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Abstract. Four-dimensional respiratory correlated computed tomogra-
phy (4D RCCT) has been widely used for studying organ motion. Most
current algorithms use binning techniques which introduce artifacts that
can seriously hamper quantitative motion analysis. In this paper, we
develop an algorithm for tracking organ motion which uses raw time-
stamped data and simultaneously reconstructs images and estimates
deformations in anatomy. This results in a reduction of artifacts and
an increase in signal-to-noise ratio (SNR). In the case of CT, the in-
creased SNR enables a reduction in dose to the patient during scanning.
This framework also facilitates the incorporation of fundamental physi-
cal properties of organ motion, such as the conservation of local tissue
volume. We show in this paper that this approach is accurate and ro-
bust against noise and irregular breathing for tracking organ motion. A
detailed phantom study is presented, demonstrating accuracy and ro-
bustness of the algorithm. An example of applying this algorithm to real
patient image data is also presented, demonstrating the utility of the
algorithm in reducing artifacts.

1 Introduction

Four-dimensional respiratory-correlated computed tomography (4D RCCT) has
been widely used for studying organ motion. The current standard practice is
to use phase binned images [1]. However, the phase binning algorithm assumes
that the patient has a periodic breathing pattern. When the patient’s breathing
is irregular, this assumption breaks down and significant image artifacts like
those shown in Fig. 1 are introduced. In a recent extensive study, Yamamoto et
al. [2] found that 90% of 4D RCCT patients had at least one artifact. Amplitude
binning algorithms have been developed as a way to alleviate these artifacts
by assuming that the underlying anatomical configuration is correlated to the
amplitude of the breathing signal. This method reduces binning artifacts but
since data is not acquired at all breathing amplitudes the images often have some
missing slices [1]. Deformable image registration has been shown to be useful in
tracking organ motion in artifact-free 4D RCCT images [3]. Such methods may
be used with either phase or amplitude binned images, but are challenged in the
presence of binning artifacts.
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Fig. 1. Non-periodic patient breathing pattern (left) and image artifacts introduced
by phase binning (right).

In this paper, we develop a maximum a posteriori (MAP) algorithm for track-
ing organ motion that uses raw time-stamped data to reconstruct the images and
estimate deformations in anatomy simultaneously. The algorithm eliminates ar-
tifacts as it does not rely on a binning process and increases signal-to-noise ratio
(SNR) by using all of the collected data. In the case of CT, the increased SNR
provides the opportunity to reduce dose to the patient during scanning. This
framework also facilitates the incorporation of fundamental physical properties
such as the conservation of local tissue volume during the estimation of the or-
gan motion. We show that this formulation is accurate and robust against noise
and irregular breathing for tracking organ motion and reducing artifacts in a de-
tailed phantom study. An improvement in image quality is also demonstrated by
application of the algorithm to data from a real liver stereotactic body radiation
therapy patient.

1.1 Previous Work in Motion Artifact Elimination

Previous attempts at reducing 4D RCCT motion artifacts do not offer all the
advantages of our proposed method, which incorporates a fully diffeomorphic
motion model into the reconstruction process. For instance, Yu and Wang [4]
model rigid 2D motion during acquisition to alleviate in-plane artifacts in fan-
beam CT. Their motion model is not valid for imaging of the torso, where
respiratory-induced motion causes highly non-linear deformation with a signif-
icant component in the superior-inferior direction. Another method, presented
by Li et al. [5], reconstructs a full 4D time-indexed image using a B-spline mo-
tion model and a temporal smoothing condition. Zeng et al. [6] and Li et al. [7]
present other B-spline-based methods that require an artifact-free reference im-
age (such as a breath-hold image) in addition to a 4D fan-beam or cone-beam
scan. These approaches address difficulties caused by slowly-rotating cone-beam
scanners. However the acquisition of an artifact-free reference image is impracti-
cal for many radiotherapy patients. While the B-spline model guarantees smooth
deformations, it cannot guarantee the diffeomorphic properties for large deforma-
tions ensured by our method and it does not directly enforce local conservation
of tissue volume. Erhardt et al. [8] reconstruct 3D images at arbitrary amplitudes
by interpolating each slice from those collected at nearby amplitudes and then



stacking them. Two slices are used to interpolate a slice at the desired amplitude
using an optical flow algorithm, so only 2D motion can be estimated. Recently,
Rit et al. [9] have used a 4D cone-beam scan to estimate organ motion using
an optical flow approach. The motion estimate is then used to correct for organ
motion during subsequent 3D scans on the fly. This method may be useful in
reducing artifacts in a 3D image, but the optical flow model, like the B-Spline
model, does not ensure diffeomorphic incompressible motion estimates.

As early as 1991, Song and Leahy [10] used an incompressible optical flow
method for image registration. Rohlfing et al. [11] use a spline-based model
which penalizes tissue compression to perform incompressible image registration.
Saddi et al. [12] study incompressible fluid-based registration of liver CT. Their
approach requires solution of Poisson’s equation via a multigrid method at each
iteration. An efficient Fourier method of incompressible projection similar to the
one presented in this paper is presented by Stam [13]. His approach applies a
result from the continuous domain to discrete data without alteration, while our
method directly accommodates the discrete nature of our image data. Despite
these efforts in image registration, the incompressible nature of internal organs
has not previously been incorporated into the image reconstruction process.

2 RCCT Data Acquisition

During a typical 4D RCCT fan-beam scan, the patient passes through the scan-
ner on an automated couch that pauses at regular intervals to collect data. At
each couch position slices are acquired repeatedly 15-20 times. Each slice is
acquired by collecting a series of projections at different angles. The slices are
then reconstructed individually using filtered back-projection [14]. The speed of
acquisition of each slice is dependent on the scanner and for current generation
multi-slice scanners is generally on the order of 0.5s. The X-ray detection process
used to acquire slices is subject to Poisson noise [15]. However, at the x-ray tube
currents typically used in clinical practice the signal is strong enough that the
noise is approximately Gaussian. The patient’s breathing is monitored during
acquisition using an external surrogate for internal organ motion. The resulting
breathing trace, a(t), is used to tag the acquired projection retrospectively with
a breathing amplitude. For the studies presented in this paper breathing is mon-
itored via the Real-time Position Management (RPM) system (Varian Oncology
Systems, Palo Alto, CA), which uses a camera to track infrared-reflective mark-
ers attached to the patient’s torso. The methods presented herein are general
and can be applied to signals recorded by breathing monitoring systems such as
spirometry [16] or chest circumference tracking [17]. Although developed with
4D RCCT of liver as the main application, the methods may be applied to other
motion such as cardiac using the ECG signal in place of a breathing monitor.

3 4D Imaging Model

The 4D image reconstruction problem is to estimate the time-indexed image
I(t,z) that best represents the patient’s anatomy during image acquisition. In



order to obtain a maximum a posteriori estimate of organ motion we derive the
data likelihood and define a prior model incorporating the physical constraints.
We estimate the 4D image that maximizes the posterior probability combining
the data likelihood and the prior.

CT image acquisition is described by a projection operator, Py, which can
represent fan-beam or cone-beam projections at angle 6. At sufficiently high
signal-to-noise ratio, the acquisition of a single projection p; is subject to Gaus-
sian noise of variance 2. The data log-likelihood then becomes

LUpHIEa) = 5 3 [ IPali @) - pis)Pds. (1)

where the integration with respect to s is over a one or two-dimensional domain
depending on the projection operator used.

Due to the sparsity of the imaging data, the full 4D image reconstruction
problem is ill-posed, so it is necessary to constrain the estimation. We assume
that no metabolic changes or local tissue density variations occur during acqui-
sition and that the only dynamic process is the motion of the anatomy due to
breathing. Under this assumption, the 4D image is described by a time-indexed
deformation field and a single representative static 3D image, Iy(z), as

I(t,x) = Io(h(t, z)), (2)

where for each time ¢, h(t,-) is a volume-preserving diffeomorphic deformation
capturing the respiratory-induced motion of the underlying anatomy.

We assume that organ motion is correlated with breathing amplitude, so
the deformation may be indexed by amplitude only. Under this assumption the
deformations take the form h(a(t),x). The velocity of a point in the patient’s
anatomy is then described by the ordinary differential equation

“hla(t), ) = v(a(t) halt) 2) - 3

where v is indexed by amplitude and may be thought of as a velocity with respect
to changes in amplitude rather than time. The deformation from zero amplitude
to any other amplitude is given by the associated integral equation

h(a,z) =z + /Oa v(a’, h(a',z))da’. (4)

If the velocities are constrained to be smooth, this formulation guarantees
that the resulting estimates of patient anatomy are at all times diffeomorphic to
one another. This is important as it ensures that organs do not tear or disap-
pear during breathing [18]. The diffeomorphic deformations provide a one-to-one
correspondence between points in images from different breathing amplitudes,
enabling tracking of tissue trajectories. We enforce smoothness by introducing a
prior on the velocities via a Sobolev norm ||v||%,, defined by

1
ol = (v, 0)y = / /  Izv(a =) s doda, (5)
xe



where L is a differential operator chosen to reflect physical tissue properties.
Although in this paper we use a homogeneous operator, L can be spatially-
varying reflecting the different material properties of the underlying anatomy.

Deformations defined by the flow along smoothly-varying vector fields as de-
scribed in Eq. 3 have been well studied [19]. In particular, if the divergence of the
velocity field is zero the resulting deformation is guaranteed to preserve volume
locally and have unit Jacobian determinant. This is a necessary constraint when
modeling the breathing induced motion of incompressible fluid-filled organs such
as liver. In fact, if L is the Laplacian operator and the velocities are constrained
to be divergence-free, the velocities simulate Stokes flow of an incompressible
viscous fluid [20].

With the data log-likelihood and the prior model described above, the log-
posterior probability of observing our data becomes

L(Io, vlp;) = —[lv(@)[[7, — % Z/ |Po.{To 0 h(ai, .y, i) }(s) — pi(s)|*ds,

subject to dive = 0. (6)

4 Model Estimation

Having defined the posterior, the 4D image reconstruction problem is to estimate
the image and deformations parameterized by the velocity field that maximize
Eq. 6,

(Iy, d) = argmax L (1o, v|p;) subject to divy = 0. (7)

Io,v

A MAP estimate that maximizes Eq. 6 is obtained via an alternating iterative
algorithm which at each iteration updates the estimate of the deformation in a
gradient ascent step then updates the image using the associated Euler-Lagrange
equation. The continuous amplitude-indexed velocity field is discretized by a set
of equally-spaced amplitudes a; with the associated velocities vy, with spacing
Aa. Note that this amplitude discretization is independent of the amplitudes at
which data is acquired. The deformation from amplitude aj to apy1 is approxi-
mated by the Euler integration of Eq. 4,

hak+1, ) = h(ak, ) + ve(h(ak, ©)) (8)

and the deformation for an amplitude a; between ay and aj41 is linearly inter-
polated as
a; — A

Aa

h(ai,x) = h(ax, @) + o (h(ay, ®)). (9)

Note that higher order integration schemes such as Runge-Kutta may also be
used in place of the simpler Euler method.



The first variation of Eq. 6 with respect to vy under the inner product in
Eq. 5 is given by

6vk:£(107vk|pi) = —2vu — 7(LTL ZPT P0 {IO o h(a“ )} pz) z(k )a

(10)
where b; is the contribution to the variation due to a single projection and PJr
is the adjoint of the projection operator, which acts by backprojecting the data
discrepancy back into the 3D volume. The adjoint operators for various imaging
geometries have been well studied. For parallel-beam CT geometry, the adjoint
projection operator is the familiar backprojection operator. Conventional filtered
backprojection CT slice reconstruction involves applying the adjoint operator,
after filtering the 1D data [14]. Let Iy(x) = Iy o h(ay,x) be the 3D reference
image pushed forward to amplitude ag, the factors b; are given by

0 a; < ag
bi(k,:t) = a, ak VIk(w + al ak Uk( )) ap < a; < Ap41 (11)
|D ak4+1 © hai )( )’ VI/C(:L' + Uk(w)) Q; > Qf41-

If the deformations are constrained to be incompressible, implying that the Ja-
cobian determinant is unity, this simplifies to

0 a; < ag
bl(k,w) = %V[}c(ﬂ? + %vk(x)) ar < a; < a4 (12)
Vi (x + vi(x)) a; > apg1-

Following the approach of Beg et al. [21], efficient computation of (LTL)™!
implemented in the Fourier domain, requiring only a matrix multiplication and
Fourier transforms of vy at each iteration of the algorithm.

The Helmholtz-Hodge decomposition allows us to implement the incompress-
ibility constraint by simply projecting the unconstrained velocity fields onto the
space of divergence-free vector fields at each iteration of the algorithm [22]. In
order to efficiently implement the Helmholtz-Hodge decomposition of a time-
varying velocity field, we use the discrete divergence operator as it operates in
Fourier domain. We write the discrete Fourier transform of a central difference
approximation to the derivative of a function f as

DFT {A, f} (w) = DFT { fla+ kxg;wf(x — a) } (@) = —— sinwDFT {f} ().

2k,
(13)
In the Fourier domain the divergence of a vector field takes the following
form:

DFT {divv} (w) =W (w)- -DFT {v}(w), (14)
where L
i kffsm F’;
Ww) =3 | 7505 (15)
isin ;(,’;



This allows us to remove the divergent component easily in Fourier space via
the projection

W(w) - DFT {0} (w)

DFT {v} (w) = DFT {v} (w) — == 5

W (w). (16)

Since the operator (LTL)™! is implemented in the Fourier domain there is little
computational overhead in performing this projection at each iteration of the
algorithm described in Sec. 4.

The first variation of Eq. 6 with respect to I is

1 _ _
510£(107U|p7§) = ? Z ‘Dh 1(ai7 )| (PGIP&{IO o h(aia )} - P(;‘rlpz> oh 1(aia )

(17)

If organ motion is slow compared to single slice acquisition time, individual
slices can be reconstructed with minimal motion artifacts using filtered back
projection. In this case the 4D image is estimated from the reconstructed 2D
slices S;(x, y). Note that this assumption holds reasonably well in the case of 4D
RCCT. Under the slow motion assumption, the velocity field variation becomes

6vk£(107 Vk |p1) = 721}]4 - %(LTL)il Z (IO o h(ai, ) - Sl) bz(k7 ) (18)

K2

For slice data, S;, and an incompressible deformation estimate Eq. 77 is solved
by the mean of the deformed data,

j()(w) = % ‘ Z Sz [e) h_l(ai7w), (19)

i (a,@). =2

which is equivalent to solving the Euler-Lagrange equation for Eq. 6.

Note that as soon as the velocity field is updated, the image estimate must
also be updated. The change of image estimate in turn alters the velocity gra-
dients leading to a joint estimation algorithm in which, at each iteration, the
velocity fields are updated and then the image recalculated.

Algorithm 1 Pseudocode for 4D reconstruction of slice data
.[0 — 0
for each k do
v «— 0
end for
repeat
Io — % Z Sz o h_l(ai, :13)
for each k do
v — Vg + €8y, L(Lo, Vi)
end for
Perform divergence-free projection on each vy,
until algorithm converges or maximum number iterations reached




Algorithm 1 summarizes the 4D reconstruction procedure for slice data. The
velocity fields are initialized to zero, so that the initial estimate of the base image
is simply the result of averaging all of the data. This yields a quite blurry image
that sharpens upon further iterations as the motion estimate improves.

5 Results

5.1 Phantom Study

In order to validate the accuracy of the 4D reconstruction algorithm, a phantom
study was performed using the CIRS anthropomorphic thorax phantom (CIRS
Inc., Norfolk, VA) and a GE Lightspeed RT scanner (GE Health Care, Waukesha,
WI). The phantom includes a simulated chest cavity with a 2 cm spherical object
representing a tumor that is capable of moving in three dimensions. A chest
marker is also included in the phantom which moves in a pattern synchronized
to the tumor and allows simulation of a real patient 4D RCCT scan. The scans
used in this study were driven to simulate a breathing trace collected from a real
patient.

Figure 2 shows the experimental setup, with the recorded RPM trace and the
stationary spherical CIRS lung tumor phantom imaged with helical CT. The 4D
phase binned dataset generated by the GE Advance Workstation is shown in the
top row of Fig. 3. Notice the binning artifacts including mismatched slices in the
phase binned data when compared with the image of the stationary phantom.
Also shown in Fig. 3 bottom row are images from an amplitude binned dataset
at peak-inhale, mid-range amplitude, and peak-exhale. The images do not show
signs of mismatched slices and more closely resemble the static phantom image
but suffer from missing data artifacts.

Because we did not have access to the raw projection data, we applied the
slow motion assumption described in the previous section when using the CINE
slice data along with the recorded RPM trace in the 4D reconstruction algo-
rithm. In order to demonstrate robustness against noise, an initial scan was
taken with an X-ray tube current of 250 mA then repeated with a tube current
of 25mA. Shown in Fig. 4 are the 4D reconstructed images generated using
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Fig. 2. (left) CIRS phantom during scan setup with Varian RPM camera and GE
Lightspeed RT scanner, (center) breathing trace recorded during phantom acquisition
and (right) a helical CT scan of the stationary phantom.



High SNR Data (250mA) Low SNR Data (25mA)

Fig. 3. Binned images of the moving CIRS phantom. The top row shows phase binned
images at three different phases for the high SNR data (left) and the low SNR (10%
tube current) data (right). The bottom row shows amplitude binned images at end-
inhale, mid-range, and end-exhale amplitudes for both the high and low SNR data.

Phase Binned

Amplitude Binned

the same raw data as the phase and amplitude binned images in Fig. 3. No-
tice that the reconstructed image does not have any artifacts associated with
either the phase binning or amplitude binning. Notice also the increase in SNR
in the 4D reconstructed images. Reconstructed 4D images from 25 mA data have
higher signal-to-noise ratio (SNR=76.5) than binned images reconstructed using
250mA data (SNR=53.9). The similarity in images between the two 4D recon-
structions shows the robustness of the image estimation to increasing noise.

Fig. 4. 4D reconstructed images of the phantom at end-inhale, mid-range, and end-
exhale amplitudes. The top row shows the 4D reconstruction of the high SNR data,
while the bottom row shows that of the low SNR data. Also shown are plots of the
posterior indicating the convergence of the algorithm.
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Fig. 5. Tracked point (left) with RPM signal and superior-inferior (z) coordinate (cen-
ter) and plot of tracked point z coordinate versus RPM signal (right) showing strong
linear correlation.

To validate the estimated deformation model, a single point at the center of
the phantom indicated by the cross hair in Fig. 5 was tracked by integrating
the estimated velocity fields according to Eq. 4. The physical construction of the
phantom dictates that the superior-inferior displacement is linearly correlated to
the RPM signal. Shown in Fig. 5 is a plot of the estimated displacements versus
the RPM signal. Notice the excellent linear correlation (r = 0.9988) between
them, validating the deformation estimation process.

5.2 Real Patient Study

The 4D reconstruction algorithm was also applied to data collected from a real
patient undergoing hypo-fractionated radiation therapy treatment of the liver
at the Huntsman Cancer Institute at the University of Utah. A comparison
between phase binning and the 4D reconstruction is shown in Fig. 6. In addition
to improving SNR, slice mismatch artifacts are absent in the 4D reconstructed
image.

The 4D reconstruction algorithm was run with and without the incompress-
ibility constraint. Analysis of the incompressibility projection is shown in Fig. 7.

i g

Fig. 6. Phase binned images (top) along with 4D reconstructed images (bottom) at
peak-exhale, mid-range, and peak-inhale.
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Fig. 7. 4D reconstructed images and log Jacobian determinant images (bottom) for
compressible flow reconstruction (left) and with incompressibility constraint (right).
Negative log Jacobian values indicate local compression, while positive values indicate
expansion.

The reconstructed images are extremely similar, while the Jacobian maps are
quite different. In particular, it is seen that without the incompressibility con-
straint, the estimated motion indicates compression and expansion of the top
and bottom of the liver, while the incompressible reconstruction shows no local
expansion or contraction. This illustrates the fact that although the two meth-
ods produce very similar images, the motion estimates are quite different. Given
that liver is a blood-filled organ, physiologically it does not undergo any appre-
ciable local changes in volume due to breathing. This exemplifies the necessity
of incorporating incompressibility into the reconstruction process.
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