
Hardware-Assisted Visibility Sorting for
Unstructured Volume Rendering

Steven P. Callahan, Milan Ikits, Student Member, IEEE,

João L.D. Comba, and Cláudio T. Silva, Member, IEEE

Abstract—Harvesting the power of modern graphics hardware to solve the complex problem of real-time rendering of large

unstructured meshes is a major research goal in the volume visualization community. While, for regular grids, texture-based

techniques are well-suited for current GPUs, the steps necessary for rendering unstructured meshes are not so easily mapped to

current hardware. We propose a novel volume rendering technique that simplifies the CPU-based processing and shifts much of the

sorting burden to the GPU, where it can be performed more efficiently. Our hardware-assisted visibility sorting algorithm is a hybrid

technique that operates in both object-space and image-space. In object-space, the algorithm performs a partial sort of the

3D primitives in preparation for rasterization. The goal of the partial sort is to create a list of primitives that generate fragments in nearly

sorted order. In image-space, the fragment stream is incrementally sorted using a fixed-depth sorting network. In our algorithm, the

object-space work is performed by the CPU and the fragment-level sorting is done completely on the GPU. A prototype implementation

of the algorithm demonstrates that the fragment-level sorting achieves rendering rates of between one and six million tetrahedral cells

per second on an ATI Radeon 9800.

Index Terms—Volume visualization, graphics processors, visibility sorting.

�

1 INTRODUCTION

GIVEN a general scalar field in IR3, a regular grid of
samples can be used to represent the field at grid

points ð�i; �j; �kÞ, for integers i; j; k and some scale factor
� 2 IR. One serious drawback of this approach is that, when
the scalar field has highly nonuniform variation—a situa-
tion that often arises in computational fluid dynamics and
partial differential equation solvers—the voxel size must be
small enough to represent the smallest features in the field.
Unstructured grids with cells that are not necessarily
uniform in size have been proposed as an effective means
for representing disparate field data.

In this paper, we are primarily interested in volume

rendering unstructured scalar data sets. In volume render-

ing, the scalar field is modeled as a cloud-like material that

both emits and attenuates light along the viewing direction

[1]. To create an image, the equations for the optical model

must be integrated along the viewing ray for each pixel (see

Fig. 1). For unstructured meshes, this requires computing a

separate integral for the contribution of the ray segment

inside each cell. If the order of these segments is known, the

individual contributions can be accumulated using front-to-

back or back-to-front compositing.

On a practical level, the whole computation amounts to
sampling the volume along the viewing rays, determining
the contribution of each sample point, and accumulating the
contributions in proper order. Given the increasing size of
volume data sets, performing these operations in real-time
requires the use of specialized hardware. Modern GPUs [2]
are quite effective at performing most of these tasks. By
coupling the rasterization engine with texture-based frag-
ment processing, it is possible to perform very efficient
volume sampling [3], [4]. However, generating the frag-
ments in visibility order is still necessary.

For regular grids, generating the fragments in visibility
order is straightforward. This is often accomplished by
rendering polygons p1; p2; . . . ; pn perpendicular to the view
direction at different depths. The polygons are used to slice
the volume and generate the samples for the cells that
intersect them. The fact that the polygons are rendered in
sorted order and are parallel with each other guarantees
that all the fragments generated by rasterizing polygon pi
come before those for piþ1. In this case, compositing can be
accomplished by blending the fragments into the frame-
buffer in the order in which they are generated. For details
on performing these computations, see [5].

The sampling and compositing procedure for unstruc-
tured grids is considerably more complicated. Although the
intrinsic volume rendering computations are similar, the
requirement of generating fragments in visibility order
makes the computations more expensive and difficult to
implement. The Projected Tetrahedra (PT) algorithm [6]
was the first to show how to render tetrahedral cells using
the traditional 3D polygon-rendering pipeline. Given
tetrahedra T and a viewing direction v, the technique first
classifies the faces of T into front and back faces with
respect to v. Next, for correct fragment generation, the faces
are subdivided into regions of equal visibility. Note that the
PT algorithm can properly handle only a single tetrahedral

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 3, MAY/JUNE 2005 1

. S.P. Callahan, M. Ikits, and C.T. Silva are with the Scientific Computing
and Imaging Institute, School of Computing, University of Utah, 50 S.
Central Campus Dr., Salt Lake City, UT 84112.
E-mail: {stevec, ikits}@sci.utah.edu, csilva@cs.utah.edu.

. J.L.D. Comba is with the Universidade Federal do Rio Grande do Sul,
Instituto de Informatica, Av. Bento Goncalves, 9500, Campus do Vale-
Bloco IV-Prédio 43425, Porto Alegre RS 91501-970, Brazil.
E-mail: comba@inf.ufrgs.br.

Manuscript received 18 Oct. 2004; revised 27 Dec. 2004; accepted 5 Jan. 2005;
published online 10 Mar. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0131-1004.

1077-2626/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

cell. For rendering meshes, cells have to be projected in
visibility order, which can be accomplished using techni-
ques such as the Meshed Polyhedra Visibility Ordering
(MPVO) algorithm [7]. For acyclic convex meshes, this is a
powerful combination that leads to a linear-time algorithm
that is provably correct, i.e., it is guaranteed to produce the
right picture. When the mesh is not convex or contains
cycles, MPVO requires modifications that significantly
complicate the algorithm and its implementation, leading
to slower rendering times [8], [9], [10], [11].

The necessity of explicit fragment sorting for unstruc-
tured grids is the main cause of the rendering-speed
dichotomy between regular and unstructured grids. For
regular grids, we are exploiting the fact that we can sort in
object space (implicit in the order of the planes being
rendered) and avoid sorting in image space (i.e., sorting
fragments). Thus, on modern GPUs, it is possible to render
regular volumes at very high frame rates. Unfortunately,
performing visibility ordering for unstructured grids com-
pletely in image space has turned out to be quite expensive
and complex [11], [12], [13].

In this paper, we build on the previous work of Farias
et al. [14] and Carpenter [15] and propose a new volume
rendering algorithm. Our main contributions are:

. We present a new algorithm for rendering unstruc-
tured volumetric data that simplifies the CPU-based
processing and shifts much of the sorting burden to
the GPU, where it can be performed more efficiently.
The basic idea of our algorithm is to separate visibility
sorting into two phases. First, we perform a partial
visibility ordering of primitives in object-space using
the CPU. Note that this first phase does not guarantee
an exact visibility order of the fragments during
rasterization. In the second phase, we use a modified
A-buffer of fixed depth (called the k-buffer) to sort the
fragments in exact order on the GPU.

. We show how to efficiently implement the k-buffer
using the programmable functionality of existing
GPUs.

. We perform a detailed experimental analysis to
evaluate the performance of our algorithm using
several data sets, the largest of which having over
1.4 million cells. The experiments show that our
algorithm can handle general nonconvex meshes
with very low memory overhead and requires only a

light and completely automatic preprocessing step.
Data size limitations are bounded by the available
main memory on the system. The achieved render-
ing rates of over six million cells per second are, to
our knowledge, the fastest reported results for
volume rendering of unstructured data sets.

. We provide a detailed comparison of our algorithm
with existing methods for rendering unstructured
volumetric data. This includes render rates per-
formed using optimized implementations of these
algorithms using uniform test cases on the same
machine.

The remainder of this paper is organized as follows: We
summarize related work in Section 2. In Section 3, we
describe our algorithm, define k-nearly sorted sequences,
and provide further details on the functionality of the
k-buffer. In Section 4, we show how to efficiently implement
the k-buffer using the programmable features of current ATI
hardware. Section 5 summarizes our experiments and
results. In Section 6, we discuss different trade-offs of our
approach. Finally, in Section 7, we provide final remarks
and directions for future work.

2 RELATED WORK

The volume rendering literature is vast and we do not
attempt a comprehensive review here. Interested readers
can find a more complete discussion of previous work in
[5], [11], [16], [17], [18]. We limit our coverage to the most
directly related work in the area of visibility ordering using
both software and hardware techniques.

In computer graphics, work on visibility ordering was
pioneered by Schumacker et al. and is later reviewed in [19].
An early solution to computing a visibility order was given
by Newell, Newell, and Sancha (NNS) [20], which continues
to be the basis for more recent techniques [21]. The NNS
algorithm starts by partially ordering the primitives accord-
ing to their depth. Then, for each primitive, the algorithm
improves the ordering by checking whether other primi-
tives precede it or not.

Fuchs et al. [22] developed the Binary Space Partitioning
tree (BSP-tree)—adata structure that represents a hierarchical
convex decomposition of a given space (typically, IR3). Each
node � of a BSP-tree T corresponds to a convex polyhedral
region, P ð�Þ � IR3 and the root node corresponds to all of

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 3, MAY/JUNE 2005

Fig. 1. Results of volume rendering the (a) fighter, (b) blunt fin, and (c) heart data sets with the HAVS algorithm.

IR3. Each nonleaf node � is defined by a hyperplane, hð�Þ
that partitions P ð�Þ into two half-spaces, P ð�þÞ ¼ hþð�Þ \
P ð�Þ and P ð��Þ ¼ h�ð�Þ \ P ð�Þ, corresponding to the two
children, �þ and �� of �. Here, hþð�Þ (h�ð�Þ) is the half-
space of points above (below) the plane hð�Þ. Fuchs et al.
[22] demonstrated that BSP-trees can be used for obtaining a
visibility ordering of a set of objects or, more precisely, an
ordering of the fragments into which the objects are cut by
the partitioning planes. The key observation is that the
structure of the BSP-tree permits a simple recursive
algorithm for rendering the object fragments in back-to-
front order. Thus, if the viewpoint lies in the positive half-
space hþð�Þ, we can recursively draw the fragments stored
in the leaves of the subtree rooted at ��, followed by the
object fragments Sð�Þ � hð�Þ. Finally, we recursively draw
the fragments stored in the leaves of the subtree rooted at
�þ. Note that the BSP-tree does not actually generate a
visibility order for the original primitives, but for fragments
of them.

The methods presented above operate in object-space, i.e.,
they operate on the primitives before rasterization by the
graphics hardware [2]. Carpenter [15] proposed the
A-buffer—a technique that operates on pixel fragments
instead of object fragments. The basic idea is to rasterize all
the objects into sets of pixel fragments, then save those
fragments in per-pixel linked lists. Each fragment stores its
depth, which can be used to sort the lists after all the objects
have been rasterized. A nice property of the A-buffer is that
the objects can be rasterized in any order and, thus, do not
require any object-space ordering. A main shortcoming of
the A-buffer is that the memory requirements are sub-
stantial. Recently, there have been proposals for implement-
ing the A-buffer in hardware. The R-buffer [23] is a
pointerless A-buffer hardware architecture that implements
a method similar to a software algorithm described in [24]
for sorting transparent fragments in front of the frontmost
opaque fragment. Current hardware implementations of
this technique require multiple passes through the polygons
in the scene [25]. In contrast, the R-buffer works by scan-
converting all polygons only once and saving the not yet
composited or rejected fragments in a large unordered
recirculating fragment buffer on the graphics card, from
which multiple depth comparison passes can be made. The
Z3 hardware [26] is an alternative design which uses sparse
supersampling and screen door transparency with a fixed
amount of storage per pixel. When there are more
fragments generated for a pixel than what the available
memory can hold, Z3 merges the extra fragments.

Because of recent advances in programmable graphics
hardware, techniques have been developed which shift
much of the computation to the GPU for increased
performance. Kipfer et al. [27] introduce a fast sorting
network for particles. This algorithm orders the particles
using a Bitonic sort that is performed entirely on the GPU.
Unstructured volume rendering has also seen a number of
recent advances. Roettger and Ertl [28] demonstrate the
efficiency of the GPU for compositing the ray integrals of
arbitrary unstructured polyhedra. Their method uses an
emissive optical model which does not require any
ordering. Their technique is similar to HAVS without

sorting. Recently, Wylie et al. have shown how to
implement the Shirley-Tuchman tetrahedron projection
directly on the GPU [29]. As mentioned before, the
PT projection sorts fragments for a single tetrahedron only
and still requires that the cells be sent to the GPU in sorted
order. An alternative approach is to perform pixel-level
fragment sorting via ray-casting. This has been shown
possible by Weiler et al. for convex meshes [12] and, more
recently, for nonconvex meshes [13].

Roughly speaking, all of the techniques described above
perform sorting either in object-space or in image-space
exclusively, where we consider ray casting as sorting in
image-space and cell projection as sorting in object-space.
There are also hybrid techniques that sort both in image-
space and object-space. For instance, the ZSWEEP [14]
algorithm works by performing a partial ordering of
primitives in object-space followed by an exact pixel-level
ordering of the fragments generated by rasterizing the
objects. Depending on several factors, including average
object size, accuracy and speed of the partial sort, and cost
of the fragment-level sorting, hybrid techniques can be
more efficient than either pure object-space or image-space
algorithms. Another hybrid approach is presented in [30],
where the authors show how to improve the efficiency of
the R-buffer by shifting some of the work from image-space
to object-space.

3 HARDWARE-ASSISTED VISIBILITY SORTING

The hardware-assisted visibility sorting algorithm (HAVS)
is a hybrid technique that operates in both object-space and
image-space. In object-space, HAVS performs a partial
sorting of the 3D primitives in preparation for rasterization;
the goal here is to generate a list of primitives that cause the
fragments to be generated in nearly sorted order. In image-
space, the fragment stream is incrementally sorted by the
use of a fixed-depth sorting network. HAVS concurrently
exploits both the CPU and GPU such that the object-space
work is performed by the CPU while the fragment-level
sorting is implemented completely on the GPU (see Fig. 2).
Depending on the relative speed of the CPU and the GPU, it
is possible to shift work from one processor to the other by
varying the accuracy of the two sorting phases, i.e., by
increasing the depth of the fragment sorting network, we
can use a less accurate object-space sorting algorithm. As

CALLAHAN ET AL.: HARDWARE-ASSISTED VISIBILITY SORTING FOR UNSTRUCTURED VOLUME RENDERING 3

Fig. 2. Overview of the hardware-assisted visibility sorting algorithm

(HAVS). Only a partial visibility ordering is performed on the CPU based

on the face centroids. On the GPU side, a fixed size A-buffer is used to

complete the sort on a per-fragment basis.

shown in Section 4, our current implementation uses very
simple data structures that require essentially no topologi-
cal information leading to a very low memory overhead. In
the following sections, we present further details on the two
phases of HAVS.

3.1 Nearly Sorted Object-Space Visibility Ordering

Visibility ordering algorithms (e.g., Extended Meshed
Polyhedra Visibility Ordering [9]) sort 3D primitives with
respect to a given viewpoint v in exact order, which allows
for direct compositing of the rasterized fragments. In our
work, we differentiate between the sorting of the
3D primitives and the sorting of the rasterized fragments
to utilize faster object-space sorting algorithms.

To precisely define what we mean by nearly sorted
object-space visibility ordering, we first introduce some
notation. Given a sequence S of real values fs1; s2; . . . ; sng,
we call the tuple of distinct integer values ða1; a2; . . . ; anÞ the
Exactly Sorted Sequence of S (or ESSðSÞ) if each ai is the
position of si in an ascending or descending order of the
elements in S. For instance, for the sequence
S ¼ f0:6; 0:2; 0:3; 0:5; 0:4g, the corresponding exactly sorted
sequence is ESSðSÞ ¼ ð5; 1; 2; 4; 3Þ. Extensions to allow for
duplicated values in the sequence are easy to incorporate
and are not discussed here. Similarly, we call a tuple
ðb1; b2; . . . ; bnÞ of distinct integer values a k-Nearly Sorted
Sequence of S (or k-NSSðSÞ) if the maximum element of the
pairwise absolute difference of elements in ESS(S) and
k-NSSðSÞ is k, i.e., maxðja1 � b1j; ja2 � b2j; . . . jan � bnjÞÞ ¼ k.
For instance, the tuple ð4; 2; 1; 5; 3Þ is a 1-NSS(S) (i.e.,
maxðj5� 4j; j1� 2j; j2� 1j; j4� 5j; j3� 3jÞ ¼ 1), while the
tuple ð3; 1; 4; 5; 2Þ is a 2-NSS(S). In this work, we process
sequences of fragment distances from the viewpoint. We
relax the requirement of having exactly sorted sequences,
which allows for faster object-space sorting, but leads to
nearly sorted sequences that need to be sorted exactly
during the fragment processing stage.

There are many techniques that implicitly generate
nearly sorted sequences. For example, several hierarchical
spatial data structures provide mechanisms for simple and
efficient back-to-front traversal [31]. A simple way of
generating nearly sorted object-space visibility ordering of
a collection of 3D primitives is to use a BSP-tree, which has
been shown to cause near-linear primitive growth from
cutting [8]. The goal is to ensure that, after rasterization,
pixel fragments are at most k positions out of order. In a
preprocessing step, we can hierarchically build a BSP-tree
such that no leaf of the BSP tree has more than k elements.
Note that this potentially splits the original primitives into
multiple ones. To generate the actual ordering of the
primitives, we can use the well-known algorithm for
back-to-front traversal of a BSP-tree and render the set of
k primitives in the leaf nodes in any order. Since it is not
strictly necessary to implement this approach, simpler
sorting techniques are used in our work. In practice, most
data sets are quite well-behaved and even simple techni-
ques, such as sorting primitives by their centroid or even by
their first vertex, are often sufficient to generate nearly
sorted geometry. This was previously exploited in the
ZSWEEP algorithm [14]. In ZSWEEP, primitives are sorted
by considering a sweep plane parallel to the viewing plane.

As the sweep plane touches a vertex of a face, the face is
rasterized and the generated fragments are added to an
A-buffer using insertion sort. It was experimentally ob-
served that the insertion sort had nearly linear complexity
because fragments were in almost sorted order. To avoid a
memory space explosion in the A-buffer, ZSWEEP uses a
conservative technique for compositing samples [14]. In our
approach, we apply a more aggressive technique for
managing the A-buffer.

3.2 The k-Buffer

The original A-buffer [15] stores all incoming fragments in a
list, which requires a potentially unbounded amount of
memory. Our k-buffer approach stores only a fixed number
of fragments and works by combining the current frag-
ments and discarding some of them as new fragments
arrive. This technique reduces the memory requirement and
is simple enough to be implemented on existing graphics
architectures (see Section 4).

The k-buffer is a fragment stream sorter that works as
follows. For each pixel, the k-buffer stores a constant
k number of entries hf1; f2; . . . ; fki. Each entry contains the
distance of the fragment from the viewpoint, which is used
for sorting the fragments in increasing order for front-to-
back compositing and in decreasing order for back-to-front
compositing. For front-to-back compositing, each time a
new fragment fnew is inserted in the k-buffer, it dislodges the
first entry (f1). Note that boundary cases need to be handled
properly and that fnew may be inserted at the beginning of
the buffer if it is closer to the viewpoint than all the other
fragments or at the end if it is further. A key property of the
k-buffer is that, given a sequence of fragments such that
each fragment is within k positions from its position in the
sorted order, it will output the fragments in the correct
order. Thus, with a small k, the k-buffer can be used to sort a
k-nearly sorted sequence of n fragments in OðnÞ time. Note
that, to composite a k-nearly sorted sequence of fragments,
kþ 1 entries are required because both the closest and
second closest fragments must be available for the preinte-
grated table lookup. In practice, the hardware implementa-
tion is simplified by keeping the k-buffer entries unsorted
(see Fig. 3).

Compared to ZSWEEP, the k-buffer offers a less con-
servative fragment sorting scheme. Since only k entries are
considered at a time, if the incoming sequence is highly out
of order, the output will be incorrect, which may be
noticeable in the images. As shown in Section 5, even
simple and inexpensive object-space ordering leads to
fragments that are almost completely sorted.

3.3 Volume Rendering Algorithm

The volume rendering algorithm is built upon themachinery
presented above. First,we sort the faces of the tetrahedral cells
of the unstructured mesh on the CPU based on the face
centroids using the floating-point radix sort algorithm. To
properly handle boundaries, the vertices aremarkedwhether
they are internal or boundary vertices of the mesh. Next, the
faces are rasterized by the GPU, which completes the sort
using the k-buffer and composites the accumulated color and
opacity into the framebuffer (see Fig. 2). The complete
pseudocode for our CPU algorithm is given below:

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 3, MAY/JUNE 2005

CPU-SORT

Perform sort on face centroids

for each sorted face sf

Send sf to GPU for rasterization

4 K-BUFFER HARDWARE IMPLEMENTATION

The k-buffer can be efficiently implemented using the

multiple render target capability of the latest generation of

ATI graphics cards. Our implementation uses the ATI_

draw_buffers OpenGL extension, which allows writing

into up to four floating-point RGBA buffers in the fragment

shader. One of the buffers is used as the framebuffer and

contains the accumulated color and opacity of the frag-

ments that have already left the k-buffer. The remaining

buffers are used to store the k-buffer entries. In the simplest

case, each entry consists of the scalar data value v and the

distance d of the fragment from the eye. This arrangement

allows us to sort up to seven fragments in a single pass (six

entries from the k-buffer plus the incoming fragment).
The fragment program is comprised of three stages (see

Fig. 3 and the source code in the Appendices, which can be

found on the Computer Society Digital Library at http://

computer.org/tvcg/archives/htm). First, the program

reads the accumulated color and opacity from the frame-

buffer. Program execution is terminated if the opacity is

above a given threshold (early ray termination). Next, the

program fetches the current k-buffer entries from the

associated RGBA buffers and finds the two closest frag-

ments to the eye by sorting the entries based on the stored

distance d. For the incoming fragment, d is computed from

its view-space position, which is calculated in a vertex

program and passed to the fragment stage in one of the

texture coordinate registers. The scalar values of the two

closest entries and their distance is used to obtain the color

and opacity of the ray segment defined by the two entries

from the 3D preintegrated texture. Finally, the resulting

color and opacity are composited with the color and opacity

from the framebuffer, the closest fragment is discarded, and

the remaining entries are written back into the k-buffer (see

also Fig. 3). The complete pseudocode for our GPU
fragment sorter (k ¼ 3) is given below:

GPU-SORT

for each fragment fnew
Read color c1 from framebuffer

if c1 is opaque then

RETURN

Read fragments f1, f2, and f3 from k-buffer

n1 closest fragment fnew, f1, f2, or f3
ðr1; r2; r3Þ remaining fragments

n2 closest fragment r1, r2, or r3
d1 depth of n1, d2 depth of n2

v1 scalar of n1, v2 scalar of n2

�d d2 � d1
Read c2 from preintegrated table

using v1, v2, and �d

Composite c1 and c2 into framebuffer

Write r1, r2, and r3 back into k-buffer

Several important details have to be considered for the
hardware implementation of the algorithm. First, to look up
values in a screen-space buffer, e.g., when compositing a
primitive into a pixel buffer, previous implementations of
volume rendering algorithms used the technique of project-
ing the vertices of the primitive to the screen, from which
2D texture coordinates are computed [32], [33]. As illu-
strated in Fig. 4, this approach produces incorrect results,
unless the primitive is aligned with the screen, which
happens only when view-aligned slicing is used to sample
the volume. The reason for this problem is that the
rasterization stage performs perspective-correct texture
coordinate interpolation, which cannot be disabled on
ATI cards [2]. Even if perspective-correct interpolation
could be disabled, other quantities, e.g., the scalar data
value, would still need to be interpolated in perspective
space. Thus, to achieve the desired screen space lookup, one
has to compute the texture coordinates from the fragment
window position or use projective texture mapping [34].
Since projective texturing requires a division in the texture
fetch stage of the pipeline, we decided to use the former
solution in our implementation.

Second, strictly speaking, the result of simultaneously
reading and writing a buffer is undefined when primitives

CALLAHAN ET AL.: HARDWARE-ASSISTED VISIBILITY SORTING FOR UNSTRUCTURED VOLUME RENDERING 5

Fig. 3. Example of the k-buffer with k ¼ 3 (see also Section 4). (a) We
start with the incoming fragment and the current k-buffer entries and
(b) find the two entries closest to the viewpoint. (c) Next, we use the
scalar values ðv1; v2Þ and view distances ðd1; d2Þ of the two closest
entries to look up the corresponding color and opacity in the
preintegrated table. (d) In the final stage, the resulting color and opacity
are composited into the framebuffer and the remaining three entries are
written back into the k-buffer.

Fig. 4. Screen-space interpolation of texture coordinates. (a) The
rasterizer interpolates vertex attributes in perspective space, which is
typically used to map a 2D texture onto the faces of a 3D object.
(b) Using the projected vertices of a primitive as texture coordinates to
perform a lookup in a screen-space buffer yields incorrect results unless
the primitive is parallel with the screen. (c) Computing the texture
coordinates directly from the fragment window position or using
projective texture mapping results in the desired screen-space lookup.

are composited on top of each other in the same rendering
pass. The reason for the undefined output is that there is no
memory access synchronization between primitives; there-
fore, a fragment in an early pipeline stage may not be able
to access the result of a fragment at a later stage. Thus, when
reading from a buffer for compositing, the result of the
previous compositing step may not be in the buffer yet. Our
experience is that the read-write race condition is not a
problem as long as there is sufficient distance between
fragments in the pipeline, which happens, e.g., when
compositing slices in texture-based volume rendering
applications [5]. Unfortunately, compositing triangles of
varying sizes can yield artifacts, as shown by Fig. 5. One
way to remedy this problem is to draw triangles in an order
that maximizes the distance between fragments of over-
lapping primitives in the pipeline, e.g., by drawing the
triangles in equidistant layers from the viewpoint. We
advocate the addition of simultaneous read/write buffer
access on future generation hardware to resolve this
problem. We believe this feature will prove useful to a
wide variety of GPU algorithms.

Third, to properly handle holes (concavities) in the data,
vertices need to be tagged whether they belong to the
boundary or not. Ray segments with both vertices on the
boundary are assigned zero color and opacity. Unfortu-
nately, this approach removes cells on the edges of the
boundary as well. To solve this problem, a second tag is
required that indicates whether a k-buffer entry is internal
or external. This classification information is dynamically
updated at every step such that, when the two closest
entries are internal and the second closest entry is on the
boundary, all k-buffer entries are marked external. When
two external fragments are chosen as closest, the k-buffer
entries are reversed to internal and the color and opacity
from the preintegrated table is replaced with zero. Fortu-
nately, these two tags can be stored as the signs of the scalar
data value v and view distance d in the k-buffer. A further
advantage of tagging fragments is that the classification
allows for initializing and flushing the k-buffer by drawing
screen aligned rectangles. Unfortunately, the number of
instructions required to implement the logic for the two tags
and to initialize and flush the buffer exceeds current
hardware capabilities. Thus, currently, we use only a single
tag in our implementation for initializing the k-buffer and
do not handle holes in the data properly (the holes in Fig. 7b
are visible because of the smaller number of fragments

composited along the viewing rays going through them).
Since the algorithm described above can handle holes
properly, complete handling of holes will be added once
next generation hardware becomes available.

5 EXPERIMENTAL RESULTS

Our implementation was tested on a PC with a 3.2 GHz
Pentium 4 processor and 2,048 MB RAM running Windows
XP. We used OpenGL in combination with an ATI Radeon
9800 Pro with 256 MB RAM. To assess the quality of our
implementation, we ran extensive tests on several data sets
to measure both the image quality and the interactive
rendering rates.

5.1 CPU Sorting

We tested several commonly used sorting algorithms
described in [35], [36] for generating nearly sorted
sequences. Table 1 shows the performance results of various
routines that sort an array of one million floating-point
numbers. Given slight changes in the viewing direction, one
approach would be to use an algorithm optimized for re-
sorting previously sorted sequences (e.g., mergesort). We
found, however, that resorting the face centroids using a
faster sort is more efficient in practice because the ordering
can change significantly from frame to frame.

In our implementation, we used an out-of-place sorting
algorithm that achieves linear time complexity at the
expense of auxiliary memory. The algorithm chosen was
the Least Significant Digit (LSD) radix sort [36], which sorts
numbers at individual digits one at time, from the least to
the most significant one. As described, the algorithm does
not work for floating-point numbers. However, floating-
point numbers using the IEEE 754 standard (excluding
NaN-values) are properly ordered if represented as signed
magnitude integers. In order to use integer comparisons, a
transformation is applied such that negative numbers are
correctly handled. Discussion on the topic and several valid
transformations are described in [37]. We used the follow-
ing C++ function to convert floating-point numbers into
32-bit unsigned integers:

inline unsigned int float2fint(unsigned int f) {

return f ^ ((-(f >> 31)) | 0x80000000);

}

Instead of performing radix sort individually at each bit,
we worked on four blocks of 8-bits each. Sorting within
each block uses a counting sort algorithm [36] that starts by
counting the occurrences of the 256 different numbers in
each 8-bit block. A single pass through the input suffices to
count and store the ocurrences for all four blocks. The radix

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 3, MAY/JUNE 2005

Fig. 5. Rendering artifacts resulting from the fragment-level race

condition when simultaneously reading and writing the same buffer. In

our experience, these artifacts are difficult to notice.

TABLE 1
Analysis of Sorting Algorithms

sort performs four passes through the input, each pass
sorting numbers within a single block. Starting from the
LSD block (0-7 bits), the counting results for that block are
used to correctly position each number in an auxiliary array
with the same size as the input. Once this block is sorted, a
similar pass is issued to sort bits 8-15, this time using the
auxiliary array as input and the original input array as
output. Finally, two additional counting sorts are used to
sort bits 16-23 and 24-31. Overall, five passes through the
array are necessary to correctly sort the input, establishing
the linear complexity.

Our code was written in C++ without any machine-level
work, thus improvements can potentially be made to
increase the performance of CPU sorting even further. In
any case, our current sorting technique can sort upward of
15 million faces per second.

5.2 k-Buffer Analysis

As a measure of image quality, we implemented a software
version of our algorithm that uses an A-buffer to compute
the correct visibility order. As incoming fragments are
processed, we insert them into the ordered A-buffer and
record how deep the insertion was. This gives us a k size
that is needed for the data set to produce accurate results.
We also gain insight on how well our hardware imple-
mentation will behave for given k sizes. This analysis is
shown in Table 2. For each data set, we show the number of
total fragments generated when rendering them at 5122

resolution, the maximum length of any A-buffer pixel list,
the maximum k (i.e., the number of positions any fragment
had to move to its correct position in the sorted order minus
one for compositing), and the number of pixels that require
k to be larger than two or six, which are the values currently
supported by the hardware used. These results represent
the maximum values computed from 14 fixed viewpoints on
each data set.

Further analysis provides insight into the source of the
problem. In particular, by generating an image for each
fixed viewpoint of the data sets that reflect the distribution
of the degeneracies, we can consider the distribution of the
areas in which a small k size is not sufficient. Fig. 6 contains
a sample of these images. This analysis shows that the
problematic areas are usually caused by sliver cells, those
which are large but thin (i.e., have a bad aspect ratio). This
problem can be solved by finding the degenerate cells and
subdividing them into smaller, more symmetric cells.
Inspired by the regularity of Delaunay tetrahedralizations
[38, Chapter 5], we tried to isolate these bad cells by
analyzing how much they “differ” locally from a DT in the
following sense: A basic property that characterizes DT is

the fact that a tetrahedron belongs to the DT of a point set if
the circumsphere passing through the four vertices is
empty, meaning no other point lies inside the circumsphere.
By finding the degenerate cells of a data set that digress
most from this optimal property and subdividing them, we
can thereby lower the maximum k needed to accomplish a
correct visibility ordering. Another approach is to perform
mesh smoothing [39] operations on the data set. These
operations attempt to eliminate cells with bad shape
without creating additional tetrahedra. In our preliminary
experiments, we were able to reduce the maximum k

required to correctly render the f117 data set from 15 to 6
using these techniques.

Note that the artifacts caused by a limited k size in the
implementation are hard to notice. First, they are less
pronounced when using a transparent transfer function.
Also, even in our worst example (torso), only 0.6 percent of
the pixels could be incorrect. For a pixel to be incorrect, a
somewhat complex combination of events needs to happen,
it is not simply enough that the k-buffer ordering fails. Thus,
users normally do not notice any artifacts when interacting
with our system.

5.3 Render Performance

Table 3 and Table 4 show the performance of our hardware-
assisted visibility sorting algorithm on several data sets
using the average values of 14 fixed viewpoints. Table 3
reflects the GPU-based portion of the algorithm, which
includes the time required to rasterize all the faces, run the
fragment and vertex programs, composite the final image,
and draw it to the screen using glFinish. Table 4 includes
the time required to sort the faces on the CPU as well as the
GPU with k ¼ 2. This represents the rendering rates

CALLAHAN ET AL.: HARDWARE-ASSISTED VISIBILITY SORTING FOR UNSTRUCTURED VOLUME RENDERING 7

TABLE 2
k-Buffer Analysis

Fig. 6. Distribution of k requirements for the (a) torso and (b) spx2 data

sets. Regions denote k size required to obtain a correct visibility sorting,

for k > 6 (red), 2 < k � 6 (yellow), and k � 2 (green).

TABLE 3
Performance of the GPU Sorting and Drawing

achieved while interactively rotating and redrawing the
data set. All rendering was done with a 5122 viewport and a

1283 8-bit RGBA preintegrated table. In addition, a low
opacity colormap was used and early ray termination was

disabled, thus every fragment is rasterized to give more
accurate timings. With early ray termination enabled, we

have been able to achieve over six million cells per second

with the fighter data set using a high opacity colormap due
to the speedup in fragment processing. In addition, we can

improve the performance of our algorithm by exploiting
pipeline parallelism between the CPU and GPU, i.e., sorting

is performed on the CPU for the next frame while the
current frame is being rendered by the GPU. Through the

use of this parallelism, we have been able to effectively
remove the CPU time and reduce the total rendering time to

the GPU time.
Our technique requires no preprocessing, and it can be

used for handling time-varying data. In addition, our
implementation allows interactive changes to the transfer

function. These operations are only dependent on the GPU
for sorting and rendering (see Table 3), therefore, the CPU

portion of the algorithm is not performed. The user

interface consists of a direct manipulation widget that
displays the user specified opacity map together with the
currently loaded colormap (see Fig. 7 and Fig. 1). Modifying
the opacity or loading a new colormap triggers a preinte-
grated table update which renders the data set using the
GPU sort only. We found that, in general, a 1283 preinte-
grated table is sufficient for high quality rendering.

5.4 Comparison

Table 5 compares the timing results of our algorithm with
those of other methods. All results were generated using
14 fixed viewpoints and reflect the total time to sort and
draw the data sets in a 5122 window. We used an optimized
version of the Shirley-Tuchman PT algorithm [6] imple-
mented by Max et al. that uses the MPVO with nonconvex-
ities (MPVONC) algorithm for visibility ordering [7]. The
bottleneck of the PT algorithm is the time required to
compute the polygonal decomposition necessary for ren-
dering the tetrahedra. Another limitation is that the vertex
information needs to be dynamically transferred to the GPU
with every frame. We avoid this problem in our method
because we can storing the vertices in a vertex array on the
GPU. This difference results in similar GPU timings with
the two methods even though we are using vertex and
fragment programs. Wylie et al. [29] describe a GPU
implementation of the PT algorithm, called GPU Acceler-
ated Tetrahedra Rendering (GATOR), in which the tetra-
hedral decomposition is accomplished using a vertex
shader. However, the complexity of this vertex shader
limits the performance on current GPUs. The results
generated for the GATOR method were accomplished
using their code, which orders the tetrahedra using the
MPVONC algorithm. Our rendering rates are much faster

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 3, MAY/JUNE 2005

TABLE 4
Total Performance of HAVS

TABLE 5
Time Comparison in Milliseconds with Other Algorithms

Fig. 7. Results of rendering the (a) torso, (b) spx, and (c) kew data sets with the HAVS algorithm.

then these PT methods, while producing higher quality
images through the use of a 3D preintegrated table. Another
recent technique is the GPU-based ray casting of Weiler
et al. [13], [40]. The image quality of this technique is similar
to that of our work, but the algorithm has certain limitations
on the size of the data sets that make it less general than
cell-projection techniques. In fact, the fighter data set we
used for comparison could not be loaded properly due to
hardware memory limitations. The results for this algo-
rithm were generated using a DirectX-based ray caster
described in Bernardon et al. [41], which is approximately
twice as fast as the original technique reported by Weiler
et al.. The ZSWEEP method [14] uses a hybrid image and
object-space sorting approach similar to our sorting net-
work, but does not leverage the GPU for better perfor-
mance. The code that was used in this portion of our timing
results was provided by Ricardo Farias. All of these
approaches require a substantial amount of connectivity
information for rendering, resulting in a higher memory
overhead than our work. Another advantage of our
algorithm is the simplicity of implementation in software
and hardware. The software techniques described above
(PT and ZSWEEP) require a substantial amount of code for
sorting and cell projection. Implementations of the hard-
ware techniques (GATOR and HW Ray Caster) involve
developing long and complex fragment and vertex pro-
grams which can be difficult to write and debug.

6 DISCUSSION

When we started this work, we were quite skeptical about

the possibility of implementing the k-buffer on current

GPUs. There were several hurdles to overcome. First, given

the potentially unbounded size of pixel lists, it was less than

obvious to us that small values of k would suffice for large

data sets. Another major problem was the fact that reading

and writing to the same texture is not a well-defined

operation on current GPUs. We were pleasantly surprised

to find that, even on current hardware, we get only minor

artifacts.

There are several issues that we have not studied in

depth. The most important goal is to develop techniques

that can refine data sets to respect a given k. Currently, our

experiments show that, when the k-buffer is not large

enough, a few pixels are rendered incorrectly. So far, we

have found that most of our computational data sets are

well-behaved and the wrong pixels have no major effect on

image quality. In a practical implementation, one could

consider raising the value of k or increasing the accuracy of

the object-space visibility sorting algorithm once the user

stops rotating the model. Using the smallest possible k is

required for efficiency.

Some of our speed limitations originate from limitations

of current GPUs. In particular, the lack of real conditionals

forces us to make a large number of texture lookups that we

can potentially avoid when next generation hardware is

released. Furthermore, the limit on the instruction count has

forced us into an incorrect hole handling method. With

more instructions, we could also incorporate shaded

isosurface rendering without much difficulty.
Finally, there is plenty of interesting theoretical work

remaining to be done. It would be advantageous to develop

input and output sensitive algorithms for determining the
object-space ordering and estimation of the minimum k size

for a given data set. We have preliminary evidence that, by

making the primitives more uniform in size, k can be
lowered. We believe it might be possible to formalize these

notions and perform proofs along the lines of the work of

Mitchell et al. [42] and de Berg et al. [43].

7 CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel algorithm for volume

rendering unstructured data sets. Our algorithm exploits

the CPU and GPU for sorting both in object-space and

image-space. We use the CPU to compute a partial ordering

of the primitives for generating a nearly sorted fragment

stream. We then use the k-buffer, a fragment-stream sorter

of constant depth, on the GPU for complete sorting on a

per-fragment basis. Despite limitations of current GPUs, we

show how to implement the k-buffer efficiently on an ATI

Radeon 9800.

Our technique can handle arbitrary nonconvex meshes

with very low memory overhead. Similarly to the

HW-based ray caster, we use a floating-point-based

framebuffer that minimizes rendering artifacts and we can

easily handle both parallel and perspective projections. But,

unlike those techniques, the maximum data size is bounded

only by the available main memory of the system. In our

paper, we provide a comparison of our technique with

previous algorithms for rendering unstructured volumetric

data and enumerate the advantages in speed, ease of

implementation, and adaptability that our work provides.
We would like to reemphasize the simplicity of our

technique. At the same time that our technique is shown to

be faster and more general than others, the implementation

is very compact and easy to code. In fact, the rendering code

in our system consists of less than 200 lines. We believe
these qualities are likely to make it the method of choice for

rendering unstructured volumetric data.
There are several interesting areas for future work.

Further experiments and code optimization are necessary
for achieving even faster rendering rates. In particular, we

hope that next-generation hardware will ease some of the

current limitations and will allow us to implement sorting

networks with larger k sizes. Real fragment program
conditionals will allow us to reduce the effective number

of texture lookups. On next generation hardware, we will

also be able to implement a more efficient early ray

termination strategy. Another interesting area for future
research is rendering dynamic meshes. We intend to

explore techniques that do not require any preprocessing

and can be used for handling dynamic data. Finally, we
would like to devise a theoretical framework for analyzing

the direct trade-off between the amount of time spent

sorting in object-space and image-space.

CALLAHAN ET AL.: HARDWARE-ASSISTED VISIBILITY SORTING FOR UNSTRUCTURED VOLUME RENDERING 9

ACKNOWLEDGMENTS

The authors thank Joe Kniss for suggesting that the k-buffer

could be implemented efficiently on ATI hardware. They

thank Ricardo Farias for the ZSWEEP code and the

insightful discussions that helped shape many ideas

presented in this paper. Carlos Scheidegger and Huy Vo

provided invaluable code contributions. In particular, Vo

wrote the fast radix sort used in their system. They thank

Fábio Bernardon for the use of his HW Ray Caster code. The

Teem toolkit [44] proved very useful for processing the data

sets and results. They thank Mark Segal from ATI for the

donated hardware and his prompt answers to their

questions. They are grateful to Patricia Crossno, Shachar

Fleishman, Nelson Max, and Peter Shirley for helpful

suggestions and criticism. The authors also acknowledge

Bruce Hopenfeld and Robert MacLeod (University of Utah)

for the heart data set, Bruno Notrosso (Electricite de France)

for the spx data set, Hung and Buning (NASA) for the blunt

fin data set, and Neely and Batina (NASA) for the fighter

data set. Steven P. Callahan is supported by the US

Department of Energy (DOE) under the VIEWS program.

Milan Ikits is supported by the US National Science

Foundation (NSF) grant ACI-0078063 and the DOE Ad-

vanced Visualization Technology Center. Cláudio T. Silva is

partially supported by the DOE under the VIEWS program

and the MICS office, the NSF under grants CCF-0401498,

EIA-0323604, and OISE-0405402, and a University of Utah

Seed Grant. The work of João L.D. Comba is supported by a

CNPq grant 540414/01-8 and FAPERGS grant 01/0547.3.

REFERENCES

[1] N.L. Max, “Optical Models for Direct Volume Rendering,” IEEE
Trans. Visualization and Computer Graphics, vol. 1, no. 2, pp. 99-108,
June 1995.

[2] ATI, “Radeon 9500/9600/9700/9800 OpenGL Programming and
Optimization Guide,” 2003, http://www.ati.com.

[3] S. Roettger, M. Kraus, and T. Ertl, “Hardware-Accelerated
Volume and Isosurface Rendering Based on Cell-Projection,”
Proc. IEEE Visualization, pp. 109-116, Oct. 2000.

[4] S. Guthe, S. Roettger, A. Schieber, W. Straßer, and T. Ertl, “High-
Quality Unstructured Volume Rendering on the PC Platform,”
Proc. ACM SIGGRAPH/Eurographics Workshop Graphics Hardware,
pp. 119-126, Sept. 2002.

[5] M. Ikits, J. Kniss, A. Lefohn, and C. Hansen, GPU Gems:
Programming Techniques, Tips, and Tricks for Real-Time Graphics,
pp. 667-692, Addison Wesley, 2004.

[6] P. Shirley and A. Tuchman, “A Polygonal Approximation to
Direct Scalar Volume Rendering,” Proc. San Diego Workshop
Volume Visualization, vol. 24, no. 5, pp. 63-70, Nov. 1990.

[7] P.L. Williams, “Visibility-Ordering Meshed Polyhedra,” ACM
Trans. Graphics, vol. 11, no. 2, pp. 103-126, Apr. 1992.

[8] J. Comba, J.T. Klosowski, N. Max, J.S.B. Mitchell, C.T. Silva, and
P.L. Williams, “Fast Polyhedral Cell Sorting for Interactive
Rendering of Unstructured Grids,” Computer Graphics Forum,
vol. 18, no. 3, pp. 369-376, Sept. 1999.

[9] C.T. Silva, J.S. Mitchell, and P.L. Williams, “An Exact Interactive
Time Visibility Ordering Algorithm for Polyhedral Cell Com-
plexes,” Proc. IEEE Symp. Volume Visualization, pp. 87-94, Oct.
1998.

[10] M. Kraus and T. Ertl, “Cell-Projection of Cyclic Meshes,” Proc.
IEEE Visualization, pp. 215-222, Oct. 2001.

[11] R. Cook, N. Max, C. Silva, and P. Williams, “Efficient, Exact
Visibility Ordering of Unstructured Meshes,” IEEE Trans. Visua-
lization and Computer Graphics, vol. 1, no. 6, pp. 695-707, Nov./Dec.
2004.

[12] M. Weiler, M. Kraus, M. Merz, and T. Ertl, “Hardware-Based Ray
Casting for Tetrahedral Meshes,” Proc. IEEE Visualization, pp. 333-
340, Oct. 2003.

[13] M. Weiler, P.N. Mallón, M. Kraus, and T. Ertl, “Texture-Encoded
Tetrahedral Strips,” Proc. Symp. Volume Visualization 2004, pp. 71-
78, 2004.

[14] R. Farias, J. Mitchell, and C.T. Silva, “ZSWEEP: An Efficient and
Exact Projection Algorithm for Unstructured Volume Rendering,”
Proc. IEEE Volume Visualization and Graphics Symp., pp. 91-99, 2000.

[15] L. Carpenter, “The A-Buffer, an Antialiased Hidden Surface
Method,” Computer Graphics (Proc. SIGGRAPH 84), vol. 18, no. 3,
pp. 103-108, July 1984.

[16] L. Guibas, “Computational Geometry and Visualization: Problems
at the Interface,” Scientific Visualization of Physical Phenomena,
N.M. Patrikalakis, ed., pp. 45-59, Springer-Verlag, 1991.

[17] N.L. Max, “Sorting for Polyhedron Compositing,” Focus on
Scientific Visualization, pp. 259-268, Springer-Verlag, 1993.

[18] R. Farias and C.T. Silva, “Out-of-Core Rendering of Large,
Unstructured Grids,” IEEE Computer Graphics and Applications,
vol. 21, no. 4, pp. 42-51, July/Aug. 2001.

[19] I.E. Sutherland, R.F. Sproull, and R.A. Schumacker, “A Character-
ization of Ten Hidden-Surface Algorithms,” ACM Computing
Surveys, vol. 6, no. 1, pp. 1-55, Mar. 1974.

[20] M. Newell, R. Newell, and T. Sancha, “A Solution to the Hidden
Surface Problem,” Proc. ACM Ann. Conf., pp. 443-450, 1972.

[21] C. Stein, B. Becker, and N. Max, “Sorting and Hardware Assisted
Rendering for Volume Visualization,” Proc. IEEE Symp. Volume
Visualization, pp. 83-89, Oct. 1994.

[22] H. Fuchs, Z.M. Kedem, and B.F. Naylor, “On Visible Surface
Generation by A Priori Tree Structures,” Computer Graphics (Proc.
SIGGRAPH 80), vol. 14, no. 3, pp. 124-133, July 1980.

[23] C. Wittenbrink, “R-Buffer: A Pointerless A-Buffer Hardware
Architecture,” Proc. ACM SIGGRAPH/Eurographics Workshop Gra-
phics Hardware, pp. 73-80, 2001.

[24] A. Mammen, “Transparency and Antialiasing Algorithms Im-
plemented with the Virtual Pixel Maps Technique,” IEEE
Computer Graphics and Applications, vol. 9, pp. 43-55, July 1984.

[25] C. Everitt, “Interactive Order-Independent Transparency,”
NVIDIA, technical report, 2001, http://developer.nvidia.com.

[26] N.P. Jouppi and C.-F. Chang, “Z3: An Economical Hardware
Technique for High-Quality Antialiasing and Transparency,” Proc.
ACM SIGGRAPH/Eurographics Workshop Graphics Hardware, pp. 85-
93, Aug. 1999.

[27] P. Kipfer, M. Segal, and R. Westermann, “Uberflow: A GPU-Based
Particle Engine,” Eurographics Symp. Proc. Graphics Hardware 2004,
pp. 115-122, 2004.

[28] S. Roettger and T. Ertl, “Cell Projection of Convex Polyhedra,”
Proc. 2003 Eurographics/IEEE TVCG Workshop Volume Graphics,
pp. 103-107, 2003.

[29] B. Wylie, K. Moreland, L.A. Fisk, and P. Crossno, “Tetrahedral
Projection Using Vertex Shaders,” Proc. IEEE/ACM Symp. Volume
Graphics and Visualization, pp. 7-12, 2002.

[30] T. Aila, V. Miettinen, and P. Nordlund, “Delay Streams for
Graphics Hardware,” ACM Trans. Graphics, vol. 22, no. 3, pp. 792-
800, July 2003.

[31] H. Samet, “The Quadtree and Related Hierarchical Data Struc-
tures,” ACM Computing Surveys, vol. 16, no. 2, pp. 187-260, 1984.

[32] J.M. Kniss, S. Premo�zze, C.D. Hansen, P. Shirley, and A.
McPherson, “A Model for Volume Lighting and Modeling,” IEEE
Trans. Visualization and Computer Graphics, vol. 9, no. 2, pp. 150-
162, 2003.

[33] J. Krüger and R. Westermann, “Acceleration Techniques for GPU-
Based Volume Rendering,” Proc. IEEE Visualization, pp. 287-292,
2003.

[34] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. Haeberli,
“Fast Shadows and Lighting Effects Using Texture Mapping,”
Proc. ACM SIGGRAPH, pp. 249-252, July 1992.

[35] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, second ed., pp. 40, 127-173. McGraw-Hill, 2001.

[36] R. Sedgewick, Algorithms in C, third ed., pp. 298-301, 403-437.
Addison-Wesley, 1998.

[37] H. Warren Jr., Hacker’s Delight, pp. 261-265. Addison-Wesley,
2002.

[38] H. Edelsbrunner, Geometry and Topology for Mesh Generation.
Cambridge Univ. Press, 2001.

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 11, NO. 3, MAY/JUNE 2005

[39] L. Freitag, P. Knupp, T. Munson, and S. Shontz, “A Comparison of
Optimization Software for Mesh Shape-Quality Improvement
Problems,” Proc. 11th Int’l Meshing Roundtable, pp. 29-40, 2002.

[40] M. Weiler, M. Kraus, M. Merz, and T. Ertl, “Hardware-Based
View-Independent Cell Projection,” IEEE Trans. Visualization and
Computer Graphics, vol. 9, no. 2, pp. 163-175, 2003.

[41] F.F. Bernardon, C.A. Pagot, J.L.D. Comba, and C.T. Silva, “GPU-
Based Tile Ray Casting Using Depth Peeling,” Technical Report
UUSCI-2004-006, SCI Inst., 2004.

[42] J.S.B. Mitchell, D.M. Mount, and S. Suri, “Query-Sensitive Ray
Shooting,” Int’l J. Computational Geometry and Applications, vol. 7,
no. 4, pp. 317-347, Aug. 1997.

[43] M. de Berg, M.J. Katz, A.F. van der Stappen, and J. Vleugels,
“Realistic Input Models for Geometric Algorithms,” Proc. Ann.
Symp. Computational Geometry, pp. 294-303, 1997.

[44] G.L. Kindlmann, “The Teem Toolkit,” 2003, http://teem.source
forge.net.

Steven P. Callahan received the BS degree in
computer science from Utah State University in
2002. He is currently pursuing the MS degree in
computational engineering and science at the
University of Utah, where he works as a
research assistant in the Scientific Computing
and Imaging Institute. His research interests
include graphics, visualization, and large-scale
scientific computing.

Milan Ikits is a PhD candidate in the School of
Computing at the University of Utah. His
research interests lie in the areas of computer
graphics, scientific visualization, immersive en-
vironments, and human-computer interaction.
He received the Diploma in computer science
from the Budapest University of Technology and
Economics in 1997. He joined Immersion Med-
ical in 2004, where he has been involved with
the company’s research and development ef-

forts toward advancing the state-of-the-art in surgical simulation. He has
published several papers and book chapters on using immersive
environments for scientific visualization. He is also the creator of the
popular OpenGL Extension Wrangler library. He is a student member of
the IEEE.

João L.D. Comba received the Bachelor’s
degree in computer science from the Federal
University of Rio Grande do Sul, Brazil, the MS
degree in computer science from the Federal
University of Rio de Janeiro, Brazil, and the PhD
degree in computer science from Stanford
University. He is an associate professor of
computer science at the Federal University of
Rio Grande do Sul, Brazil. His main research
interests are in graphics, visualization, spatial

data structures, and applied computational geometry. His current
projects include the development of algorithms for large-scale scientific
visualization, data structures for point-based modeling and rendering,
and general-purpose computing using graphics hardware. He is a
member of the ACM Siggraph.

Cláudio T. Silva received the Bachelor’s degree
in mathematics from the Federal University of
Ceara, Brazil, and the MS and PhD degrees in
computer science from the State University of
New York at Stony Brook. He is an associate
professor of computer science at the University
of Utah and a member of the Scientific Comput-
ing and Imaging (SCI) Institute. His main
research interests are in graphics, visualization,
applied computational geometry, bioinformatics,

and high-performance computing. His current projects include the
development of out-of-core and streaming algorithms for large-scale
scientific visualization, techniques for point-based modeling and
rendering, and efficient algorithms for modern graphics hardware. He
has published more than 60 publications in international conferences
and journals, holds five US patents, and presented tutorials at ACM
SIGGRAPH, Eurographics, and IEEE Visualization conferences. He
serves on numerous program committees and is papers cochair of the
IEEE Visualization 2005 conference. He is a member of the ACM,
Eurographics, and IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CALLAHAN ET AL.: HARDWARE-ASSISTED VISIBILITY SORTING FOR UNSTRUCTURED VOLUME RENDERING 11

