
Kinematic Calibration Using a Plane Constraint

Milan Ikits John M. Hollerbach

Dept. of Process Control Dept. of Computer Science
Technical University of Budapest University of Utah

Budapest, Muegyetem Rkpt. 9. H 1111 Salt Lake City, UT 84112

Abstract

This work deals with closed-loop calibration methods
where the robot endpoint is constrained to lie on a plane.
Previously published calibration approaches are shown to
have certain weaknesses. A new solution is given using DH
and Hayati notations and standard nonlinear least squares
optimization. The procedure is extended via the Implicit
Loop Method, which takes input noise into account. Pose
selection is guided by the Noise Amplification Index. Simu-
lation and experimental results are presented for a PUMA
560 industrial manipulator, and are compared to those ob-
tained from an open-loop calibration procedure.

1 Introduction

Most kinematic calibration techniques require expensive
and/or complicated pose measuring devices, therefore the
necessity of developing procedures which use data only
from the internal sensors of a robot is evident. This paper
presents closed-loop methods which use only one endpoint
constraint, i.e., the number of calibration equations per pose
is one [6]. Using a probe, the robot touches a number of
points on a fixed selected plane, and from the formulated
identification model the real robot parameters can be esti-
mated applying an optimization technique.

Three important issues have to be considered in these
methods. Like in every closed-loop calibration - not hav-
ing a priori knowledge about the task constraint - the scale
of the mechanism must be set, i.e., one link length has to
be known [1]. Special care has to be taken about the loca-
tion of the base and end link frames, which add to the num-
ber of identifiable parameters. Finally, we should not ignore
the effect of errors in the joint angle measurements. It has
been shown that this so-called input noise may cause bias in
the parameter estimates [9]. Since the end effector is con-
strained, the input noise is not negligible compared to the
output noise. Thus a total least squares optimization proce-
dure is recommended to avoid unreliable estimates [6].

We begin by reviewing previous calibration proposals.
After our analysis a new solution is given and examined
through both simulation and experiment.

2 Previous Approaches
In recent years several calibration approaches have been
proposed that yield only one equation per pose [6]. Open-
loop methods include the use of a single wire potentiometer
[3], an instrumented ball bar [4], and a laser displacement
meter [11]. Closed-loop methods have employed a ball bar
with known length [2] and a plane constraint [10, 13]. For
the method of planar constraints, two approaches towards
formulating an identification model are (1) the use of the
general equation of the constraint plane, and (2) the use of
plane normals which are supposed to be parallel.
2.1 Using the Equation of the Plane
The most straightforward approach assumes that the end-
points satisfy the plane equation:

axic � byic � czic � � a b c �pic � � (1)

where i � �� � � � � P for P poses, and a, b, and c are the
generalized plane coefficients. This equation assumes the
plane does not intersect the origin.

The computed endpoint positions pic deviate from the
plane due to errors from the kinematic model and the mea-
surements. To reduce these deviations, we minimize

S �
PX

i��

�� a b c �pic � ��� (2)

where the expression in the brackets is proportional to the
distance of pic from the plane.

The computed endpoint positions are a nonlinear func-
tion of the robot parameters � and the joint angles �i:

pic � f
i����i� � f

i��� (3)

where the joint angle inputs have been folded into f . Af-
ter substitution into (2), we get the objective function of the
nonlinear optimization problem:

S �
PX

i��

�� a b c �f i��� � ��� �
PX

i��

�gi�a� b� c��� � ���

(4)
where � contains the robot parameters, which are defined
by a certain kind of parameterization including joint angle



offsets �j too. This parametrization has to choose appro-
priate coordinate frames; the plane, the robot mechanism,
and a tool transform are included in the parametric func-
tion g. One could continue with calculating the Jacobian
and applying for example Gauss-Newton optimization, but
we have found this overall approach deficient.

Consider the calibration of a two link planar manipulator
using a line constraint. This two dimensional version of the
3D plane calibration method shows the deficiency of this
approach easily. The objective function can be expressed
similarly except that f i has only two components. One link
length has to be fixed and the first joint angle offset �� is not
identifiable.

Using MatlabTM we generated 40 points on a line uni-
formly. After adding Gaussian noise we calculated the joint
angle readings by solving the inverse kinematics of the ma-
nipulator. The deviations from the real and calibrated lines
using the parameters obtained from the calibration based on
the approach above are shown in Figure 1. It can be seen
that using the identified kinematic model the endpoints do
not fit the original line (dvr � � mathematically). Instead
they fit a different line (which is defined by the calibrated
line coefficients).
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Figure 1: Deviations from the real and calibrated lines.

The reason is that the definition of the base frame is
wrong; we have to fix the base frame to the line and not to
the first robot axis. It also can be seen that the deviations fit
the calibrated line perfectly. The situation is similar in the
three dimensional case; the calibration plane “wanders.”
2.2 Using Plane Normals
This approach is based on the calculation of the vector prod-
ucts of a set of difference vectors in the same plane, which
are supposed to yield plane normals [13]. Three points de-
termine a plane, and yield two independent difference vec-
tors from which the plane normal can be extracted. From
the cross products of these “small plane” normals a linear
indentification equation system can be derived. Besides the
definitionof the base frame, this method has two more prob-
lematic aspects:

� We have to be careful with the pose selection because
we can get collinearities — which make the identifica-
tion difficult — very easily.

� Not all the points are considered in the identification
at a time, only a set of points is used. If we wanted to
include all the points, the Jacobian would be huge.

These aspects are independent of where we place the con-
straint plane. Because this approach does not even use a
numerical description of the plane (it only assumes that
the endpoints are lying on some plane), we found that the
wandering-effect occurs more seriously.

3 A Regular Approach
To make the 3D plane calibration method work, we found
that a careful definition of the base frame was essential.

3.1 The Kinematic Model
Every kinematic model includes geometric and non-
geometric parameters of the robot. For the geometric
parameters typically four-parametric models are used. We
use the well-known DH notation for nearly perpendicular
neighboring axes, and Hayati parameterization [5] in the
nearly parallel case. We give the definition of the metrol-
ogy or base frame and the end link frame exclusively;
the definition of the intermediate frames can be found in
for example [7]. The non-geometric parameters include
only the joint offsets, since in most closed-loop calibration
methods the gains are difficult to estimate [6].

3.1.1 Definition of the Base Frame

There are two cases for the definition according to whether
the first robot axis is parallel with or perpendicular to the
plane. We show the definition for the first case using DH
parameters.

In order to handle the problem easier, let’s number the
base frame as �� (Figure 2). There is a problem with find-
ing frame origins O� and O��, because there is no con-
straint on the location of the endpoint on the plane. Assum-
ing that we can apply DH parameters for frame 1, the first
definitive point is the intersection of the common normalx�
with the first rotation axis z�. This intersection is a good
choice for O�, which then sets d� � �.

Project O� to the plane to set O�� and z��. Since the
first robot axis is nearly parallel to the plane, z�� and z�
are nearly perpendicular, and their common normal x� is
well defined. Set x�� equal to x�, which fixes a� � � and
�� � �. Note that we use two parameters between frames
0 and 1, and three parameters between frames -1 and 0.

When the first robot axis is nearly perpendicular to the
plane, we can use Hayati parameters. The intersection of
the plane and the first robot axis defines O�. Working back-
wards we get that a�

�
� �, ��

�
� � and ��

�
� �. However
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Figure 2: Base coordinates.

we noticed that this configuration yielded a serious observ-
ability problem in case of the Puma 560 robot.

3.1.2 Definition of the End Link Frame

Because the orientation of the end link frame does not play
a role, only three parameters out of the four are needed. We
can choose zn to be parallel with zn��; this sets �n � �.

3.2 The Identification Procedures
3.2.1 Nonlinear Least Squares Optimization

Relative to the -1 frame (Figure 2), the plane constraint on
the end link frame can be expressed by the calibration equa-
tion:

piz � �

After substituting the forward kinematics (3) of the robot
and linearizing the equation, we get:

�piz � �� 	f i��k� � �C
i
��

where 	f i contains the third component off i. This equation
is the basis for the iterative update of parameters.

3.2.2 Implicit Loop Method

The Implicit Loop Method is based on the unification of
open and closed-loop methods: the closure of kinematic
loops by end-effector measurements or by constraints are
considered equivalent [12]. All kinds of measurement er-
rors are included implicitly in the loop equations:

f�xi��� � f��xi � �xi� ��� ��� � �� i � �� � � �� P (5)

where �xi contains the measurements (both input and out-
put) taken at pose i with measurement error �xi, and �� is the
initial estimates of the parameters which have errors of ��.
The goal is to find the most likely combination of param-
eter errors �� and measurement noises �xi which satisfy the
loop equations. Assuming Gaussian noise with zero mean,

the maximum likelihood estimate is obtained by minimiz-
ing the following chi-square function:

�� �
PX

i��

��xTi �
��

x �xi � ��
T
�
��

�
��� (6)

where 
x and 
� are the covariance matrices of the mea-
surement errors and the parameters, respectively. Itera-
tively minimizing this sum subject to (4), one could get es-
timates for errors in both the kinematic parameters and the
measurements.

The inclusion of the covariance matrices means that
we use some a priori knowledge about the error distribu-
tions. Thus the method puts parameter variations, joint
and end-effector measurements on equal footing. Since the
loop equations are satisfied exactly, no equation scaling is
needed. Besides these advantages, the approach provides
measures for both the accuracy of the fitted parameters and
the consistency of the data with the model analytically. The
accuracy of the estimated parameters �� compared to their
actual values � is zero mean with covariance

�
�

� � �
�

�

��q�
�

�

� (7)

where subscript �

�
denotes the symmetric square root, and

�q can be derived from the procedure.
The method also provides a measure as to whether the

results of the estimation agree with the statistical assump-
tions of the model. Substituting the converged values, the
�� function can be approximated by a Gaussian distribu-
tion with expected value of PC and standard deviation of
� �

p
�PC, where C is the number of calibrationequations

per pose. The complete formulation of the Implicit Loop
Method can be found in [12].

4 Simulation Results
In the simulations we generated joint angle readings by
solving the inverse kinematics of the Puma robot from end-
points on a given plane. The endpoints were selected ac-
cording to grid or random distributions and Gaussian noise
was added with given variances in directions x,y and z. The
nominal parameters of the Puma robot can be found in Ta-
ble 1 along with the base and end link parameters. The a�
offset of the touching probe was built intentionally to make
the last joint offset observable.

4.1 Pose Selection
In order to achieve accurate estimates the robot should be
positioned into an appropriate pose set. Here we use the
noise amplification index [7] - which is the ratio of maxi-
mum singular value to condition number - as the indicator
of how many samples in what arrangement should be col-
lected. The bigger this number is the smaller the errors in
the identified paremeters are.



j �j dj aj �j �j
(deg) (mm) (mm) (deg) (deg)

0 � 740.0 � 90.0 �

1 0.0 � 0.0 -90.0 �

2 0.0 � 431.8 0.0 0.0
3 0.0 149.09 -20.32 90.0 �

4 0.0 433.07 0.0 -90.0 �

5 0.0 0.0 0.0 90.0 �

6 0.0 175.25 -12.0 � �

Table 1: Nominal parameters of the Puma 560 robot. De-
fined zero parameters are indicated as 0.

Figure 3 shows the results of the simulation; 5000 poses
were generated according to random distributionon a plane.
From this pose set 50 to 300 poses were selected randomly
and the corresponding indices were calculated. The result
is a distribution with a large variance, because not only the
number, but also the location of the poses matters. From fit-
ting a curve on this distributionand examining the tendency,
a sufficient number of poses can be inferred.

The default number of poses is 50. While adding from
one to 100 more poses the noise amplification index in-
creased significantly; from 150 poses it did not change
much. However we should not ignore the human factors:
the collection of 150 poses is a tedious procedure. Taking
this factor into account we chose 120 as the “optimal” num-
ber of poses. Another issue is the location of the samples.
The simulations showed that collecting poses according to
a rectangular grid yields a bigger noise amplification index.
Therefore the selection of 96 poses was based on an 8-by-12
grid and the remaining 24 poses were collected randomly.
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Figure 3: Pose selection using the noise amp. index.

5 Experimental Results
In order to cross-check the improved accuracy of the cali-
brated manipulator, two calibrations were performed simul-
taneously. Besides taking 120 poses on a plane with the
touching probe, 60 position measurements using the Op-
totrak 3D motion tracking system (Northern Digital Inc.,

Waterloo, Ontario) were collected too. Thus the results of
the open loop calibration could be compared to the results
of plane methods, and helped with choosing a known link
length.

5.1 Open Loop Calibration Using Position Mea-
surements

An open loop calibration procedure was applied using
Gauss-Newton optimization, and the RMS error between
the measured and predicted endpoints was reduced to 0.156
mm. This result corresponds to the accuracy of the Opto-
trak, which is stated to be 0.1 mm at a viewing distance of
2.5 m.

We have to be careful with the cross-check because in
this case the setup of the base and end link frames is differ-
ent from the setup described before. Also the Optotrak cal-
ibration determines 27 parameters while the plane version
yields only 23. Therefore the cross-check is performed by
substituting the internal parameters of the open loop results
to the closed loop calibrated parameters. Using this mixed
set and the calibration results of the closed loop method,
two pose sets can be generated. The inter-distance of any
two points in the two sets are compared and the RMS error
of these distances are calculated taking each pair into ac-
count.

Another problem is the scaling of the mechanism in the
closed loop methods: we have to fix one link length. It
seems reasonable to choose this parameter from the Opto-
trak results. To verify this statement we repeated the open
loop calibration using the Implicit Loop Method. By setting
���� (numerically this means ��� times of its normal
value) and the standard deviation of the input noise to zero,
we could reconstruct the estimates of the Nonlinear Least
Squares method. The reconstruction gave a �� � �����
with an expected value of P�C �N � �
� (where N de-
notes the number of parameters). This is a little bit low but
within the acceptable 99% region, and because of that we
set the variance of the output noise double the precision of
the Optotrak (0.2 mm).

From the internal parameters we had to choose from two
candidates for the fixed link length (a� or d�). The standard
deviation of the errors between the real and calibrated pa-
rameters were calculated (from the diagonal entries of co-
variance matrix ��

� - see (6)). Link length parameter a�
had a smaller standard deviation of parameter error (�a� �
������mm) than d� (�d� � ������mm), so it seemed rea-
sonable to consider it as a known parameter (very close to
the real value). However to see the difference three closed
loop calibrations were performed each time; one with fixed
link length a�, another with fixed d�, and a third one when
both of them were fixed.



Fixed Condition Noise Amp. RMS Err. of
par. Number Index Dist. (mm)

d� 58.35 7.06����� 0.865 ; 0.799
a� 74.89 4.24����� 0.746 ; 0.780

Both 54.32 7.72����� 0.269 ; 0.325

Table 2: Comparison of closed loop calibrations.

5.2 Closed Loop Calibrations Using a Plane Con-
straint

The results of the comparison are shown in Table 2. Only
100 measurements were used for calibration; the remaining
20 poses could be used for indepent test. To see the robust-
ness of the model and the procedure, we list the condition
numbers and noise amplification indices too. The RMS er-
rors of the cross-check are included for the calibration and
the test pose set respectively.

Interestingly the best results were obtained when both
candidates were fixed. However, this makes the planar cal-
ibration unreasonable. Although for d� the condition num-
ber of the Jacobian is larger (probably because a� has bet-
ter observabilityand this makes the procedure more robust),
the final results of the cross-check are worse. Thus we
chose a� as the known link length.

The identified parameter errors (w.r.t. the nominal
PUMA parameters), obtained by setting a� � �����mm
from the Optotrak results, are collected into Table 3. The
huge joint angle offsets �j are due to the zero level of the
potentiometers in the joint angle sensors not having been
set correctly. The RMS error of the endpoint distances
from the plane was reduced to 0.2515 mm w.r.t. the 100
test points and to 0.2774 mm for the independent 20 test
points.

It is of interest whether we can build a better model by
taking the input noise into account. First using all the 120
points we replicated the NLS method by setting ����,
the standard deviation of the output noise �� � ���
mm,
and the standard deviation of the input noise �� � �. We
got back the same parameter corrections, results and a ��

value of 120.3 which is a littlebit far from its expected value
P�C �N � �� but in the acceptable region.

Then to deal with joint sensor noise, we modified the
model by including input noise standard deviation of �� �
���mrad. This seems reasonable because it can cause er-
rors in the endpoints having standard deviation of 0.1 mm.
The optimization yielded a �� value of 134.7 with expected
value of P�C � ���. The initial estimates were modi-
fied to match the a priori standard deviation of parameter
errors which was set to 0.002 (rad,m). Performing the cross
check with the mixed parameter set yielded the RMS error
between inter-distances of 0.5303 mm.

j ��j �dj �aj ��j
��j

(deg) (mm) (mm) (deg) (deg)

0 � 5.27 � -4.963 �

1 -3.439 � 0.27 0.021 �

2 7.028 � � 0.104 -0.275
3 -2.693 1.19 -0.67 0.04 �

4 -6.932 -2.03 0.06 0.0225 �

5 -1.749 -0.19 -0.01 0.008 �

6 -14.331 -0.4 -0.7 � �

Table 3: Identified errors in the parameters.

5.3 Statistical Analysis
The results of the error analysis of the fitting processes are
shown in Table 4. The standard deviations of the errors be-
tween the estimated and real parameters are calculated from
the diagonal elements of ��

�. Huge uncertainties are found
among the last two joint angle offsets and skew angles. One
reason for this might be backlash in the Puma wrist, no-
ticed during the experiment too, which can cause outliers
and make the Gaussian assumption of joint sensor errors in-
valid. It is shown that link lengths d��� might be far from
the real values too.

Parameter NLS (mrad,mm) ILM (mrad,mm)

�� 0.0907 0.0904
�� 0.2034 0.1985
�� 0.6604 0.6205
�� 0.6621 0.5897
�� 3.4756 1.7146
�� 7.8142 1.9379
�� 0.2131 0.2088
�� 0.3389 0.3352
�� 0.1758 0.1756
�� 0.7979 0.7321
�� 1.7140 1.2930
�� 3.7753 1.7514
�� 4.2423 4.1051
a� 0.0558 0.0561
a� 0.2975 0.2795
a� 0.0557 0.0520
a� 0.6141 0.3143
a� 0.0818 0.0774
d� 0.5389 0.5042
d� 3.2211 3.0269
d� 3.3906 3.1569
d� 6.4105 3.2808
d� 4.2362 4.0878

Table 4: Standard deviations of parameter errors.

These discrepancies can also be explained from a differ-
ent viewpoint. It has been shown in [12] that considering
the singular value decomposition of the augmented Jaco-
bian �D � U�V

T , the columns of V are independent er-
ror directions having standard deviations 	�i � ��

p
��i � �.



When the measurements are noisy, or when the model is not
complete, some parameters are hardly observable; �i will
be small and 	�i will remain at its original value of 1 leav-
ing the estimates unchanged from the initial values. Other-
wise it will be reduced to approximately ���i, i.e., the esti-
mated parameter will be close to the real value. By exam-
ining the singular values of the ILM Jacobian we could cal-
culate that the final parameter errors were reduced to 0.77%
and 69.63% of the initial value for the best and worst direc-
tions, respectively.

6 Conclusions
Calibration using a planar constraint is the most signifi-
cant remaining closed-loop approach to be developed. We
found that it was surprisingly difficult to develop a viable
approach. Previous proposals for formulations using the
plane equation or using normals obtained from cross prod-
ucts of difference vectors were found problematical. For
example, the fitted plane wandered, even though the result-
ing parameters matched to it well. The key for us was a
careful definition of the base frame, by a projection back
from the first distinctiveaxis intersection point on the mech-
anism to the plane.

Good results were obtained with proper definition of the
base and end link frames. The results of two optimization
techniques, Nonlinear Least Squares Optimization and the
Implicit Loop Method, were compared. NLS Optimiza-
tion is easy to implement, but is based on the reduction of
output noise only. Among the advantages of the Implicit
Loop Method is that a priori information about parameter
and measurement errors can be included easily. The applied
model can be verified and unmodeled factors are uncovered
by the statistical analysis.

The experimental results showed that this method is suit-
able for robot calibration without using external sensors,
though unmodeled factors and the fact that we use only one
calibration equation per pose can cause observability prob-
lems with the parameters. Special care has to be taken about
the location of the constraint plane and the points selected
for calibration.
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