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Abstract
We present iRun, a system for interactively volume rendering large unstructured grids on commodity PCs. Ren-
dering arbitrarily large datasets has been an active area of research for many years. However, the techniques
required for polygonal data do not directly apply to the more complex problem of unstructured grids. In this
paper, we describe the data structures and algorithms necessary to store large datasets on disk, keep an active
portion of the dataset in main memory, and render visible regions to one or more displays. Our system leverages a
combination of out-of-core data management, distributed rendering, hardware-accelerated volume rendering, and
dynamic level-of-detail. On a commodity PC, our system can preprocess a dataset consisting of about 36 million
tetrahedra in about an hour and can render it interactively with one or more PCs.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics System

1. Introduction

Interactive rendering of arbitrarily large datasets is a funda-
mental problem in computer graphics and scientific visual-
ization, and a critical capability for many real applications.
Interactive visualization of large datasets poses substantial
challenges (see survey by Silva et al. [SCESL02]). Current
systems for rendering large datasets employ many of the el-
ements proposed by Clark [Cla76] including the use of hier-
archical spatial data structures, level-of-detail (LOD) man-
agement, hierarchical view-frustum and occlusion culling,
and working-set management (geometry caching). Systems
along the lines of the one envisioned by Clark have been
used effectively in industrial applications for scenes com-
posed primarily of polygonal geometry.

For more complex scenes, such as those composed of
tetrahedral elements, the problem is not as well studied
and can be more difficult for several reasons. First, render-
ing tetrahedra is not natively supported by current graphics
hardware. Thus, efficient algorithms for handling this type
of data robustly are required. Second, tetrahedra must be
projected in visibility order to accurately composite trans-
parency. This requires special care to traverse the out-of-
core hierarchy in the correct order. Finally, visibility tech-
niques such as occlusion culling are not practical because
the opacity of the volume is controlled by the user. iRun ad-
dresses these issues while still maintaining interactivity on
extremely large dataset.

The visualization pipeline may be broken down into four

major stages: retrieval from storage, processing in main
memory, rendering in the Graphics Processing Unit (GPU),
and display on the screen. The performance of each of these
stages is limited by several potential bottlenecks (e.g., disk
or network bandwidth, main memory size, GPU triangle
throughput, and screen resolution). iRun uses out-of-core
data management and speculative visibility prefetching to
maintain a working-set of the geometry in memory. Our ren-
dering approach uses GPU-assisted volume rendering with
a dynamic set of tetrahedra and uses an out-of-core LOD
traversal. Finally, our system was implemented in VTK [Kit]
and allows distributed rendering for high-resolution dis-
plays. Using a single commodity PC, we show how our sys-
tem can render datasets consisting of 36 million tetrahedra
while maintaining interactive frame rates.

The main contributions of this paper are:

• We present a system that can volume render tens of mil-
lions of tetrahedra at interactive frame rates on commod-
ity PCs;

• We introduce new data structures for out-of-core manage-
ment of large volumetric meshes;

• Our system uses a novel approach for dynamic level-of-
detail traversal of our out-of-core data structures using
speculative prefetching;

• We show how state-of-the-art, hardware-accelerated vol-
ume rendering can be used in a distributed environment
to interactively render these large datasets to multiple dis-
plays.
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The rest of this paper is organized as follows. Section 2
surveys related work. Section 3 provides an overview of
our volume rendering system, including preprocessing and
traversal of out-of-core data structures, hardware-assisted
volume rendering of the active set, and distributed render-
ing for high-resolution displays. The results of our algorithm
are shown in Section 4. In Section 5 we discuss some of
the issues we encountered while developing the iRun system
and differentiate our approach from similar approaches for
large polygonal models. Finally, in Section 6 we conclude
and provide areas for future research.

2. Related Work

Walk-Through Systems. Pioneering work on rendering
large models at interactive rates by Clark [Cla76] continues
to be the basis for many systems used today. His original
system proposed novel data management techniques such
as hierarchical spatial data structures, level-of-detail (LOD)
management, hierarchical view-frustum culling and occlu-
sion culling, and working-set management. The first system
to handle models larger than main memory was introduced
by Funkhouser et al. [FST92]. This system maintained in-
teractive rates for large architectural models by using spec-
ulative prefetching based on from-region visibility. Work by
Aliaga et al. [ACW∗99] interactively renders models with
tens of millions of polygons by employing LOD manage-
ment, visibility culling and pre-rendered image. The draw-
back to this approach is that it uses a preprocessing step that
requires user intervention and weeks to run. Recent work
by Varadhan and Manocha [VM02] uses a parallel approach
with workstations to perform hierarchical LOD rendering
and update the working-set based view-frustum and simpli-
fication culling. More recently, the iWalk system introduced
by Correa et al. [CKS02] uses efficient data structures to ren-
der large out-of-core polygonal models on a commodity PC.
iWalk uses a multithreaded approach which couples specu-
lative prefetching with from-point visibility to manage the
working-set while rendering the scene. The system reduces
the preprocessing step to minutes while remaining fully au-
tomatic. The iRun design is inspired by iWalk, but requires
a more complex solution for volume rendering on unstruc-
tured grids. Due to many similarities in the two approaches,
we defer comparisons to Section 5.

Visibility. For polygonal meshes, visibility algorithms such
as view-frustum and occlusion culling are important for
maintaining interactive frame rates (see [COCSD03] for a
recent survey). For volume rendering, occlusion culling is
not feasible due to transparency. Therefore, we are more
interested in view-frustum techniques that allow efficient
prefetching of visible geometry. El-Sana et al. [ESSS01]
describe a system that efficiently combines LOD traversal
with occlusion culling for interactive rendering. Correa et
al. [CKS03] describe a multithreaded from-point visibility
approach which is used in the iWalk system and relies on
occlusion and view-frustum culling to maintain interactivity.

Out-of-Core Algorithms. External memory data struc-
tures are an important component for dealing with mod-
els too large for main memory. Out-of-core structures have
been used for memory sensitive applications such as large
model simplification [CRMS03, Lin00], isosurface extrac-
tion [CSS98], and volume rendering [FS01]. For rendering
large models, hierarchical external data structures are fre-
quently used. El-Sana and Chiang [ESC00] build out-of-
core, view-dependent trees that are used to maintain interac-
tive LOD. Our system uses a similar approach to Cignoni et
al. [CFM∗04] which uses an out-of-core octree [Sam90] to
store a multi-resolution or LOD representation of the full
mesh for volume rendering. However, instead of storing pro-
gressive refinement operations, we explicitly store LOD ge-
ometry in the octree nodes.

Hardware-Assisted Volume Rendering. Leveraging the
performance of graphics processing units (GPUs) for di-
rect volume rendering has received considerable attention
(for a recent survey, see [SCCB05]). Shirley and Tuch-
man [ST90] introduces the Projected Tetrahedra (PT) algo-
rithm, which splits tetrahedra into GPU renderable triangles
based on the view direction. For correct compositing, the
neighborhood information of the original mesh is used to de-
termine an order dependence. More recent work by Weiler et
al. [WKME03] performs ray-casting on the mesh by storing
the neighbor information on the GPU and marching through
the tetrahedra in rendering passes. As with PT, the hardware
ray caster requires the neighbor information of the tetrahedra
for correct visibility ordering. A more extensible approach
was introduced by Callahan et al. [CICS05], which oper-
ates on the triangles that compose the mesh and requires
no neighbor information. This makes immediate mode ren-
dering, working-set management, LOD, and preprocessing
much simpler than it would be by using the tetrahedra di-
rectly. Because of this, the algorithm has since been ex-
tended to perform dynamic LOD [CCSS05] as well as pro-
gressive volume rendering [CBPS06] for large datasets. iRun
leverages this algorithm to render the active set of geometry
and uses the dynamic LOD as a means to maintain interac-
tivity.

Distributed rendering. Though our algorithm can effi-
ciently render large unstructured grids on a single commod-
ity PC, it was designed to be employed on a cluster of PCs
in a distributed manner. Chromium [HHN∗02] is a system
that was introduced to perform parallel rendering on a clus-
ter of graphics workstations. Distributed rendering can also
be used to visualize the data on larger displays. Moreland
and Thompson [MT03] describe a parallel rendering algo-
rithm that uses Chromium and an image-composite engine
(ICE-T) built with VTK for visualizing the results on a dis-
play wall. A major distinction between iRun and Chromium
is that while Chromium pushes data through the pipeline to
the render devices, iRun pulls data from a geometry-cache to
the render devices. This pulling approach results in a concep-
tually simpler framework for parallel rendering where the
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Figure 1: iRun overview. (a) The user interacts with the UI by changing the camera from which our system predicts future
camera positions. (b) Our octree traversal algorithm selects the octree nodes that are in the frustum, determines the appropriate
LOD, and arranges the nodes in visibility order. (c) The geometry cache keeps the working-set of triangles while a separate
thread is used to fetch additional geometry from disk. (d) Finally, the geometry is sent to the renderer for object-space sorting
followed by a hardware-assisted image-space sorting and compositing which is performed using a modified version of the HAVS
algorithm.

CPU and GPU are tightly connected and data is fetched to
the geometry-cache as needed before being transformed into
graphics primitives.

3. Interactive Out-of-Core Volume Rendering

iRun interactively renders large unstructured grids in several
stages, as illustrated in Figure 1. First, a preprocessing step
prepares the data for hierarchical traversal. Second, our al-
gorithm interactively traverses the out-of-core data structure
and keeps a working-set (geometry cache) of the geometry in
memory by using visibility culling, speculative prefetching,
and LOD management. Finally, the contents of the geome-
try cache are rendered using a hardware-assisted visibility
sorting algorithm. This scales to multiple PCs for improved
image quality or large display capability. Figure 2 shows a
screenshot of interactive explorations using iRun.

3.1. Preprocessing

iRun utilizes an efficient and fully automatic preprocessing
algorithm that operates out-of-core for large datasets. We be-
gin by extracting the unique triangles that compose the tetra-
hedral mesh. This is done out-of-core by writing the four
triangle indices of each tetrahedron into a file and using an
external sort to arrange the indices from first to last. The re-
sulting file contains adjacent duplicate entries for faces that
are on the inside of the mesh and unique entries for bound-
ary triangles. A cleanup pass is performed over the triangle
index file to remove duplicates and to create a similar file
that contains a boundary predicate for each triangle.

iRun employs an out-of-core, hierarchical octree [Sam90]
in which each node contains an independent renderable set
of vertices and triangles, similar to iWalk. Because the num-
ber of vertices in a tetrahedral mesh is generally much
smaller than the connectivity information, for simplicity, we
keep the vertex array in-core while creating our out-of-core

hierarchy. This allows us to keep the global indexing of the
triangles throughout our preprocessing which facilitates fil-
tering in the final stages. Our octree is constructed by read-
ing the triangle index and boundary predicate files in blocks
and adding the triangles one-by-one to the out-of-core octree
structure.

While adding triangles to the octree, we perform triangle-
box intersection to determine one or more nodes that contain
the triangle. If the triangle spans multiple nodes, we replicate
and insert it into each. This can lead to the insertion of a tri-
angle into a node where any or all of the triangle vertices lie
outside the node. When a node reaches a preset capacity the
node is split into octants and the triangles are redistributed.
The result of this phase is a directory structure representing
the octree and a hierarchy structure file that contains the oc-
tree structure information (see [CKS02]).

A subsequent LOD propagation stage works by populat-
ing a parent node with a subset of the triangles that are not
on the boundary from each of the children. Again, the tri-
angles are replicated as they move up the octree to create
self-contained nodes. The subset is selected based on a dy-
namic LOD strategy introduced by [CCSS05]. The idea is to
sample the full resolution geometry to achieve a subset that
minimizes the image error. We choose to select the triangles
that are the largest to maximize node coverage and thereby
minimize image error for that node. To ensure that there are
no holes in the LOD structure, the boundary triangles are
simplified to a reduced representation (e.g., 5%) of the orig-
inal and inserted into every intersecting node except the leaf
nodes.

Finally, a cleanup pass on the octree is performed which
inserts the referenced vertices into each octree node and clips
the triangles based on the bounding box of the node.
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Figure 2: A close view of the earthquake simulation data Sf1
with 14 millions of tetrahedra. The image is rendered in iRun
using a full 512MB RAM geometry cache. iRun allows inter-
active exploration of datasets too large for main-memory.

3.2. Out-of-Core Dataset Traversal

iRun uses an out-of-core traversal algorithm that has been
extensively optimized for volume rendering. For each cam-
era received from the user interface, we apply frustum-
culling on the octree to find all nodes that are visible in this
view and mark them as visible nodes. Depending on whether
or not the user is interacting with iRun, the LOD will de-
cide which nodes are to be rendered next. Next, everything
is passed to the visibility sorter and only those that have been
cached in the geometry cache are used for rendering while
the others are put onto the fetching queue. iRun also does
camera prediction for each frame by linearly extrapolating
previous camera parameters. All of the nodes selected in the
predicted camera will also be put on the fetching queue.

The LOD management in iRun is a top-down approach
working in a priority-driven manner. Given a priority func-
tion P(C,N) which assigns priority for every node N of
the octree with respect to the camera C, the LOD process
starts by adding the root R to a priority queue with the key
of P(C,R). Next, iterations of replacing the highest priority
node of the queue with its children are repeatedly executed
until such refinement will exceed a predefined number of tri-
angles.

In our experiments, we use two different priority functions
to control the LOD of iRun. The first is a Bread-First-Search
(BFS) based function that is used during user’s interactions:
PBFS(C,N) =< l,d >, where l is the depth of N and d is the
distance of the bounding box of N to the camera C. In this
case, each node’s priority is primarily determined by how
far it is from the root and subsequently by its distance to the
camera when the nodes are on the same level. Briefly, our
goal is to evenly distribute data of the octree on the screen to
improve the overall visualization of the dataset. An example
of this scheme is shown in Figure 3.

While interacting with iRun, the target frame rate can be

Figure 3: A snapshot of iRun refining the LOD: The image
on the left is rendered as the user would see it from the cur-
rent camera position. On the right is a bird’s-eye view of the
same set of visible nodes. Different colors indicate different
levels-of-detail. The geometry cache is limited to only 64MB
of RAM in this case.

achieved by setting a limit on the maximum number of trian-
gles rendered in the current frame. This number is calculated
based on the number of triangles that were rendered, and the
rendering time, for the previous frame.

For increased image quality at a given view, iRun will au-
tomatically adjust itself to increase the LOD using as much
memory as possible when interaction stops. Since we want
to cover as much of the screen as possible, a priority func-
tion reflecting the projected screen area is necessary for the
LOD. We define Parea(C,N) = A, where A is the projected
area of the bounding box of N onto the screen. However, this
function can be easily replaced by any other heuristic ap-
proaches, such as those reflecting nodes scalar ranges, trans-
fer functions, etc., to achieve the best image quality.

This approach, however, could raise a problem when the
user begins interaction again and the geometry cache is al-
ready full. Our next frame would be displayed incompletely
since a lower LOD is not available and the higher LOD is
too large to be rendered at an interactive rate. To overcome
this problem, we will not flush the current data on the screen
when increasing the LOD but only when the camera has
changed. The trade-off in image quality is insignificant be-
cause the amount of memory used by this data is usually
very small (e.g., 1%) when compared to the total memory of
the geometry cache.

iRun separates the fetching from the building of sets of
visible nodes. If the fetching queue is empty, the fetching
thread will wait until new requests arrive. Otherwise, it will
read the requested node from disk and move it to the geom-
etry cache. If the geometry cache is full, cached data will be
flushed using a least-recently-used scheme.

As a result, the target frame rate of iRun is guaranteed to
stay the same throughout user-interaction since the rendering
process will never stall while waiting for IO. This improves
interaction and does not introduce any significant degrada-
tion in image quality to the system. Because none of the vis-
ible geometry will be culled by occlusion, the amount of ge-
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ometry shared between frames is very similar–every frame
will have at least as much data as the previous frame. In the
worst case, there will be at most one level of difference in
LOD of the frame because of our BFS-based priority func-
tion.

3.3. Hardware-Assisted Rendering

An important consideration for the interactive rendering of
unstructured grids is the choice in volume rendering algo-
rithms. Three aspects need to be considered: speed, quality,
and the ability to handle dynamically changing data. By us-
ing a hardware-assisted volume rendering system, we can
address both the speed and quality issues. In our system, we
use the Hardware-Assisted Visibility Sorting (HAVS) algo-
rithm of Callahan et al. [CICS05] because it combines speed,
quality, and most importantly, it does not require topological
information and thus handles dynamic data.

HAVS operates by sorting the geometry in two phases.
The first is a partial object-space sort that runs on the CPU.
The second is a final image-space sort that runs on the GPU
using a fixed A-buffer implemented with fragment shaders
called the k-buffer. The HAVS algorithm considers only the
triangles that make up the tetrahedral mesh, thus it does not
require the original tetrahedra nor the neighbor information
of the mesh. This allows us to render a subset of the octree
nodes independently without merging the geometry.

Unlike rendering systems for opaque polygonal geometry,
special care needs to be taken when rendering multiple oc-
tree nodes to ensure proper compositing. At each frame, our
algorithm resolves the compositing issue by sorting the ac-
tive set of octree nodes that are in memory in visibility order
(front-to-back). When octree nodes of different sizes are in
the active set, we sort by the largest common parent of the
nodes. The original HAVS algorithm has also been modified
to iterate over the active set of nodes in one pass and per-
form the object-space and image-space sort on each piece in
visibility order. To ensure a smooth transition between oc-
tree nodes, the k-buffer is not flushed until the last node is
rendered.

3.4. Distributed Rendering

iRun can partition rendering across a distributed network.
This feature is useful for driving a display wall, where each
system controls a single tile of display. This approach can
further improve performance when rendering scenes with
complicated geometry.

In iRun, each display on the display wall is driven by a
dedicated render-server implemented in VTK. The portion
of the display wall that a render-server will be responsible
for is specified to the render-server on startup. A skewed
view frustum is calculated based on the region of respon-
sibility, and this frustum allows the render-server to cull the
geometry to only the set visible on its display. Each render-
server has access to the full geometry, but only loads the
portions that it needs or anticipates needing.

Figure 4: Distributed rendering with a thumbnail client. The
client receives thumbnails from the render-servers and com-
posites them.

The render-servers are coordinated by a single system that
controls the camera. They receive camera description asyn-
chronously to the render cycle, and wait for the render cy-
cle to complete before updating VTK’s camera. The update
mechanism is implemented as a vtkInteractorStyle to
allow for seamless integration.

The camera-server allows render-servers to establish and
break TCP connections arbitrarily. Camera descriptions are
sent out periodically, regardless of whether the camera
has changed, to allow recently connected render-servers to
quickly synchronize with the rest of the display wall.

Two clients have been written to run on the camera-server,
both implemented in VTK. The first is nearly identical to the
render-servers, except that it broadcasts camera coordinates
instead of receiving them. This is accomplished by listen-
ing for the timer event which the interactor styles use for
motion updates. The camera is read inside the event handler
and provided to the broadcast code. This client has access
to the same geometry and renders it on its own. It requires
an adequately functional GPU, and relies on the automatic
LOD adjustment to maintain interactive frame rates.

The second client (Figure 4) is able to run on a less capa-
ble system. It also runs as a VTK implementation, but uses
VTK’s interaction styles with no geometry loaded. In this
mode, the render-servers additionally frame capture their
rendered output and transmit downsampled versions back to
the camera-server. The camera server receives and assem-
bles the snapshots asynchronously to the render cycle, and
periodically requests the message loop to execute code to
display the composite.

4. Results

We generated all of our results on a 3.0-GHz Pentium D ma-
chine with 2.0 GB of RAM and a 500 GB SATA hard-disk
with an nVIDIA 7800 GTX. Table 1 shows timing results
and data sizes before and after preprocessing. We were able
to preprocess the largest dataset, which contained 36 million
tetrahedra or 63 million triangles, in just over an hour. For
all models in this paper, we target the output octree to have
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Figure 5: iRun visualizes the Turbo Jet model consisting
of over 10 millions tetrahedra with multiple levels-of-detail.
The geometry cache size of (a), (b) and (c) is 512MB while
(d) is 1.5GB. (a) In interactive mode, iRun only displays 40K
triangles. (b) In still-rendering mode, most of the geometry
cache is used. (c) The user zooms in to a particular region.
(d) The geometry cache size is tripled.

at most ten thousands triangles per leaf. Due to the triangles
added during simplification and clipping, the final number
of triangles per leaf is slightly higher. The rest of the section
will use these datasets unless otherwise stated.

In Figure 5, we show an example of how iRun can give
users various levels-of-detail on demand. Assume a user has
a machine with approximately 512MB of RAM available for
rendering, and wants to use iRun to explore different features
of the Turbo Jet dataset using a 512×512 viewport. The user
can use iRun to load the dataset with 512MB of RAM dedi-
cated to the geometry cache and a target frame rate of 5 (for
example). Interactions at this frame rate only give the user a
low LOD representation of this dataset since iRun can only
render as many as 40 thousands triangles at each frame. It is
almost impossible to get a coherent overview of the dataset
at a resolution less than 0.1%. Thus, the user would want
to stop interactions for iRun to refine its visualization. With
more detail, the user can now select a specific region of in-
terest to explore. For example, the user may wish to take a
closer look the region in the center of the dataset through
a zoom. This causes the LOD to be automatically adjusted
by iRun. With a full use of the geometry cache, the quality
of our image is very close to the full resolution at that same
view using 1.5GB of RAM.

Figure 6 is a plot showing the difference between the
displayed and fetched nodes while performing interactions
with the Turbo Jet as in the case study above. We selected
the target frame rate of 2 frames per second to increase the
readability of the plot while the interaction speed is fairly
high (mouse-movement of over 30 pixels/frame). Our set of

Figure 6: The difference between the displayed nodes of the
geometry cache and the ones being fetched during interac-
tions of the Turbo Jet at 2 fps.

movements contains excessive rotations, zooms, and trans-
lates. As shown in the figure, the total number of nodes that
need to be loaded for the next frame stays relatively low
compared to those that are rendered.

For distributed rendering results, we set up four
machines—with two Dual-Core AMD Opterons on each—
as clients. Our goal was to render the bullet dataset consist-
ing of 3GB of data (117M faces) displayed on another server.
The render window on the server had a 1024×1024 viewport
and each client only rendered a sub-window of 512×512.
Figure 7 illustrates the differences between distributed ren-
dering versus local rendering on a single client machine. The
right image is shows the results of the distributed rendering.
With the target frame rate of 10, we were able to achieve a
good volume-rendered image after filling up 24 nodes of the
buffer. The frame rate of the distributed renderer can be re-
ported fairly as the minimum frame rate of the four clients.
For this view we achieved a frame rate of 11.62 fps. The left
image shows the same dataset with the same view rendered
using only one of the client with the same window size. By
filling up only 14 nodes of the buffer the frame rate is re-
duced to 2.77 fps on a single machine. This is because there
are four times as many pixels that need to be rendered at
each frame. Moreover, disk accesses also increase up to four
times compared to the distributed rendering.

Figure 7: The bullet dataset rendered with a single machine
versus a distributed rendering with four clients.

c© The Eurographics Association 2007.



Vo et al. / iRun: Interactive Rendering of Large Unstructured Grids

Table 1: Preprocessing Results

Data Set
Input Timing (h:m:s) Output

Verts Tets Tris Size Total Clipping Tris/leaf Verts Tris Size
SPX 2.9K 13K 27K 1 MB 00:01 00:00 10K 13K 49K 1 MB
Torso 169K 1.1M 2.2M 34 MB 01:45 01:12 13K 3.2M 6.7M 158 MB
Fighter 257K 1.4M 2.8M 50 MB 02:27 01:28 18K 3.6M 7.8M 182 MB
Rbl 730K 3.9M 7.9M 143 MB 06:13 04:08 42K 7.8M 17.9M 410 MB
Mito 972K 5.5M 11.2M 206 MB 10:59 05:00 30K 11.1M 22.7M 538 MB
Turbo Jet 1.7M 10.1M 20.3M 344 MB 15:49 07:58 27K 12.3M 31.7M 697 MB
Sf1 2.5M 14.0M 28.2M 516 MB 37:41 25:56 58K 24.1M 63.3M 1,425 MB
Bullet 6.3M 36.1M 62.8M 1,303 MB 1:10:30 42:19 32K 48.4M 117.8M 2,804 MB

5. Discussion

Limitations. There are issues in our current implementa-
tion that could use improvement. First, due to clipping and
boundary triangles, node size can grow larger than desired.
Bounding this limit would be a useful feature. Another lim-
itation is that our current LOD strategy may not be suitable
for all datasets, therefore a more automatic way of determin-
ing the LOD triangles would improve image quality. Finally,
even though the number of vertices is generally much less
than the number of tetrahedra, our current method of keep-
ing the vertices in-core during preprocessing would not be
feasible on a PC for extremely large datasets with hundreds
of millions of tetrahedra.

VTK. In term of coding, we found VTK to be very help-
ful when implementing our system. By leveraging existing
functionality provided by this framework, we were able to
focus on algorithmic instead of engineering contributions.
For example, the simplification and clipping phase of the
preprocessing are all done using VTK classes. Additionally,
the client-server and user interface are built on top of VTK.
However, using VTK provided the following challenges:

• Because VTK is for general use, we were forced to mod-
ify existing classes to get desired functionality. For exam-
ple, we added our own timers and modified the render-
ing pipeline order. In addition, current VTK data struc-
tures for geometry are incompatible with OpenGL, which
makes using fast display structures such as triangle arrays
difficult.

• VTK is not thread-safe. iRun required solving many syn-
chronization problems among threads. For example, one
condition was occurring when the visibility sorter re-
ceived the camera slower than the rendering window,
causing compositing artifacts in the resulting image.

• To manage the client-server architecture for parallel
rendering, modifications to the VTK interactors were
necessary. Specifically, the addition of an asyncExec

method to vtkRenderWindowInteractor and its de-
rived classes was necessary to queue commands for later
execution.

iRun Versus iWalk. iRun shares many ideas with
iWalk [CKS02]. However, due to the complexity of volume
rendering tetrahedral data, many of the algorithms presented

in iWalk were not suitable for iRun. In iRun, each node of
the octree contains a self-describing vtkUnstructured-

Grid of varying LODs that can be rendered independently.
iWalk only keeps triangles in the leaf nodes and depends on
occlusion culling instead of LOD to remain interactive. This
also affects the traversal algorithm, which is more sophisti-
cated in iRun because LOD as well as screen coverage need
to be considered due to the transparent nature of the nodes.
The fetching thread also works differently. iRun separates
fetching from building visible sets of nodes because of the
added complexity of visibility sorting for the nodes.

Another difference is that due to compositing problems
that occur with overlapping triangles from neighboring
nodes, we require a more exact triangle-box intersection
that is based on the triangle, not the vertices. iRun also re-
quires the clipping of triangles that extend beyond the node’s
bounding box to avoid incorrect visibility ordering across
neighboring nodes. Unlike iWalk, we require boundary tri-
angles (simplified or full resolution) at each level of the tree
to avoid holes in the rendered image. Finally, we note that
the implementation of both systems is completely disjoint.

6. Conclusion

We have introduced the iRun system, which is capable of
volume rendering tens of millions of tetrahedra at interac-
tive rates on a commodity PC. The preprocessing required
by our algorithm occurs completely out-of-core and is light,
fully automatic, and does not result in a large increase in data
size. This enables our system to start up and render the ge-
ometry immediately. We have shown how hierarchical level-
of-detail, parallel prefetching, and hardware-assisted volume
rendering can be combined to maintain interactivity in an
environment where occlusion culling is not suitable. Finally,
we have shown how out-of-core volume rendering can be
applied in a distributed manner to improve mesh quality and
increase display size.

In the future, we would like to explore point-based tech-
niques to simplify the geometry processing and improve im-
age quality at low LODs. We would also like to explore ex-
tending our system to handle other data types (e.g., struc-
tured grids and hexahedral meshes) and visualization tech-
niques (e.g., isosurfacing). Another important area of future
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research is to employ iRun in a collaborative, distributed en-
vironment such as SAGE [JJR∗05]. This would allow our
algorithm to be used in conjunction with other visualization
techniques in a unified graphics environment.
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