Institute at
the University of Utah in
Salt Lake City. His primary
research interests include
topics in computer graphics
and geometric processing
with emphasis on point-based

modeling, shape representation, and compression. He is also
interested in large data set processing in numerical weather
prediction.

Linh K. Ha received B.E in
Electronics and Telecommuni-
cation from University of Tech-
nology, Hanoi, Vietnam in 2002
and M.S in Electronics and
Telecommunication from Col-
lege of Technology, Vietnam
National University in 2005.
He is currently working toward
PhD degree in Department
of Computer Science, School
of Computing, University of
Utah. He has worked as a re-
search assistant in Visualiza-
tion and Geometric Comput-
ing group, Scientific Comput-
ing and Imaging Institute. His

primary interests include point-based processing, volume ren-
dering, out of core rendering especially High Parallel Com-
puting. Currently, his research focuses on developing high
parallel data flow architecture on GPU.

Claudio T. Silva received
the BS degree in mathemat-
ics from the Federal University
of Ceara, Brazil, in 1990, and
the PhD degree in computer
science from the State Uni-
versity of New York at Stony
Brook in 1996. He is an as-
sociate professor of computer
science and an associate direc-
tor of the Scientific Comput-
ing and Imaging (SCI) Insti-
tute at the University of Utah.
Before joining Utah in 2003,
he worked in industry (IBM
and AT&T), government (San-
dia and LLNL), and academia

(Stony Brook and OGI). He coauthored more than 100 tech-
nical papers and eight U.S. patents, primarily in visualiza-
tion, geometric computing, and related areas. He is an active
member of the visualization, graphics, and geometric com-
puting research communities, having served on more than 50

program committees. He is co-editor of the Visualization Cor-
ner of the Computing in Science and Engineering magazine.
Previously, he was on the editorial board of the IEEE Trans-
actions on Visualization and Computer Graphics. He was pa-
pers co-chair for IEEE Visualization conference in 2005 and
2006. He received IBM Faculty Awards in 2005, 2006, and
2007, and a best paper award at IEEE Visualization 2007.
He is a member of the ACM, Eurographics, and IEEE.

