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ABSTRACT
Computational models can define the functional dynamics of com-
plex systems in exceptional detail. However, manymodeling studies
face seemingly incommensurate requirements: to gain meaningful
insights into some phenomena requires models with high resolu-
tion (microscopic) detail that must nevertheless evolve over large
(macroscopic) length- and time-scales. Multiscale modeling has
become increasingly important to bridge this gap. Executing com-
plex multiscale models on current petascale computers with high
levels of parallelism and heterogeneous architectures is challeng-
ing. Many distinct types of resources need to be simultaneously
managed, such as GPUs and CPUs, memory size and latencies,
communication bottlenecks, and filesystem bandwidth. In addition,
robustness to failure of compute nodes, network, and filesystems is
critical.

We introduce a first-of-its-kind, massively parallel Multiscale
Machine-Learned Modeling Infrastructure (MuMMI), which cou-
ples a macro scale model spanning micrometer length- and millisec-
ond time-scales with a micro scale model employing high-fidelity
molecular dynamics (MD) simulations.MuMMI is a cohesive and
transferable infrastructure designed for scalability and efficient
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Figure 1: Addressing many important biological questions requires large length- and time-scales, yet at the same time molec-
ular level details. Here we showcase theMultiscale Machine-Learned Modeling Infrastructure (MuMMI) by simulating protein-
lipid dynamics for a 1 µm x 1 µmmembrane subsection at near-atomistic resolution.

execution on heterogeneous resources. A central workflow man-
ager simultaneously allocates GPUs and CPUs while robustly han-
dling failures in compute nodes, communication networks, and
filesystems. A hierarchical scheduler controls GPU-accelerated MD
simulations and in situ analysis.

We present the various MuMMI components, including the
macro model, GPU-accelerated MD, in situ analysis of MD data,
machine learning selection module, a highly scalable hierarchical
scheduler, and detail the central workflow manager that ties these
modules together. In addition, we present performance data from
our runs on Sierra, in which we validated MuMMI by investigating
an experimentally intractable biological system: the dynamic inter-
action between RAS proteins and a plasma membrane. We used up
to 4000 nodes of the Sierra supercomputer, concurrently utilizing
over 16,000 GPUs and 176,000 CPU cores, and running up to 36,000
different tasks. This multiscale simulation includes about 120,000
MD simulations aggregating over 200 milliseconds, which is orders
of magnitude greater than comparable studies.
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1 INTRODUCTION
While supercomputers continue to provide more raw compute
power, it is becoming increasingly difficult for applications to fully
exploit these resources. The challenge of building a multiscale mod-
eling capability utilizing modern supercomputing architecture —
heterogeneous computing elements, deep memory hierarchies, and
complex network interconnects — can be decomposed along two
thematic axes: (1) the algorithmic challenges in managing increas-
ing levels of parallelism within an application, and (2) the logistic
challenges of scheduling and coordinating the execution of multiple
applications across such diverse resources.

The prototypical approach to the first challenge are monolithic
parallel applications able to simulate problems of unprecedented
size and scale using full-system runs [30, 34, 67]. Conversely, the
workflow challenge is often approached through massively parallel
ensembles [56], which execute a large number of small- or medium-
scale instances simultaneously. Here, we describe the creation of
a novel simulation infrastructure that addresses both challenges
and enables, as an example, the execution of a massively parallel,
multiscale simulation steered by a machine learning (ML) approach,
and orchestrated through a sophisticated workflow governing thou-
sands of simultaneous tasks.

The scientific challenge to which we apply our novel infrastruc-
ture is an investigation of the interaction of RAS proteins with the
cell membrane. Mutations of RAS contribute to a wide range of
cancers as RAS modulates the signaling pathways that control cell
division and growth. RAS activates signaling only when bound to
lipid bilayers that form cellular membranes. This membrane asso-
ciation is an under-explored area of cancer biology that may be
relevant to therapeutic intervention against cancer. We useMuMMI
to facilitate the better understanding of the mechanism and dynam-
ics of interaction between RAS, lipids, and other signaling proteins,
which requires molecular-level detail and cannot be obtained exper-
imentally with current technologies. MD simulations can simulate
such interactions with the appropriate detail, but only for micro-
scopic length- and time-scales (even on the largest computers).
However, lipid concentration gradients and protein aggregation
evolve over length- and time-scales hard to access through high-
resolution MD.
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Our approach to address this challenge of scale is to create a
macro model for a cell membrane with RAS proteins and couple it
to a ML-driven ensemble of MD simulations (Figure 1). The macro
scale membrane model can reach experimentally observable time-
and length-scales (µm and ms) with only moderate computing re-
sources, but captures none of the molecular-level details of protein-
protein and protein-lipid interaction. To provide molecular details
of interest, we continuously monitor all RAS proteins and their
local environments in the macro simulation and compare against
configurations that have been previously seen, spawning MD sim-
ulations for configurations not previously sampled. The sampling
process that determines which simulations are created is driven by
a novel ML framework aimed at exploring the phase space of all
possible RAS-membrane configurations. Limited only by available
computing resources, this approach samples increasingly unusual
configurations, effectively providing molecular-level detail on a
macro scale. Automated feedback from MD simulations is used to
continuously improve the macro model.

To achieve this automated multiscale simulation that can ex-
plore both the micro and macro scale, a sophisticated workflow is
needed. MuMMI takes advantage of the heterogeneous compute
architectures, and coordinates and links existing tools in a variety
of programming languages. Our workflow is built upon the Mae-
stro Workflow Conductor [15, 22], which provides an interface for
scheduling the core simulations, as well as a number of supporting
tasks, such as simulation setup, in situ analysis, etc. Maestro along
with the Flux scheduler [3], provides a scalable scheduling solution.

OurMultiscaleMachine-LearnedModeling Infrastructure (MuMMI)
represents a new type of simulation framework that couples a
diverse set of components through ML into a massively parallel
application to address pressing scientific inquiries. Our key accom-
plishments are:

• A large-scale workflow manager that connects diverse software
components into a single coherent, massively parallel, multiscale
simulation;

• Innovations in scheduling and coordinating thousands of inter-
connected tasks and managing the resulting TBs of data;

• A demonstration on Sierra [45], the next-generation leadership
supercomputer at Lawrence LivermoreNational Laboratory (LLNL),
where we efficiently utilize the entire machine (176,000 CPUs
and 16,000 GPUs) for several days aggregating about 120,000 MD
simulations detailing a square µm membrane macro simulation
with 300 RAS molecules over 150 µs.

2 RELATEDWORK
As computational frameworks become more complex, scientific
workflows are moving away from monolithic simulation codes
and toward a complex web of interconnected tools, e.g., to pre- or
post-process data, to execute ensembles for parameter studies, or
to couple various different physics solvers. To manage such com-
plex applications, a variety of workflow tools have been proposed
to address different aspects of the overall challenge. One class of
workflow solutions, such as Pegasus [21], Fireworks [38], or Ke-
pler [5], grew out of the need to assemble complex post-processing
capabilities, e.g., for large-scale experiments like the Large Hadron
Collider. These workflows offer mature programming interfaces,

distributed workflows, and data management solutions. A simi-
lar class of systems, such as Merlin [56], the UQ Pipeline [19], or
SAW [27], focus on creating large ensembles, especially in the con-
text of uncertainty quantification. Furthermore, these tools often
contain various statistics and analysis capabilities or integrate pack-
ages, such as PSUADE [52] or Dakota [2], which provide their own
job management capabilities. Collectively, these tools are primarily
designed to operate in a batch-based, capacity-focused environ-
ment and do not provide the tight coupling needed for MuMMI.
For example, many tools provide computational steering to enable
adaptive sampling but enabling the tight feedback loop between
the macro and micro models as well as the inter-job task placement
and scheduling in these systems can be challenging.

Alternatively, there are frameworks designed to directly cou-
ple different physics solvers together as opposed to ochestrating
tasks at a higher level. Examples for these approaches are pre-
CICE [13], OpenPALM [24], or the OASIS coupler [18]. These ap-
proaches directly manage the exchange of information between
solvers, communicating entire grids and/or boundary conditions
in a massively parallel environment. However, they require access
and modifications to the source code of the corresponding libraries
and compatibility between the coupled software systems. In the
case of MuMMI, we are coupling completely distinct simulation
codes and infrastructure, many of which are written in different
programming languages. Furthermore, our workloads are highly
variable making the scheduling and job placement more complex
than required for traditional multi-physics applications.

In summary, we require the system-facing aspects of the work-
flow and ensemble management systems to handle job scheduling,
placement, and management, with a tighter coupling than exist-
ing solutions, and without the overhead of creating a joint multi-
physics executable. To this end, we have created a sophisticated
workflow to provide a highly integrated yet flexible solution that
combines aspects of ensemble workflows with the integration of a
joint multiscale application.

3 RAS-MEMBRANE DYNAMICS
Nearly a third of all cancers are driven by constitutively active
(oncogenic) mutations in RAS proteins accounting for a high per-
centage of pancreatic (∽95%), colorectal (∽45%), and lung (∽35%)
cancers [62]. KRAS is the most frequently mutated RAS isoform
[78], and normally controls signaling through the MAP kinase path-
way, a critical regulator of cellular growth, migration, and survival.
Despite tremendous progress in RAS biology over the last three
decades, no therapies are currently available. RAS proteins localize
to the plasma membrane (PM) where they function as molecu-
lar switches by cycling between active (GTP-bound) and inactive
(GDP-bound) states. Only active RAS binds and activates proximal
effector proteins (i.e., RAF kinase) at the PM to propagate growth
signaling. Specific localization of RAS to different regions of the
PM may be important for the activation of signaling. However, it
remains unknown how membrane composition (e.g., charged vs.
neutral lipids), membrane dynamics (e.g., undulations and domain
formation), and other physicochemical membrane properties affect
the activity of RAS either directly or by regulating RAS orientation,
localization, or clustering.
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RAS-membrane dynamics and RAS-RAS interaction at the mem-
brane are inherently a multiscale process because the protein-lipid
and protein-protein interfaces are uniquely molecular, yet the long
waiting times for association, which are largely dependent on dif-
fusion, are inefficient to model in particle-based approaches. There-
fore,MuMMI is an ideal platform for characterizing RAS-membrane
dynamics. Here, we apply our multiscale approach to characterize
the key events that trigger oncogenic signaling.

Many groundbreaking MD simulation studies have probed the
relationship between structure, dynamics, and function in biologi-
cal macromolecules. These studies include both all-atom (AA) and
coarse-grained (CG) simulations containing millions to hundreds of
millions of atoms/particles. Modeled systems include: the ribosome
[79], viral capsids [32, 55, 57], the MexAB-OprM Efflux Pump [46],
cytoplasm [80], hydrodynamic effects on lipid diffusion [74], pro-
tein crowding [25] and protein clustering [16]. Other studies in-
clude long continuous simulations extending into the high µs to ms
range detailing: protein folding [61], RAS/RAF complexation [72],
and plasma membrane organization [37]. In a different approach,
ensembles of hundreds to thousands of shorter simulations have
been combined to accumulate multiple ms of total sampling: for
a membrane-embedded protein [42], to study protein folding and
unfolding using an implicit solvent model [73], MscL gating [50],
helix-helix interactions [6], and protein dimer and trimer assem-
blies [77]. However, simulations that represent the state-of-the-art
in either size or duration are typically deficient in the other compo-
nent (i.e., large but short or long but small). To reach larger systems
over longer time-scales, additional coarse-graining can be done,
combining whole molecule and/or proteins into single or a few
interaction sites [75]. A number of ultra-CG models have been
used to simulate systems of large length- and time-scales; such as
viral particles budding [54], or protein-induced membrane vesic-
ulation [58]. Ultra-CG models, however, are lacking in molecular
level details and are not suited for all types of problems.

Although there have been many simulations of impressive dura-
tion and/or size, the real value of a simulation is more accurately
quantified by the proportion of relevant phase space that has been
sampled at sufficient resolution. Multiscale simulations have often
been used to access large length- and time-scales at a coarser reso-
lution and provide needed accuracy for select cases of interest. Mul-
tiscale approaches have been developed to couple different resolu-
tions including quantum mechanics/molecular mechanics, AA/CG,
AA/ultra-CG, and micro/macro [8, 9, 12, 14, 26, 36, 41, 60, 63, 65, 72]
including recent work using bothmacro andmicro scale simulations
to model PM protein clustering [16].

4 MUMMI: AN OVERVIEW
MuMMI enables a new genre of multiscale simulation by coupling
macro and micro scales using ML. Figure 2 illustrates howMuMMI
integrates diverse software components that seamlessly work to-
gether, coordinated by a sophisticated workflow. Our framework
drives a large-scale parallel simulation of the macro model, which
is based upon dynamic density functional theory (DDFT) alongside
a particle-based MD model. The macro model spans biologically-
relevant length- and time-scales (µm and ms) that are intractable

CG analysis
CG runs

CG setupDDFT

Flux

MOOSE FluxddcMD GROMACS

Micro scaleMacro scale

GPFS

Workflow

M
D

Maestro

ML

Figure 2: MuMMI couples the macro scale (DDFT and MD
models) with the micro scale (CG model) using a ML-based
sampling framework. Data resulting from the macro scale
simulation is analyzed by ML, and interesting subregions
are simulated at the micro scale. CG simulations are ana-
lyzed in situ and used to improve the macro model via on-
the-fly feedback. The central workflow uses Flux as the re-
source manager, as abstracted using Maestro, and coordi-
nates each of the software components using in-memory
and on-disk communication. Modules in orange are the
core, specially-developed components of our framework,
and other colors represent external software that are ex-
tended for MuMMI.

for any single MD simulation; but, the macro model can not re-
solve fine spatial and temporal scales that are needed to under-
stand protein-membrane and protein-protein interactions. A new
ML-driven importance-sampling framework bridges the resolution
gap by analyzing the resulting macro scale data and selecting the
subregions of scientific importance. These selected macro scale
“patches” are candidates for the higher-fidelity micro scale simula-
tions. MuMMI launches micro scale CG simulations corresponding
to the selected patches based on the availability of computational re-
sources. A CG simulation consists of three phases: setup, simulation,
and in situ analysis. The setup phase maps a patch to a molecular
configuration that is then evolved, using MD simulations (ddcMD),
to study the dynamics of the system. Since MuMMI is designed to
support many thousands of CG simulations concurrently, storing
the resulting data at the desired frequency is not feasible. Instead,
the MD data is analyzed in situ, and the resulting analysis is saved
with full-system coordinate data to disk infrequently. Finally, a key
enabling technology inMuMMI is a self-healing feedback loop, in
which the results of the more-accurate CG simulations are used to
improve the parameters of the macro model.

5 WORKFLOWMANAGEMENT INMUMMI
The workflow management in MuMMI has several roles while
conducting thousands of concurrent simulations and enabling on-
the-fly feedback (Section 5.1). New functionality was developed
within Flux to supportMuMMI job scheduling requirements (Sec-
tion 5.2) and new strategies employed to manage the several PB of
raw data resulting from our simulation campaign (Section 5.3).

Installation and deployment. With many diverse components,
one of the first challenges in the development of MuMMI was a
streamlined process of installation and deployment. To this end,
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we use Spack [29] to install the entire infrastructure as a single
package, accounting for differences in platforms, compilers, etc. We
have developed MuMMI with portability in mind and deployed on
three HPC clusters at LLNL with varying architectures. This paper
discusses the deployment and testing on Sierra.

Initialization. MuMMI is initialized by requesting a full-size job
allocation on the target machine. (e.g., 4000 computational nodes
on Sierra). One node is assigned as the Flux master for job schedul-
ing and resource management activities. A portion (24 CPU cores)
of a second node is dedicated to our workflow to perform higher-
level tasks, e.g., such as deciding which simulations to run. All
remaining resources are used for performing simulations. In order
to leverage the heterogenous architecture of the target machine,
MuMMI distinguishes between different tasks based on their re-
source requirements and uses appropriate job placement strategies
to schedule jobs according to the resources needed. In our current
application, the CG simulations (using ddcMD) require GPU ac-
cess, whereas all other components (CG setup, CG analysis, and
the macro simulation) work entirely on CPU cores.

5.1 The Central Workflow Manager
The workflow manager (WM) is responsible for steering the frame-
work toward the target multiscale simulation based on scientific
interest. The WM is designed to be highly configurable and per-
forms several key tasks, e.g., continuously polling the macro model
for new patches, scheduling new CG simulations, and performing
periodic feedback. Almost all details of these tasks, e.g., the configu-
ration of the underlyingmachine and the frequency of a certain task,
are controlled via configuration files. The WM is written in Python
and uses Maestro [22] — an open-source workflow conductor with
a simple API — to abstract the interface with the underlying job
scheduler, resulting in a portable WM. Upon initialization, the WM
loads a pre-trained ML model that guides the selection of patches
for CG simulation.

Generation of patches from the macro model. As the macro model
simulation executes, snapshots of the resulting data are saved to
an instance of the IBM® Spectrum ScaleTM (GPFS). The WM con-
tinuously polls for new snapshots, and generates several patches
(spatial regions of scientific interest) per snapshot. At full scale, the
macro simulation delivers new snapshots with 300 patches every
150 seconds as binary data files, and the WM processes them imme-
diately. Patches are stored as serialized Python (pickle) objects in a
tar archive file (described in Section 5.3) and indexed by identifiers
for rapid access.

Ranking and selection of patches using ML. As new patches are
generated, they are analyzed for their “importance” in real-time.
This importance metric is used to create an in-memory priority
queue of all patches seen thus far. However, the importance metric
of patches is dynamic and changes frequently. Therefore, maintain-
ing and re-evaluating an ever-growing list of patches is computa-
tionally prohibitive. By design, the importance of a given patch
cannot increase over time. Therefore, we truncate the queue to a
computationally-feasible and scientifically-relevant length because
the discarded patches are deemed too uninteresting.

Tracking system-wide computational resources. A key responsi-
bility of the WM is to track the available computational resources,
which is done indirectly by tracking the tasks currently running
and their known allocation size. TheWM uses Maestro to query the
status of running jobs (previously started by the WM) from which
the available resources (with and without GPU) are calculated.

Scheduling of CG simulations. When new resources are available
(during the loading phase of the workflow or when a previously-
running job concludes), the WM launches new jobs with matching
resource requirements. Patches are selected from the priority queue
to start new CG setup jobs based on need and to match available re-
sources. Completed CG setup systems are selected to run as new CG
simulations, minimizing the wait time between running modules.
The WM allows staggering scheduling of new jobs to reduce the
load on the underlying scheduler, which is useful when executing
large simulations on several thousands of nodes.

Managing the feedback from micro to macro model. Periodically,
theWM triggers the feedbackmechanism, which aggregates proper-
ties of interest captured from theMD simulations via in situ analysis
and uses them to update the parameters of the macro model. The
current design of our feedback mechanism uses the filesystem.With
120,000 CG simulations, the scan of latest data from running and
completed simulations can take over 30 minutes. As a result, for
the application at hand, MuMMI’s feedback frequency is set to 2
hours. The limitations of the filesystem poses scalability challenges.
We plan to mitigate this limitation by bypassing I/O operations
and using faster communication between CG analyses and the WM
(discussed in Section 5.3).

Checkpointing and restarting. To account for systems errors due
to node failures, file corruption, GPFS failures, etc. that invariably
occur, the WM monitors all running jobs. Failed jobs are automati-
cally restarted at the last available checkpoint. For redundancy and
protection against control data being corrupted, all status files are
duplicated. As a result, MuMMI is capable of running simulations
for hundreds of hours of wall time at full scale. More specifically,
the WM uses several checkpoint files to save the current state of the
simulation in a coordinated manner, which can be used to restore
the simulation, potentially with different configurations or even on
a different machine.

5.2 Job Scheduling
MuMMI distinguishes jobs based on their resource requirements. In
particular, the CG simulations are the only component of MuMMI
making direct use of GPUs, while using relatively little CPU re-
sources, even accounting for its attendant in situ analysis job. There-
fore, given that each node on Sierra consists of four GPUs and 44
CPU cores, four CG simulations (one per GPU) on each node is
executed. Each CG simulation is bound to two CPU cores that share
cache, to maximize the cache available to ddcMD. The correspond-
ing analysis jobs occupy 3 cores for each CG simulation, totaling to
20 cores utilized by the CG simulations. In order to reduce latency
in communication with GPUs, this 20-core partition is bound ex-
clusively to the cores closest to the PCIe buses. The remaining 24
CPU cores per node are dedicated to CPU-only jobs and are either
the macro simulation, a CG setup job, or the workflow manager.
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Although this job arrangement works well for machine utiliza-
tion, a number of scheduling challenges arise. In particular, even
scheduling the CG simulation jobs in groups of four, several thou-
sand jobs still run concurrently. Avoiding oversubscription, or plac-
ing too many jobs on the same node, requires the ability to co-
schedule multiple jobs on the same node based on heterogeneous
resource requirements and is an uncommon practice in HPC. Most
importantly, jobs have to be dynamically scheduled so that jobs
that finish early are backfilled and efficiently utilize the available
resources.

Our initial attempts aimed at using LSF® [64] and jsrun [33] job
schedulers available natively on Sierra. However, considering the
requirements of the workflow, these options proved insufficient.
The large number of jobs required relatively high throughput to
quickly reach the steady state of machine utilization. Although js-
run could deliver the required speed, it lacked dynamic scheduling
at the time. LSF, on the other hand, provides dynamic scheduling
and scheduling by heterogeneous resources but is configured (on
Sierra) to not allow multiple jobs to be scheduled onto a single
node. Given these limitations, we use Flux [3], a resource manager
in active development at LLNL. Flux demonstrates the features
required to support our scheduling requirements. Since Flux is de-
signed to be configured and run directly by the user inside of jobs,
we configured it for co-scheduling and heterogeneous resource
scheduling. More specifically, in order for MuMMI to start up to
36,000 concurrent tasks, we exploit Flux’s ability to hierarchically
schedule sub-instances and to specify explicit bindings of resources.
In this case, we first schedule jobs to nodes and enforce the optimal
placement of jobs on each node as discussed above. Flux can be
launched within the framework of Slurm [39] and LSF, which lends
portability to our framework across different platforms. To ensure
an additional separation of concernsMuMMI uses a Maestro plugin
for Flux, allowing the WM’s interface to remain virtually indepen-
dent to the ongoing development within Flux and the option to
switch schedulers in the future.

5.3 Data Management
MuMMI is designed to run on supercomputers and address applica-
tions on an enormous scale. But, these applications pose significant
data management challenges. For example, our simulation of RAS
on the PM produced over 200 ms of CG trajectory data. Recording
snapshots at 0.5 ns intervals would generate over 400 million files
for snapshots alone, occupying over a PB of disk space. Including
files for stored analysis, logs, restart, macro model, and ML would
increase the number of files by a factor of 10. Managing and uti-
lizing the data at this scale would require a sustained filesystem
throughput on the order of 10,000 I/O operations per second for the
entire duration of the simulation. During our campaign on Sierra,
GPFS was considerably upgraded and ended up consisting of 154
PB of usable storage with 1.5 TB/s peak bandwidth.

In order to reduce the demand on the filesystem, we used a
combination of local in situ analysis and data aggregation strategies
to minimize bandwidth and I/O operations, especially expensive
metadata operations related to creation and deletion of files. In
particular, each CG simulation saves snapshots every 0.5 ns to a
local on-node filesystem (RAM disk). All the snapshots are analyzed

using a corresponding in situ module that extracts information of
interest, prunes snapshots to every 2 ns, and periodically (every
20 ns) saves local data to parallel (global) filesystem, appending
the snapshots and analysis to archive files. Together, these choices
reduce the number of files by 3 orders of magnitude, and the total
amount of data by a factor of 4.

For data aggregation, we chose the tar file format [35], aug-
mented with an index file (stored separately) to allow quick retrieval
of archive member files. Other more-advanced file formats, e.g.,
HDF5 [69], were considered, but not chosen because they modify
file headers on every update, which could lead to data corruption in
cases of untimely termination, e.g., due to node failure or time out.
Instead, the tar format allowed us to use the files in append-only
mode, so that previously stored data would never be overwritten
or corrupted, even due to bugs in the code. Additionally, the tar
format is portable, and the corresponding archives can be inspected
and unpacked using standard tools. This aggregation approach pro-
vided robustness against node failure, filesystem time outs, and
unexpected job terminations.

To further improve our data management strategy, we have
explored the incorporation of the IBM®Data Broker (DBR) [59]
into MuMMI. The DBR implements an in-memory key-value store
for fast data storage and retrieval with database level fault toler-
ance. Furthermore, the corresponding backend RedisTM [43] server,
configured as a cluster, can be tuned for the specific machine and
allocation size. Initial experiments suggest that using 10–100 nodes
on Sierra, CPU only and sharedwith running CG simulations, would
be sufficient to hold all necessary feedback and control data. For 50
Byte key and 257 KB value pairs, we observe average latencies of
0.4 and 0.5 ms per read and write operations respectively. Unfor-
tunately, at the time of our simulation on Sierra, the network and
filesystem as well as the DBR were not fully mature, and the com-
bination proved unstable. However, going forward, the expected
performance of the DBR could replace many of the frequent I/O
operations in MuMMI and significantly improve the overall perfor-
mance of the workflow especially the on-the-fly feedback.

6 MULTISCALE SIMULATION USINGMUMMI
Having presented the central WM in MuMMI, we next discuss the
innovations in the simulation of the macro and the micro models
needed to enable our multiscale framework. We also discuss the
ML-based sampling and the on-the-fly feedback modules that were
developed to couple the two scales together. We note that all ranges
presented throughout this paper are formatted as a mean± standard
deviation, unless otherwise stated.

6.1 The Macro Model
In order to rapidly explore long time- and length-scale behavior
of RAS protein membrane dynamics, we developed a macro model
based on the classical approximation theory for liquids. Specifically,
our model uses DDFT to describe the lipid-lipid behavior [47]. In
this model, the lipid bilayer is represented as a two-dimensional
surface. Each protein and its conformational state on the bilayer
is represented by a single particle, which interacts with the lipids
through a potential of mean force (PMF). The proteins are modeled
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using Langevin equations [44] and interact with each other through
a radially symmetric pair potential.

The input parameters to the macro model are lipid-lipid direct
correlation functions and self-diffusion constants, RAS-lipid and
RAS-RAS potentials, and RAS diffusion constants. These param-
eters were derived from several hundred CG PM and RAS PM
simulations. The direct correlation functions were calculated using
lipid-lipid radial distribution functions (RDFs) in conjunction with
the Ornstein-Zernike equations [53]. The RAS-lipid PMFs were
derived from RAS-lipid RDFs using the Hypernetted-chain closure
relation [49]. The RAS-RAS potential was estimated from RAS-RAS
PMF simulations and expected association strength.

Within the framework of DDFT, the governing equations are
dictated by an appropriate free-energy functional, which yields a
chemical potential for the ith species, µi , by taking the variational
derivative of the free energy with respect to the lipid density of
that species. In the macro model, we can decompose each chemical
potential as µi = µLLi +µ

LP
i , where the lipid-lipid chemical potential

µLLi and the lipid-protein chemical potential µLPi are taken as:

µLLi = kBT
©«ln(ni ) −

N∑
j=1

nj ∗ ci j
ª®¬ , µLPi (r) =

P∑
k=1

ui (|r − rk |) .

Here, ni = ni (r, t) is the local density for lipid i at time t in position
r, and ui = ui (r ) is the circularly symmetric protein-lipid PMF as
a function of distance r , for each of the ith lipid type. The direct
correlation function between lipid types i and j is given by ci j =
ci j (r ) for the distance r , and rk is the position of protein particle k
on the membrane. Finally, kB is the Boltzmann constant, T is the
absolute temperature, and the operation (∗) denotes a convolution:
(n ∗ c)(r) =

∫
n(r′)c(|r − r′ |)dr′. The evolution equations of DDFT

are given as
∂ni
∂t
=

Di
kBT

∇ · ni∇
(
µLLi + µ

LP
i

)
+ ξi ,

where Di is the self-diffusion coefficient for lipid i and ξi = ξi (r, t)
is a conservative noise term that represents density fluctuations
due to hidden degrees of freedom.

We implemented our macro model into the MOOSE finite ele-
ment framework [70]. This implementation consisted of modules
to compute the nonlocal correlation function convolutions, evalu-
ate the lipid-lipid evolution equations, compute the protein-lipid
interactions, and export the current lipid distribution to the protein
particle integrator. For integrating the protein equations of motion,
we used ddcMD (see Section 6.4). In this campaign, we used the
macro model to simulate a 1 µm × 1 µm bilayer, at a resolution
of 1200 × 1200 cubic-order elements, with 300 RAS molecules. We
observed a rate of 6.3±0.12 and 12.0±0.25 µs per day for 900 and
2400 MPI tasks, respectively.

6.2 ML-based Importance Sampling
As the macro model is running, it explores the phase space of
local lipid fluctuations. In this work, we are interested in the lipid
configurations underneath RAS to understand how RAS affects lipid
behavior and vice versa. Simulating all possible local neighborhoods
of RAS (“patches” ) would be computationally infeasible. Instead,
we sample the corresponding phase space of patches.

Because certain lipid configurations are much more common
than others, and simulating similar lipid configurations is wasteful
as they do not deviate far enough from previous simulations, ran-
dom selection of patches would be inefficient because selections
would mimic the distribution of the phase space, i.e., commonly-
occurring configurations will be selected often, whereas rare events
will likely be ignored. Instead, we use a deep neural network to
create a latent representation that captures the lipid configurations,
and use farthest-point sampling in the latent space to identify “im-
portant” (dissimilar to previously simulated) patches.

Specifically, for each timestep of the macro model, we extract a
30 nm × 30 nm patch underneath each RAS molecule. Each patch
consists of 14 lipid densities (8 lipid species in the inner leaflet
and 6 in the outer), and is represented as a 5 × 5 × 14 grid of lipid
concentrations, which can be used to initialize a corresponding
CG simulation. We use a deep neural network to construct a varia-
tional autoencoder (VAE) [23] that maps the 5 × 5 × 14 patch into
a 15-dimensional latent space, where each dimension represents
a complex, nonlinear degree of variation in the behavior of the
input data. We choose a VAE because it provides several favor-
able mathematical properties, such as a continuous distribution
in the latent space, which are important for statistical analysis on
the importance sampling. We developed several VAE models us-
ing Keras [17] and Theano [11] frameworks, varying the number,
widths, and types of layers in the VAE as well as different sizes
of the output latent space. Different latent spaces were evaluated
using reconstruction loss of the corresponding VAE; a detailed dis-
cussion on the evaluation of ML models is beyond the scope of
this paper. The final 15-dimensional latent space model was chosen
due to its superior balance between preserving the relationships
between lipid concentrations, and the computational advantages
of smaller dimensionality. The chosen VAE uses a combination of
fully-connected and convolutional layers, and makes use of batch
normalization as well as dropouts to minimize reconstruction error.

As macro model simulation creates new data, we add the new
patches into a priority queue, which is sorted based on the distance
(in latent space) from patches corresponding to the previously-
executed CG simulations. We use Faiss [40] to create an efficient
data structure that performs fast, approximate-nearest-neighbor
queries in the latent space, allowing for almost-real-time evalua-
tions of importance metrics. With availability of new computational
resources, the highest ranked patches are used to initiate CG simu-
lations. In this manner, we progressively sample the phase space of
all patches at a uniform and continually increasing density. Given
sufficient computational resources,MuMMI will ultimately cover
the phase space of all possible lipid configurations underneath RAS
molecules densely enough to perform an analysis of the entire
macro model at the scale of the CG model. In particular, for any
RAS molecule at any time step of the macro model we can find a
CG simulation that represents a lipid configuration close enough
to the patch in question to inform the given analysis query.

6.3 Setup of the CG Simulations
The CG MD simulation setup module (CG setup) transforms a con-
tinuummacro model representation into a particle-based micro rep-
resentation (see Figure 3). A selected 30 nm × 30 nm patch from the
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macro model is instantiated and equilibrated for a Martini [48] CG
simulation. Within the patch, the macro model dictates the number,
states, and locations of RAS proteins, as well as the concentration
and asymmetry of all membrane lipids, which are resolved down
to a 5 × 5 subgrid. The proteins, lipids, ions, and water molecules
are constructed using a modified version of the insane membrane
building tool [76]. The modified insane tool allows for specifying
lipid concentration with a subgrid resolution in each membrane
leaflet. The proteins’ initial conformations are sampled from pre-
constructed libraries based on their conformational state, randomly
rotated with respect to the membrane plane and packed at their
specified coordinates. The GROMACS MD package [1] (CPU-only
version) is used for energy minimization, equilibration, and to pull
the proteins to the bilayer. Using only the CPU cores allows the
workflow to set up new CG simulations without competing with
currently running CG simulations. All simulations were run using
the new-rf Martini parameter set [20], with a final time step of 20
fs, at 310 K and 1 bar semiisotropic pressure coupling. The setup
process includes particle creation, 1500 energy minimization steps,
and a total of 425,000 steps of equilibration for ∽140,000 particles.

6.4 GPU-accelerated CG Simulations
Once the particle systems are equilibrated they are queued for MD
simulations using ddcMD [66]. ddcMD is a highly scalable general-
purpose MD application with a flexible domain decomposition
capability. ddcMD has previously been used to study a variety of
problems in the areas of material science, fluid flows, and plasma
physics. Its performance has been acknowledged twice with Gordon
Bell Prize awarded to teams using ddcMD [30, 67]. In order to
support the multiscale simulations targeted in this paper, we made
significant extensions to ddcMD. In particular, newGPU capabilities
were added to accelerate the Martini CG force field.

Given that there already exist several GPU-enabled bio-MD
codes, our decision to extend ddcMD was motivated by the need
for not only a GPU-enabled high-throughput MD using the Martini
force field, but also one that minimizes CPU utilization. Minimizing
CPU usage is critical when working on architectures with low CPU

Figure 3: Particle-based micro simulations are created based
on input from the macro model. CG MD simulations are in-
stantiated based on protein location and state as well as sub-
grid lipid concentration specificity. Snapshots of a selected
patch (5 × 5) with one RASmolecule is shown after construc-
tion and after initial equilibration.

to GPU resources or when executing frameworks, like ours, with
high CPU demand from other tasks. As such, no existing MD code
in the computational biology community meets these constraints.

The GPU implementation in ddcMD to support biomolecular
simulations places the entire MD loop on the GPU. This includes
both bonded and nonbonded energy terms, neighbor table con-
struction, barostat (Berendsen) [10], thermostat (Langevin) [4], pair
constraints [7], and integrator (velocity Verlet) [68]. Therefore, com-
pared to other codes ddcMD only needs to copy particle state (posi-
tion, velocity, forces, box size, etc) from GPU to CPU infrequently;
only when output or analysis is needed. Only one CPU core is used
in ddcMD, primarily to handle the setup of the simulations and
output the data. After the simulation is initialized on the CPU, all
of the data is copied to the GPU memory, and all computations are
performed on the GPU. We applied several techniques to improve
the performance of GPU kernels:
• Improved thread scheduling in the nonbonded kernel by assign-
ing a single thread per particle. Processing a particle’s neighbor
list would result in enough threads to fill the GPU; however,
memory locality within a particle’s neighbor list is better than
the locality between two particles’ neighbor lists. We determined
that 8 threads per particle for the Martini force field yields the
best performance.

• Enforced coalesced memory accesses. Since each particle has
a set of 8 threads, ensuring these threads access contiguous
memory results in the better locality and fewer bank conflicts.

• Refactored data structures containing separate arrays of energies,
forces, and virials of each particle to be interleaved within a
single array. By interleaving the arrays, we optimize locality for
write access patterns.

• Use of shuffle-sync based reductions in lieu of shared memory
reductions. We found that the need for shared memory was elim-
inated by switching to warp-level shuffle intrinsic reductions.
This optimization is beneficial for large systems which may run
out of shared memory.

A series of different test cases have been performed on CPU (Intel®
Xeon® E5) and GPU (Nvidia® TeslaTM V100). The speedup of GPU
over CPU is ∽300 fold.

The community standard MD simulations with the Martini force
field is GROMACS [1]. GROMACS is designed to distribute the
calculations between CPU and GPU with an automated CPU-GPU
load balance scheme. To compare the performance of ddcMD and
GROMACS, we chose a typical MD simulation used in our frame-
work: a 135,973-bead Martini simulation of a single KRAS protein
on an asymmetric 8-component, 3077 lipid bilayer. Figure 4 sum-
marizes our comparison. We note that although GROMACS has a
better single-simulation per node performance than ddcMD when
the usage of the CPU cores is increased, ddcMD outperforms GRO-
MACS on the more relevant benchmark of four-simulations per
node and single-core per simulation by a factor of about 2.3. One
of the biggest bottlenecks for GPU acceleration is the bandwidth
between CPU and GPU, and frequent movement of data back and
forth between CPU and GPU is inefficient. The design of GROMACS
requires copying and synchronizing the data between the CPU and
GPU at every time step, which leads to performance degradation
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when the node is more completely occupied, even by separate sim-
ulations.

Additionally, ddcMD’s implementation of the MD loop on GPU
uses double-precision arithmetic, as compared to the single-precision
calculations done by GROMACS. We are currently evaluating op-
timization associated with the reduced precision, and expect to
find further performance improvement. Overall, for a typical MD
simulation for our system, we observe an idealized performance of
1.08±0.01 µs per day when executing ddcMD on a single core and
GPU.

6.5 In situ Analysis of CG Simulations
An integral part of MuMMI is the ability to carry out in situ analysis
of MD simulations. This feature is essential for dealing with such
vast numbers of CG simulations, in particular, to limit storage and
I/O requirements, as well as to provide on-the-fly feedback. On each
node, custom Python analysis modules are run on the CPUs. For
each simulation, newly generated snapshots are saved locally using
a fast RAM disk and consumed locally by running analysis modules.
The molecular structure is read using an extended version of the
MDAnalysis package [31] [51], that can parse the native ddcMD
binary and ASCII data formats. The online analyses to be performed
are designed and chosen based on parameters of interest from
preliminary simulations and those needed for re-optimization of the
macromodel. Examples of features of interest are RAS-RAS contacts,
RAS-lipid contacts, RAS orientation, and lipid distributions. The
result of these analyses are gathered locally and intermittently
written to GPFS. All analysis routines are optimized to be completed
within the time frequency of new frames being written. Having
this analysis instantly available during the simulation allows for
efficient exploration of the data while the simulation is running as
well as constant improvements of the fidelity of the macro model
through online feedback.
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Figure 4: Comparison of job performance using GROMACS
and ddCMD for one to four simulations running on a single
node of Sierra using typical MD simulation from the work-
flow as the benchmark. All simulations use a single GPU per
simulation and are averaged over 10 runs (with standard de-
viations shown as error bars). All ddcMD simulations use a
single CPU core, whereas GROMACS simulations are multi-
core with one to eight cores per simulation (shown in differ-
ent shades of green).
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Figure 5: MuMMI enabled a scientific campaign at an un-
precedented scale, generating about 120,000 (119,686) CG
simulations. These simulations ran from 1 to 4 µs, aggre-
gating over 200 ms of MD trajectories, and were distributed
with respect to RAS counts according to the required scien-
tific criteria.

6.6 On-the-Fly Feedback
The final and one of the most critical components of our frame-
work is an on-the-fly feedback mechanism from micro to macro
scale. The (initial) macro model used in the framework was param-
eterized using previously executed CG simulations. However, this
preliminary data was rapidly dwarfed by the output of the current
campaign, both in the number of CG simulations and the variations
in sampled local environments. Therefore, the fidelity of the macro
model, which depends on parameters derived from initial training
data, is limited. Instead, MuMMI provides a unique opportunity to
continuously improve model parameters.

We use an on-the-fly feedback loop, where the in situ analysis
of CG data is used to update the macro model parameters. In par-
ticular, we compute the protein-lipid parameters, RDFs, between
the proteins in their different states and all the lipids. These RDFs
are captured by the WM periodically, weighted based on the preva-
lence of each simulation (as dictated by the ML framework), and the
updated RDFs are used to construct new free-energy functionals
to use in the macro model. The result of this on-the-fly feedback is
the progressive improvement in the accuracy of the macro model,
as the parameters will now be based on ms of cumulative particle
simulation data. More importantly, the CG simulations explore lipid
compositions that are accessible via concentration fluctuations and
can be properly reweighted, something that was not possible in the
preliminary simulations used to construct the initial macro model.

7 RESULTS
MuMMI enabled us to study RAS protein dynamics on a PM by
running a multiscale campaign on Sierra over several days. This
multiscale simulation aggregated over 200 ms of MD trajectories
and analyzed more than 300,000,000 frames as part of ∽120,000 MD
simulations (Figure 5), with the final dataset consuming over 320
TB of disk space. Our campaign surpasses similar existing large-
scale MD simulation efforts by orders of magnitude, representing
a wealth of new information, potentially leading to new insights
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(c) Resource utilization during a typical restart run

Figure 6: MuMMI leverages heterogenous architectures by allocating resources as needed by different tasks. (a) shows the
allocation of 2040 nodes on Sierra for a typical run of our scientific campaign. A single node each is needed for the job scheduler
(yellow) and the workflow manager (brown), with all remaining resources employed for simulations. (b) and (c) show the
machine utilization for an initial run and a typical restart. Demonstrating thatMuMMI is capable of achieving 100% resource
utilization in less than one hour.

in understanding the role of RAS in cancer initiation. Successfully
completing such a campaign at an unprecedented scale required
making effective use of the available computational resources.

Each computational node of Sierra, currently ranked 2nd on
the TOP500 supercomputing ranking [71], contains 44 3.45 GHz
POWER9® processors and four NVIDIA® TeslaTM V100 GPUs. Dur-
ing the course of this campaign, we were granted dedicated access
to 2040 nodes of Sierra for several continuous periods of 24 hours.
Other configurations were explored ranging down to 15 nodes
(without a running macro model) and up to 4000 nodes (utilizing
the full machine). All results discussed in this section represent a
typical 2040-node run; similar trends were observed when scaling
to the full machine.

7.1 Resource Utilization
As described in Section 5.2, we used Flux to allocate portions of a
node to each different type of task. Per our design, we dedicated all
available GPU resources to the compute-intensive CG simulations
and enforced the 20/24 split of CPU cores. Illustrated in Figure 6a,
the 20-core partition was dedicated to the CG simulations and anal-
ysis, reserving the remaining cores for the macro model simulation,
CG setup processes, and the WM. In a typical n = 2040 node setup,
one nodewas dedicated to Flux and one 24-core partition to theWM.
The single macro model simulation occupied the 24-core partition
of up to 500 nodes (d = 500). CG simulation bundles successfully
utilized both the 20-core partition and GPUs on the remaining n− 1
nodes. We note that each pair of CPUs on a Sierra node share an L2
cache. In order to maximize the L2 cache available to ddcMD, each
CG simulation was allocated two adjacent CPU cores, although
ddcMD only used a single core. We were also asked to leave at least
two cores free by the administrators for ongoing system processes,
which we counted within the four extra ddcMD cores. Finally, the
24-core partitions of the n−d−2 remaining nodes were reserved for
short-lived CG setup processes that are started only as the supply
of setup CG systems starts to be depleted. We note that in order
to prevent over-saturation of the system with similar patches, the
ML algorithms slowed selection to prevent a stale buffer of selected
patches so that newly identified patches can be considered for setup.

Figure 6 illustrates the machine utilization for two characteristic
runs. For simplicity, these figures show only then−d−2 nodeswhere

the macro model was not running. Figure 6b shows the initial run
where the multiscale simulation was being started. In the beginning,
the workflowmanager has not seen any patches and therefore takes
∽8 hours to fully load the GPUs of all 2040 nodes. We observed that
setup of the first batch of patch selections finished in the expected
90 minute time frame with the corresponding ddcMD jobs starting
immediately thereafter. A typical run can support a total of 8160 CG
simulations but can only setup 1538 CG systems at a time. Therefore,
we observed “step-like” patterns in the GPU utilization curves about
every 90 minutes as batches of CG system setup completed and
filled the next portion of available GPUs. Overall, our framework
took just over 7.5 hours to achieve full utilization of all available
GPUs when starting from scratch. Each CG (ddcMD) simulation
was configured to simulate over 1 µs of MD, running a minimum
of 24 hours, causing the framework to significantly slow down the
selection of new patches. In particular, in the two hours following
the saturation of all GPUs, the framework created the buffer of CG
setups described above. The rest of the runmakes steady use of 100%
GPUs and about 45% CPU cores (20 out of 44 cores). Figure 6b is
cropped at 16 hours, after which we observed steady-state behavior.

The restart capabilities in MuMMI make it straightforward to
continue the simulation from the previous states. Figure 6c high-
lights the typical utilization pattern during a restart. Since restart
runs already have CG simulations that were either previously run-
ning or were already set up, the delay until full utilization is reduced
significantly. In particular, MuMMI takes only about an hour to
reach 100% GPU (and about 45% CPU cores) utilization. This par-
ticular run also shows that when ddcMD jobs conclude (small dips
in the GPU curve), the corresponding GPUs are immediately re-
assigned; on two instances, when enough new ddcMD jobs have
been started, CG setup runs spike to refill the CG setup buffer.

We remind the reader that these results highlight the utilization
of the nodes where the macro model simulation was excluded,
and the macro model makes stable use of 100% CPU cores in their
24-core partition, running on 50 to 500 nodes. Furthermore, we
emphasize that the variability in resource utilization as illustrated
in the results is due to scientific requirements of our RAS campaign.
Indeed,MuMMI is fully capable of achieving 100% utilization when
required, and provides explicit control to the application for limiting
the resources as needed.
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7.2 Running at Scale on Sierra
We have successfully scaled MuMMI onto 4000 nodes of Sierra
maintaining the resource utilization described above: 100% GPU
utilization and about 45% to 100% CPU utilization based on the state
of the simulation. Irrespective of the number of available nodes, our
framework creates an ensemble of MD simulations using a single,
scalable macro model simulation. Here, we focus on the scaling
of the workflow with respect to the size of the simulation, rather
than the scaling of the individual components. In particular, we
highlight the load sustained by the workflow in terms of the size
and temporal sampling of the data.

Macro model. The typical set up of dedicating 24-core partition
of 100 nodes to the macro model results in a simulation of 12.0±0.25
µs per day for a 1 µm × 1 µm membrane simulation with 300 RAS
molecules. Lipid concentrations are updated every 20 ns, and the
RAS particles are integrated with a 25 ps time step. At steady state,
the macro model outputs one snapshot every 150 seconds (wall
time) with binary and ASCII files totaling 105 MB.

ML selection. The encoding of new patches using ML is done
in real-time, and the cost of maintaining the in-memory priority
queue as well as approximate-nearest-neighbor queries is negligible.
It takes 14±2 seconds (with occasional instances taking up to 26
seconds) to re-evaluate the importance of about 50,000 candidate
patches. To maintain computational affordability, we truncate the
queue to a length of 50,000.

CG setup, simulation, and analysis. To instantiate a 30 nm × 30
nm patch from the macro model to a CG simulation, one bilayer
leaflet is fixed at 1600 lipids, and the complementary leaflet is cre-
ated to embody the necessary asymmetric bilayer, allowing for
some variation in the total number of lipids between patches. The
total lipid number in each simulation is 3070±82 and with protein(s),
water, and ions totaling ∽140,000 particles. Each CG setup takes
1.5±0.1 hour (using 24 CPU cores with 4 hardware threads each).
With a time step of 20 fs, ddcMD simulates 1.04 µs per day running
on 1 GPU and 1 CPU core on a fully loaded node. Saved binary
particle positions take ∽3.1 MB per snapshot and are generated
locally every 0.5 ns (∽42 seconds wall time). For each simulation,
a corresponding in situ analysis module (using 3 CPU cores) pro-
cesses the data locally. Analyzed data, snapshots for offline analysis
(every 2 ns), restart checkpoints, and log files are moved to GPFS
every 20 ns (∽30 minutes wall time).

Throughput Variability. The summarized statistics forMuMMI
are as follows:

• Macro model simulation: 12.0±0.25 µs per day using 2400
MPI tasks

• ML patch queue latency: 14±2 s per 50,000 queries
• CG setup: 1.5±0.1 hours per patch
• ddcMD performance: 1.04±0.01 µs per day

For the campaign mentioned in this paper, the goal is to run each
selected micro patch for at least 1 µs. The MuMMI workflow is
throughput-limited due to the length of time required to run the
micro simulations, with ddcMD requiring a full day to reach the
minimum run time. With forthcoming improvements in the speed

of ddcMD, we expect to see a corresponding increase in overall
throughput of MuMMI. During the 6 to 24 hour long runs per-
formed for this campaign, on average 81%–98% of available GPU
resources on Sierra were utilized. Periods of resource underuti-
lization are due to simulation loading at the beginning of runs,
initial buildup of setup patches (during an initial run), and >0.2% for
turnover when simulations are stopped and new ones started. With-
out any resource conflicts, ddcMD is capable of producing 1.08±0.01
µs per day. During our campaign, on a fully loaded machine, over
80% of the time simulation throughput was 1.04±0.01 µs per day
(5.6% less than the ideal). Of the remaining time/simulations, ∽10%
experienced a slow down in output rate of about two fold and the
rest had a broader distribution of throughput times. It should be
noted that these runs took place while Sierra was in early testing
and hardening phase and a number of delays due to hardware and
software were observed.

7.3 RAS Campaign on Sierra
In this work, we have used MuMMI to carry out a multiscale simu-
lation of RAS proteins on a model cell membrane at unprecedented
spatial and temporal scales, enabling us to directly probe the bio-
logically relevant processes related to cancer initiation. MuMMI
efficiently utilized all of Sierra (176,000 CPUs and 16,000 GPUs)
as well as subsections of the machine. A total of 5.6M GPU hours
were used for running ∽120,000 MD simulations. These simulations
aggregated over 200 ms of 30 nm × 30 nmMD trajectories represen-
tatively sampling a square µm membrane macro simulation with
300 RAS proteins over 150 µs. This volume of simulations and ag-
gregated simulation time represents orders of magnitude increase
over traditional simulation campaigns.

In total, the macro model generated ∽2M candidate patches. Of
the candidate patches, ∽120,000 were selected by the ML-based im-
portance sampler and simulated at the micro CG MD level. Each 30
nm × 30 nmmembrane patch contained one or more RASmolecules
and was simulated for a minimum of 1 µs averaging 1.7±0.8 µs (see
Figure 5). The integration timestep of the CG MD simulations was
20 fs, requiring over 1013 energy evaluations of the 140,000 particle
size simulations to reach the aggregated time of over 200 ms. Sim-
ulations were analyzed online every 0.5 ns and frames saved for
offline analysis very 2 ns, resulting in over 100M stored frames for
later analysis occupying 320 TB of disk space. Online analysis was
performed for most of the simulations and over 300M frames were
processed.

Detailed analysis of both the online-processed data and the saved
(complete) trajectories, as well as experimental verification of key
simulation are currently underway, and are beyond the scope of this
paper. In particular, the majority of standard simulation analysis
tools and approaches were not developed to work with such a
large quantity data and range of simulated conditions, requiring
improvements to existing tools. The results will be presented in
forthcoming publications, along with open access to the dataset.
Preliminary findings indicate RAS dynamics on the membrane are
lipid dependent, showing how both RAS conformational preference
and RAS-RAS aggregation is dependent on lipid composition.
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8 DISCUSSION AND CONCLUSION
The workflow infrastructure of MuMMI represents a new way
to effectively integrate HPC workload situated between the large,
embarrassingly-parallel ensembles and the more tightly coupled
multi-physics simulations. As demonstrated above, MuMMI can
fully and efficiently utilize one of the world’s largest supercom-
puters while running a complex interdependent workflow. Unlike
previous efforts,MuMMI employs advanced ML methods to couple
different scales to resolve scientific inquiries. This new framework
uses a sophisticated workflow to overcome the difficulty of linking
simulations at multiple scales using ML and creates a groundbreak-
ing platform producing a multiscale simulation that is orders of
magnitude larger than previously reported.

RunningMuMMI on all of Sierra, especially as one of the earliest
applications, required addressing a number of challenges beyond
the technical contributions of this paper. To aid with reproducing
or extending our approach and to suggest potential areas of fu-
ture research and system development, we briefly discuss some of
these challenges. As mentioned in Section 5.3, managing the I/O
load, both in terms of data size as well as inode count, is crucial,
and strategies such as in situ analysis can help with mitigation.
Furthermore, we employed a careful job layout to allow maximal
use of local on-node RAM disk between related jobs to lighten the
load on the GPFS filesystem. In the future, we plan to move to a
database solution, such as the DBR. Another unexpected bottle-
neck was the loading of a large number of shared libraries, such as
Python modules. Treating all jobs as entirely independent implies
an individual start-up and tear-down phase which, especially on
a large parallel system, can incur significant overheads as shared
libraries are simultaneously loaded by thousands of tasks. Instead,
we plan to restructure the workflow to preload all necessary li-
braries at start-up and avoid repeated I/O by assigning new data to
their corresponding tasks without a tear-down and restart. We are
investigating using tools like Spindle [28] to avoid this complexity
and recover the independence between jobs. However, currently
Spindle is designed to load libraries within a single job and does
not directly support the large number of independent jobs used
by MuMMI. In general, MuMMI is under active development to
accelerate the macro model, support additional protein species, and
incorporate atomistic MD. Workflow-related extensions include
real-time feedback, improved resource allocation, and support for
different machine architectures.

The framework presented byMuMMI is generic and can be ex-
tended to other application areas such as chemistry, climate science,
and materials science, where a similar multiscale implementation
is beneficial. A number of other applications share the same charac-
teristics and could potentially benefit from theMuMMI workflow.
For example, one might investigate bond switches in atomistic MD
simulations by selectively executing quantum mechanics at energy
barriers or observe the evolution of hurricanes in a long-range cli-
matemodel by initiating higher resolutionweathermodels.MuMMI
represents a flexible framework not only to easily build such ap-
plications but to ensure their scalability on large, heterogeneous
HPC architectures of the future. Finally, the seamless integration of
diverse components facilitated byMuMMI is an important stepmov-
ing towards exascale, where the co-design of scalable frameworks

that focus on portability, data movement and layout, and perfor-
mance optimization are key to a sustainable hardware-software
ecosystem.
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