
Eurographics Conference on Visualization (EuroVis) 2018
J. Heer, H. Leitte, and T. Ropinski
(Guest Editors)

Volume 37 (2018), Number 3

Interactive Investigation of Traffic Congestion on
Fat-Tree Networks Using TREESCOPE

H. Bhatia1, N. Jain1, A. Bhatele1, Y. Livnat2, J. Domke3, V. Pascucci2, and P.-T. Bremer1,2

1Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA
2Scientific Computing & Imaging Institute, The University of Utah, Salt Lake City, UT, USA

3Tokyo Institute of Technology, Tokyo, Japan

[0, 3.0 TB]
3000

2000

1000

0 2.0 TB1.0 TB 3.0 TB
0

12 PM 06 PM 06 AM12 AM

[2016.09.02 08:56:12, 2016.09.02 09:15:42]

400 GB
300 GB

100 GB
0

500 GB

200 GB

[0, 1.8 TB]
3000

2000

1000

0 1.0 TB500 GB 1.5 TB
0

12 PM 06 PM 06 AM12 AM

[2016.09.02 22:16:23, 2016.09.02 22:32:53]

400 GB
300 GB

100 GB
0

500 GB

200 GB

Figure 1: TREESCOPE enables interactive and unified exploration of network traffic for large-scale fat-tree networks, including the visual
analytics of network counters, job queue logs, job placements, and routing scheme. The figure shows the network traffic during the execution
of the same application using two routing schemes, ftree routing (left) and SAR scheme (right). The visualization shows temporal and
distributional statistics (top), and detailed per-link traffic on half of the 1296-node fat-tree cluster in use (bottom). The free routing distributes
the traffic more uniformly (average traffic maps to yellow) and is about 15% faster than the SAR scheme. TREESCOPE helps users explore
the data and formulate hypotheses on the causes for performance degradation, such as the presence of hotspots in the traffic on the right.

Abstract
Parallel simulation codes often suffer from performance bottlenecks due to network congestion, leaving millions of dollars of
investments underutilized. Given a network topology, it is critical to understand how different applications, job placements,
routing schemes, etc., are affected by and contribute to network congestion, especially for large and complex networks.
Understanding and optimizing communication on large-scale networks is an active area of research. Domain experts often
use exploratory tools to develop both intuitive and formal metrics for network health and performance. This paper presents
TREESCOPE, an interactive, web-based visualization tool for exploring network traffic on large-scale fat-tree networks.
TREESCOPE encodes the network topology using a tailored matrix-based representation and provides detailed visualization
of all traffic in the network. We report on the design process of TREESCOPE, which has been received positively by
network researchers as well as system administrators. Through case studies of real and simulated data, we demonstrate how
TREESCOPE’s visual design and interactive support for complex queries on network traffic can provide experts with new
insights into the occurrences and causes of congestion in the network.

CCS Concepts
•Human-centered computing → Visualization application domains; Visual analytics;

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

H. Bhatia et al. / Interactive Investigation of Traffic Congestion on Fat-Tree Networks Using TREESCOPE

1 Introduction

High-performance computing (HPC) is an integral component
of the modern scientific workflow. In order to support the
growing scale and complexity of scientific and engineering
applications, HPC facilities are constantly optimizing the use of
available resources. One of the primary performance bottlenecks in
large-scale applications is the communication between distributed
nodes. Hence, understanding the implications of the design and
configuration of the large-scale network interconnect on current
and future applications is crucial for optimally utilizing the existing
facilities as well as for planning and procuring next-generation
machines. A particularly important design parameter is the network
topology, which defines how thousands of computational nodes are
interconnected to form a supercomputer. Not only can the network
topology heavily influence the performance of certain applications,
but it also represents a hard constraint, as once installed, it usually
cannot be changed. Therefore, all other systemwide design choices
must be compatible with the network topology to obtain the best
performance in HPC applications.

Interconnect-related performance degradation on a network
topology can have many causes, and is often unique to a particular
configuration, state of the network, and even input parameters of
active applications. Communication-based slowdowns can occur
due to various factors, such as ill-suited routing schemes or
job-placement policies (mapping of applications to computational
nodes), especially if either is incompatible with the underlying
topology [JBW∗16]. Therefore, developing automatic techniques
to find and diagnose network problems has been challenging, and
remains an active area of research.

The lack of automated tools and the exploratory nature of
the problem make visual analytics solutions an attractive choice.
To develop such a system, it is crucial to understand the
diverse and sometimes conflicting needs of all interested users.
For example, network researchers are interested in developing
new routing schemes, new network configurations, whereas
system administrators are typically concerned with ongoing
network health, optimizing utilization, and diagnosing failures.
In general, both user groups are interested in visualization tools
to understand network behavior with some specific use-cases
including exploration of network traffic to identify congested and
underutilized portions of the network, and to determine potential
causes of problems.

Here, we focus on one of the most common network topology,
the fat-tree topology [Lei85]. In particular, we aim to allow
an interactive visual exploration of network congestion and its
potential causes. Several sophisticated visualization solutions have
been proposed for other topologies, such as torus [LLB∗12]
and dragonfly [BJL∗16, LMR∗17]. However, due to unique
characteristics such as the strictly hierarchical nature of the
topology, the fat-tree topology is significantly different from these
topologies, and intuitive visualizations for fat-trees are still lacking.
Instead, application specialists and system administrators typically
diagnose unexpected behavior via manual exploration, mostly
through aggregated statistics and/or simple, static visualizations,
which not only is slow and fails to scale, but more importantly is
error prone and disallows making detailed investigation.

Domain experts often have an intuitive expectation of how
a well-behaved network should look, e.g., ideally the network
should be evenly loaded, and hotspots (overloaded network links)
may indicate bottlenecks. Key metrics to characterize the state of
a network are the various hardware counters collected from
the computational nodes or network switches. In particular, the
number of packets sent over all network links or processed by
all network ports represents the total traffic on the network.
Although nonuniformly distributed packet counts may indicate
bottlenecks or underutilization, analysis of its root causes typically
requires supplementary information, e.g., job logs recording which
applications ran on which nodes and/or routing schemes indicating
potential sources or destinations of high packet volumes.

Contributions. We present TREESCOPE, a unified solution to
investigate network traffic on supercomputers with fat-tree
topology. Shown in Figure 1, TREESCOPE is an interactive
web-based visualization tool that enables users to explore network
traffic (and other relevant hardware counters) and investigate
the effects of job-placement and routing schemes. TREESCOPE

uses a tailored matrix-based graph encoding of the fat-tree
topology, which provides a high-level overview while also
supporting detailed queries for specific information. We discuss
our collaborative design process, as well as the data and
task abstractions, which will be relevant to other visualization
researchers working in similar domains. Through two case studies
using real and simulated data for applications of interest on
leadership-class computing machines, we report a success story
of how visualization research can be leveraged to support crucial
inquiries in other fields.

2 Fat-Tree Networks

The fat-tree topology [Lei85] was designed to connect processors
in parallel clusters and supercomputers. As commodity hardware
became available to build systems with the fat-tree topology,
they became popular and are widely used today to build
medium- to large-scale supercomputers and infrastructure for data
centers. Currently, about 50% of machines listed in the TOP500
list [MSDS] as well as several data centers [XZWX17] use
fat-tree topology. The fat-tree network derives its name from its
resemblance to a k-ary tree whose communication bandwidth
increases as we get closer to the root. However, in practice,
hardware cables provide a fixed amount of bandwidth, and network
switches have a fixed number of ports. Thus, multiple switches
are grouped together closer to the root to provide the increase in
bandwidth. Typical implementations of the fat-tree topology are
based on Clos networks [Clo53], and both terms are often used
interchangeably.

Referring to Figure 2, we describe the construction of a
three-level (the most common configuration) fat-tree using network
switches with a fixed port count, k. The level 1 (L1), called the
edge layer, is the lowest level of the tree. Half the ports of each L1
switch are connected to k/2 compute nodes. The remaining ports
are connected to k/2 switches in level 2 (L2), also known as the
aggregation layer. The L1 switches connected to L2 switches form
a fully connected bipartite graph, commonly called a pod. Pods are
connected in an all-to-all manner at level 3 (L3), also called the core

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

H. Bhatia et al. / Interactive Investigation of Traffic Congestion on Fat-Tree Networks Using TREESCOPE

aggregation (L2)

edge (L1)

core (L3)

compute nodes
pod 0 pod 1 pod 2 pod 3

Figure 2: A small fat-tree network for k = 4 contains 8 L1, 8
L2, 4 L3 switches, and up to 16 compute nodes. The L1 and L2
switches are logically grouped into four separate closely connected
pods, and the L3 switches (from 2 bundles) connect different pods.
The bold dashed line shows an example of the path between two
compute nodes in different pods, which takes five hops.

layer, through specialized hardware called director-class switches
(referred hereon as “bundles” to avoid confusion with standard
switches), such that L3 switches corresponding to each bundle
connect to some of the L2 switches in each pod. A full-bisection,
three-level fat-tree with equal bandwidth across levels, as shown
in the figure, supports k pods, and is comprised of k2/2 L1, k2/2
L2, and k2/4 L3 switches, and k3/4 compute nodes. The pairs
of nodes/switches are connected via a bidirectional link, which in
practice is implemented using two independent physical cables.

3 Related Work

Several approaches exist for visualizing network traffic [IGJ∗14].
One set of techniques focuses on the logical organization
of the data, e.g., visualizing the flow of data between MPI
ranks [HE91,HCR01,SMM∗13]. Other approaches aim to visualize
the impact of traffic on the hardware interconnect [LLB∗12,
BJL∗16]. Here, we focus on the latter, since the goal is to identify
hotspots/congestion in the physical network infrastructure, and
investigate how different applications, routing schemes, and/or job
placement policies may contribute to it. Designing visualizations
for complex and multi-dimensional connectivity between network
components is challenging, especially because visualization
layouts are not transferable among different topologies due to
their vastly different configurations. Several visualizations have
been developed for n-dimensional tori [ABC∗05], which can
be naturally represented as regular meshes [LLB∗12, MIB∗14,
TSW14, CDJM14]. Similarly, dragonfly topologies have been
visualized with graph-based layouts [BJL∗16, LMR∗17].

Graph visualization. The visualization community has studied
graph visualization in great detail [Ber67, PCJ97, BETT98,
HMM00]. It is well accepted that node-link visualizations,
which use lines to denote links between connected nodes,
suffer significantly from scalability and occlusion [GFC04,
GFC05]. Instead, matrix-based representations visualize the
connectivity as adjacency matrices [Ber67]. Such representations
have been shown to be better suited for almost all types of
graph-specific queries [GFC04, GFC05], except route-finding,
where the node-link representations can perform better for
relatively small graphs. Matrix-based visualizations have been
successfully in a wide variety of applications, e.g., visualization of
social networks [HF06], telecommunication networks [BETT98],
HPC networks [WCC∗17], and brain networks [ABHR∗13].

Considering the dense connectivity of the fat-tree topology,
TREESCOPE uses a matrix-based layout to visualize the network.

Fat-tree visualization tools. Fat-tree specific tools include the
Paraver visualization tool [Bar] as well as the Boxfish fat-tree
module [BDM15]. Both use layered graph approaches with the
corresponding scalability and occlusion issues. To alleviate some
of the occlusion, Brown et al. [BDM15] propose to omit unused
links. However, this can be misleading since unused links are not
necessarily idle, but may be dysfunctional, which, especially for
system administrators, makes them one of the more important
aspects of a network. Zhou et al. [ZSC03] visualize the network
connectivity as a symmetric adjacency matrix, with the nodes and
switches grouped together to form both the rows and columns
of the matrix. Two-way traffic can naturally be visualized on the
matrix, while the transactions are depicted through 3D glyphs
animation. However, such a representation suffers from sparsity
and redundancy, since each switch and node appears twice, once
as an input and once as an output. In practice, the sparsity is of
particular concern as screen space is limited, and therefore large
networks cannot be easily displayed. Furthermore, a pure matrix
layout does not reflect the structure of the network, and it is
difficult to determine the (logical) distance between two nodes or
to understand the hierarchical organization of the switches. One
particular requirement for TREESCOPE was to design a compact,
yet complete, visual representation of the network topology.

4 Design Methodology

Designing an interactive visualization tool to support
domain-specific inquiries is challenging, especially due to the gaps
between the understanding and expectations of visualization
scientists and domain experts [Wij06]. Fortunately, there
exists extensive literature on methodologies for visualization
design [AS05, Mun09, SMM12, BNTM16], guiding the process
for a successful design by translating the domain knowledge and
vocabulary into visualization terminology, and exploring various
visualization choices suited to the application at hand.

We followed the four-phase nested model proposed by
Munzner [Mun09], as it offers a clear distinction between different
design phases as well as specific guidelines for appropriate
validation. Due to space restrictions, this paper presents only the
first three phases and omits the last phase (algorithm design).

TREESCOPE was developed through a collaborative process with
domain experts, who were actively involved in our design process
and provided continuous feedback on the evolving visualization
design of TREESCOPE. These domain experts include three staff
members at LLNL’s HPC facility looking to monitor the network
traffic on supercomputers, as well as four research scientists trying
to understand the impact of the network on the communication
performance of application codes (and vice versa). These experts
also evaluated TREESCOPE through case studies, two of which are
discussed in this paper.

4.1 Domain Problem Characterization

This section summarizes the first phase of our design
process [Mun09]. Over a period of 6 months, we conducted

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

H. Bhatia et al. / Interactive Investigation of Traffic Congestion on Fat-Tree Networks Using TREESCOPE

bi-weekly in-depth discussions with domain experts to learn
about application domain, understand the issues and challenges
they face, and gather a list of requirements. Generally, domain
experts are interested in potential communication bottlenecks,
and in how to improve the network throughput, and thus, the
performance. Communication bottlenecks are often caused by
network congestion or hotspots, which slow down communication
routed through them, and in turn negatively impact application
performance. Hotspots can be broadly defined as switches or
links that have much higher traffic passing through them than the
global average. Existing tools to identify congestion are limiting in
both scale and functionality. Currently, experts typically explore
aggregated statistics which can obscure many localized effects and
rarely provide specific insights. Instead, descriptive visualizations
that support an interactive exploration of the data are needed.

During the discussions, we jointly developed a list of specific
types of data (D#) the target design should support as well as a set
of specific tasks (T #) necessary to understand network congestion.

Exploration of network traffic. The primary use-case for
TREESCOPE is the exploration of network traffic to identify
congestion. To facilitate such exploration, the experts collect

(D1) detailed connectivity information of the network, i.e, for each
switch in the network, a list of all switches it was connected
to through all active ports; and

(D2) network counters for each port (captured every 30–90
seconds), such as the amount of data sent and received, the
number of dropped packets, the aggregated wait time before
packets were forwarded, as well as status flags and errors,
such as buffer overload, etc.

Given the design of a fat-tree topology, detailed information for
each switch, such as level and pod id can be derived from the
connectivity information. For any of the network counters, one is
typically interested in

(T 1) temporal statistics of traffic to determine if and when the
network was underperforming;

(T 2) distributional statistics of traffic to find underutilized and/or
congested network links;

(T 3) combined/filtered statistics and visualization to isolate the
congestion with respect to level (e.g., the L1 → L2 links)
and/or directionality (e.g., the L1→ L2→ L3 links); and

(T 4) a simple and intuitive, yet complete visualization of traffic
on all links and switches in the network, to facilitate visual
examination of congestion.

Exploration of job execution. Visual identification of hotspots
and/or underutilized links is only the first step toward the overall
goal. If a bottleneck is observed, users are interested in identifying
potential causes, e.g., which jobs (applications running on HPC
machines) were creating these bottlenecks. Therefore, users collect

(D3) a complete job history, i.e., a record of which jobs were
running on which nodes along with their start and end times.

Using this auxiliary data, users want to complement the
understanding of network traffic, and examine if any specific jobs
were responsible for congestion. In particular, the tasks are to

(T 5) provide a simultaneous visualization of job placement on
corresponding nodes on the network; and

(T 6) visualize traffic during the execution of selected job(s).

Exploration of traffic routing. For a root-cause analysis of where
the congestion originates, it is important to explore the flow of
traffic on the network. To this end, users collect

(D4) routing tables, i.e., which ports were used to send packets
between two nodes. We note that routing tables are dynamic,
and can change for various reasons, such as switch, node, or
link failures, experimental setups, etc.

Using time-varying routing tables, specific user queries include

(T 7) footprint of a (set of) job(s), i.e., all routes (potentially) used
for communication by chosen job(s), useful for hypothesizing
about the role of corresponding job(s) in creating congestion;

(T 8) footprint of a (set of) network component(s), i.e., the subset
of the network reachable from a selected switch/port, useful
for hypothesizing about the role of an overloaded port in
creating congestion; and

(T 9) arbitrary combinations of the above.

Exploration of inter-job interference. A particularly important
goal is to identify whether certain communication-heavy jobs
interfered with other jobs’ communication by congesting the
network. This can be achieved through a combination of job-related
and routing-related tasks defined above, i.e, (T 6), (T 7), and (T 8).

4.2 Data and Task Abstraction

The next phase of the design process [Mun09] entails translating
the scope and requirement for TREESCOPE into visualization
vocabulary using appropriate abstractions, followed by validation
with the domain experts. We summarize several of our discussions
with the domain experts spanning a period of about 3 months.

First of all, it is important to note that the so-called “fat-tree
topology” is a misnomer, as the underlying connectivity implies
a graph, not a tree (see Figure 2). The compute nodes and switches
in the network form the nodes of the graph, and links in the network
correspond to graph’s edges. Since network switches are uniquely
associated with levels L1, L2, and L3, we define a concise notation
for all graph nodes by denoting the compute nodes as L0 nodes.
We note that although a fat-tree topology may contain more than
three levels, to the best of our knowledge, such a full-bisection
bandwidth configuration with four or more levels has not been
deployed in practice; hence, we focus TREESCOPE on fat-tree
networks containing three levels only.

Recall from Section 2 that network links are bidirectional, and
behave independently; therefore, we consider them as pairs of
graph edges with opposite directionality. Aggregating bidirectional
traffic into a single link, as done in similar tools for other types of
network topology [LLB∗12, BJL∗16], can be misleading. Indeed,
considering the two directions separately is important to our users
because following the traffic direction may indicate which nodes
are possibly creating bottlenecks, e.g., in cases when one direction
of the link is loaded while the opposite is used sparingly. To
establish a precise notion for bidirectional links, we call a given
link {s→ d} an “up” link if the level of the source node, s, is

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

H. Bhatia et al. / Interactive Investigation of Traffic Congestion on Fat-Tree Networks Using TREESCOPE

(a) (b)

(c)
Figure 3: TREESCOPE provides both
overview and detailed visualizations of
network traffic. The figure shows various
components of TREESCOPE. (a) A complete
UI panel is provided on the left with several
options to enable interactive queries.
(b) Summary overviews (temporal and
distributional) are given at the top. (c) The
central component is the detailed fat-tree view,
showing per-link and per-switch traffic on
adjacency matrices. The visible elements are
filtered based on the active traffic range, which
is selected using the brush in the histogram.
Interactive selection and filtering is important
to show heavily loaded links. Both summary
plots are shown in six colors (grouped by level
and direction), whereas three single-hue color
maps are used for “up” links, “down” links,
and switches, respectively.

lower than that of the destination node, d. The reverse directions
are correspondingly called “down” links.

Several different models for task abstraction have been
proposed [AES05, LPP∗06, HS12, BM13, BNTM16]. Here, we
follow a multi-level typology [BM13] to characterize the scope
and requirements of TREESCOPE. This approach allows translating
domain-specific tasks into a sequence of interdependent abstract
visualization tasks, using which their scope can be defined with
respect to why and how a visualization task is performed, as well as
what the task inputs and outputs are.

Why? The primary undertaking of TREESCOPE is to discover the
presence and causes of network congestion, and its dependence
upon factors like routing schemes and job placement. The required
tasks aim to explore and query the data for trends and anomalies,
as well as for comparison and summarization of data.

How? Next, we establish the encoding and manipulation of
visualization tasks with respect to the corresponding data. (T 1)
and (T 2) deal with time-series and distribution data; we choose
1D plots as they are well suited for the purpose and the domain
experts are familiar with them. (T 3) then becomes a simple
filtering operation on (T 1) and (T 2). (T 4) requires visualization
of the entire network; our encoding for graph visualization is
described in Section 5.1. Visualizing the job placement, i.e., (T 5),
is an attribute-based task [LPP∗06], and can be performed by
highlighting relevant nodes of the graph (discussed in Section 5.2).
(T 6) is also a filtering operation based upon the time range when
a given job was active. The tasks related to routing are browsing
tasks [LPP∗06], and can be generally described as following certain
paths using the active routing tables based on a known set of
source/destination nodes (T 7), a selected link (T 8), or both (T 9).

What? The lowest level descriptors of tasks further categorize
them based on data semantics. In this context, (T 1), (T 2), and
(T 4) relate to temporal patterns as well as ranges and distributions
to provide summarized information. All other tasks are related to
graph-based data, and represent various attributes on either nodes
(T 5), or links (T 3), (T 6), (T 7), (T 8), and (T 9).

5 Visualization and Interaction Design of TREESCOPE

Designing an interactive visualization tool that highlights the
required details in the data, and yet has a low perceptual
complexity, requires careful attention. Even within the
requirements of TREESCOPE described in Section 4.1, there
existed various degrees of freedom. A key feature of our design
process was continued engagement with domain experts, which
allowed us make many design decision considering both domain-
and visualization-specific concerns. In order to accommodate space
restrictions, we are not able to discuss the various initial prototypes
of TREESCOPE; we focus on only the final visualization and the
most important design choices. Figure 3 gives an overview of
TREESCOPE; this section describes the visual encoding of various
data elements (Sections 5.1–5.3), and how TREESCOPE maps
these visual encodings to the required tasks through interactive
exploration (Sections 5.4–5.6).

5.1 Encoding the Fat-Tree Topology

The primary use case of TREESCOPE is to visualize network
traffic: every link in the network must be displayed without
occlusion. As is known from the visualization literature [Ber67,
BETT98, HMM00, GFC04, GFC05], adjacency matrices make

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

H. Bhatia et al. / Interactive Investigation of Traffic Congestion on Fat-Tree Networks Using TREESCOPE

an excellent choice for displaying large-scale graphs, because
they transform dense connectivity into compact, symmetrical,
and uncluttered visual elements, leading to a highly scalable
visual encoding. Therefore, we choose a matrix-view layout to
display network traffic. This section describes how we encode the
dense connectivity of fat-tree topology into a set of adjacency
matrices, which when juxtaposed carefully, give a complete view
of the network. Network traffic patterns can then be visualized
as a heat map on these matrices, thereby providing a powerful
focus-plus-context visualization to investigate congestion.

In order to fully appreciate the challenges and considerations in
the visual design, we describe the visual encoding of TREESCOPE

using an example of a full-scale production system containing 1296
compute nodes, 72 switches at L1 and L2 each, and 36 switches at
L3, with each switch having 36 ports. The network consists of four
pods, each containing 18 L1 and 18 L2 switches, and these pods
are bridged together by two bundles of 18 L3 switches each.

Since pods represent both logical and structural units of
networks, we encode the fat-tree network with respect to pods.
This discussion exemplifies only a single pod, referring to Figure 4.
Recall that each L1 switch in a given pod p is connected to
multiple L0 nodes, all associated with the same pod; we denote
their connectivity as {L0}p ⇒ {L1}p. Furthermore, the bipartite
graph between the sets of L1 and L2 switches within the pod
p can be denoted as {L1}p ⇔ {L2}p. Finally, each L2 switch
is connected to an L3 switch from some bundle b; therefore,
we qualify sets of L2 switches in a pod, i.e., {L2}p, further
based on the bundle they connect to, i.e., {L2}b

p, and denote their
connectivity to L3 switches as {L2}b

p⇔ {L3}b. Therefore, the
entire connectivity relevant to a given pod p can be summarized
as {{L0}p ⇒ {L1}p ⇔ {L2}b

p ⇔ {L3}b} for all b.

Since L0 nodes are connected to L1 nodes through dedicated
links, which rules out interference on {L0}p ⇒ {L1}p links,
making them of less interest to the users. Therefore, in order to
create a compactly packed visualization, TREESCOPE omits direct
visualization of L0–L1 connectivity; the traffic on such links can
be visualized indirectly, as will be shown later.

In general, a single {L1}p ⇔ {L2}p interconnect can be
represented using a single adjacency matrix, {L1}p×{L2}p. To
depict bidirectionality of links, we extend the matrix horizontally
by duplicating L2 switches: one adjacency submatrix visualizes the
traffic from {L1}p to {L2}p, and the other shows the traffic in
the opposite direction. For example, the figure shows directional
submatrices in different colors (note the difference in the ordering
of direction-specific submatrices, to be explained ahead).

To show two levels of interconnects, {L1}p×{L2}b
p×{L3}b,

we stack the corresponding adjacency matrices on top of each
other, such that the {L2}p switches are shared horizontally between
them. To suborganize the visualization with respect to bundles, we
separate the {L2}p and {L3}p switches into subsets corresponding
to bundles (two bundles in our example), and depict pod p as
two juxtaposed sets of {L1}p×{L2}b

p×{L3}b matrices. In this
representation, the {L2}b

p and {L3}b are visualized as two separate
stacks, horizontal and vertical, respectively; however, there is only
a single vertical stack of {L1}p, since they do not depend upon b.

{L1}0×{L2}0
0

{L3}0×{L2}0
0

{L1}0×{L2}1
0

{L3}1×{L2}1
0

L1 switches

L2 switches

L2 switches (duplicates)

L3 switches

ʺupʺ links

(L1 L2; L2 L3)

ʺdownʺ links

(L3 L2; L2 L1)

Traffic

direction

Figure 4: TREESCOPE encodes large-scale graphs implied by the
fat-tree topology using matrix-based representations. The figure
shows one of the many pods (superscripted 0) and two bundles
(subscripted 0 and 1) in the network. The connectivity within a
given pod is visualized using a set of adjacency matrices between
nodes at adjacent levels, i.e., {L1}0 × {L2}0

0, {L3}0 × {L2}0
0,

etc. The key features of the encoding include (1) omission of
the less important, {L0}0 ⇒ {L1}0, connectivity, (2) hierarchical
view of the pod by splitting the pod with respect to bundles
(within dashed boxes), (3) separate matrices for “up” and “down”
traffic (different colors), (4) duplication of L2 switches (solid vs.
hollow gray switches) to enable visualization of directional traffic,
and (5) reordering of directional submatrices to allow consistent
aggregation (incoming or outgoing) of traffic for L2 switches.

Finally, an important decision was to reorder the
direction-specific submatrices. Note that the ordering of
submatrices corresponding to “up” and “down” links is inverted for
the {L3}b×{L2}b

p matrix, as compared to the {L1}p×{L2}b
p. This

modified ordering assigns a consistent traffic direction to every
column with respect to {L2}b

p switches. In other words, every
column either brings traffic in or takes it out of a given L2 switch,
allowing the visualization of a meaningful aggregate on them:
“incoming” or “outgoing” traffic. Whereas the layout duplicates the
L2 switches corresponding to the two traffic directions, duplicating
L1 and L3 switches would require additional horizontal space.
Therefore, we instead split each L1 and L3 switch in half to display
corresponding “incoming” and “outgoing” traffic.

Our encoding not only arranges the network with respect to pods
but also with respect to bundles within each pod, thus providing
a hierarchical view of pods. Domain experts found this design
easy to understand as it provides a physical layout perception
and closely matched their intuition about the the network. Finally,
this design is highly scalable, since all such bundles used in a
network are typically of the same size, which leads to an optimal
use of screen space as these adjacency matrices are of the same
size, and can be packed compactly inside a pod. Note that the
example illustrated in the figure contains only two bundles, and
therefore, the pod contains two sub-parts. However, a larger number
of submatrices can also be arranged horizontally, but still maintain
the compactness and symmetry of the layout.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

H. Bhatia et al. / Interactive Investigation of Traffic Congestion on Fat-Tree Networks Using TREESCOPE

Figure 5: Job-placement schemes can be visualized on L1 switches
by color-coding them in proportion to the number of compute nodes
occupied by corresponding jobs to the total number of compute
nodes connected to them (the L1 switches). For selected jobs in
the table, a stacked-histogram type visualization conveys which L1
switches contain compute nodes corresponding to different jobs.

5.2 Encoding of Job Placement

The exploration of application jobs is a crucial component of our
target analysis. Recall that the fat-tree view does not show L0
(compute) nodes. Therefore, in order to understand the impact of a
given job-placement scheme, TREESCOPE instead uses an indirect
visualization of job-to-node mapping: we show job-to-L1 mapping,
which is a many-to-many mapping, and can be computed using
job-to-node and node-to-L1 mappings, both of which are unique.

L1 nodes are visualized as horizontal rectangles (see Figure 4),
which allows augmenting the visualization with job-placement
information without any additional visual elements. As shown
in Figure 5, TREESCOPE displays the job-to-L1 mapping using
a stacked-histogram-type visualization, where “stacks” represent
portions of L1 nodes occupied by different jobs: given a job that
occupies n j out of n active L0 nodes connected to a given L1 node,
the width of the corresponding stack is w · n j/n, with w being the
width of the rectangle representing the L1 node. The portion of an
L1 node not used for any of the selected jobs is shown in dark gray.

5.3 Encoding of Quantitative and Categorical Data

Designing an effective color scheme is crucial for perceptual
accuracy [SSM11,ZH16]. The color schemes used in TREESCOPE

are inspired by ColorBrewer [HB03, Bre17]. TREESCOPE uses
a single-hue color map to display the network traffic because
such color maps are perceptually uniform [LH92, ZH16]. In some
cases, the users may be interested in comparing the traffic to
some reasonable quantity, for which TREESCOPE also offers
choices of diverging color maps. TREESCOPE allows the user to
choose up to four (single-hue and/or diverging) color maps: one
each for “up”/“down” links, “incoming”/“outgoing” switch traffic.
The default choices are single-hue color maps: ‘green’, ‘orange’,
‘purple’, and ‘magenta’, respectively. ‘Red’ is not used to avoid
the red/green colorblindness issue. Fewer color maps may be used,
which is strongly recommended to reduce chromatic complexity.
Two categorical color maps are chosen to visualize summary plots
and job placements. A paired scheme (light/dark pairs) is used for
the former to maintain context between similar groups, e.g., L1→
L2, and L2→ L1 links. On the other hand, job placement uses a set
of darker hues. Unfortunately, it is not possible to make these two
schemes mutually exclusive due to a limited color set (considering
color blindness). However, since these colored components are

spatially distant on the screen, and do not interact with each other,
the users did not have any problems in practice.

5.4 Exploration of Network Traffic
Upon selection of a metric of interest, such as “data_sent”, through
a UI dropdown, the user can explore the network behavior by
interacting with the visualization as described below.

(T 1) Temporal statistics. The exploration typically begins with
looking at statistics for arbitrary time ranges. TREESCOPE provides
a time chart (see (b) in Figure 3) that shows the maximum or the
average traffic (based on UI choice) for all links in the network
for each time step for the entire time range. This gives a quick
overview and helps determine when the network utilization was
high/low. The time chart is augmented with a brush that allows the
user to select the active time range, i.e., the time range to focus on.

(T 2) Distributional statistics. Next, users are typically interested
in looking at the distribution of traffic counters to understand
how many (if any) links were underutilized or overloaded. To this
end, TREESCOPE displays a histogram (see (b) in Figure 3) of
total traffic on every link, restricted to the active time range. The
histogram also contains a brush that allows the user to select the
active traffic range, suggesting that the users are interested only in
the links with a certain range of utilization. The UI also enables the
user to view the complement of the brush selection to focus on both
the low and the high end of the traffic distribution.

(T 3) Combined/filtered statistics. Through the UI, the user
can choose to visualize the statistical plots with respect to the
directionality and/or level of links. When one or both of these
options are selected through the UI, the summary is decomposed
into up to six groups (three levels and two directions): the time
chart contains as many line plots, and the histogram is converted
into a stacked histogram with as many stacks, which allows various
types of comparisons, e.g., intra-pod vs. inter-pod traffic.

(T 4) Fat-tree network visualization. The core component of
TREESCOPE is the detailed fat-tree network view, which shows
traffic on every switch and link. The traffic metric under exploration
is aggregated (summed) for every link in the network for the active
time range, and displayed as a heat map on adjacency matrices. In
the case of switches, the maximum traffic is visualized. Whereas
the aggregation of traffic is performed for the active time range, the
visibility of links is decided based on the active traffic range: links
are displayed only if their traffic is in the range chosen by the user.
Our choices are guided by the domain experts’ interest in observing
the total traffic flowing in the network for the active time range
for underutilized and/or overloaded links. The aggregation and
filtering are interactive, and the visualization updates dynamically
with changes in user selection.

5.5 Exploration of Job Execution
A selectable and sortable table in the UI provides a listing of
the available jobs. Users are often not interested in jobs running
either for a small amount of time, or on a small number of nodes.
Therefore, TREESCOPE provides UI options to filter jobs based
on user-defined thresholds. Furthermore, an additional checkbox
in the UI enables filtering of jobs based on time range: any jobs not
running for any part of the active time range are not shown.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

H. Bhatia et al. / Interactive Investigation of Traffic Congestion on Fat-Tree Networks Using TREESCOPE

source (L1)
destination (L1)

hop 1 (L2)

hop 2 (L3) hop 2 (L3)

hop 3 (L3)

same L3 switch shown in both pods

Figure 6: The route between a pair of end nodes (or switches)
can be visualized by highlighting the switches and links that the
corresponding traffic goes through. The arrows denote the direction
of routes, and show how the traffic is routed. Since the L3 switches
are repeated in every pod, the traffic goes into a particular L3
switch but may come out from the same switch in a different pod.

(T 5) Visualization of job placement. Through the UI, users
can change the display mode of switches from “traffic” to “job
mapping”, revealing the stacked-histogram visualization of job
placement. The “stacks” in the visualization correspond to the
tabulation of job information through color. Any L1 nodes not
occupied by selected jobs are faded away. As shown in Figure 5,
when viewed in conjunction with this table, a simple and intuitive
visualization of job placement in the network is obtained.

(T 6) Visualization of traffic during a job’s execution. All
components of the visualization are dynamic and interlinked. By
selecting a job in the table, the user expresses interest in the
network traffic only while the corresponding job as well as all other
concurrent jobs were running. Upon selection of a job through the
table, the active time range is changed to the time range of the
job’s execution, which, in turn, updates the entire visualization,
including the traffic visualization in the fat-tree view. Moreover, if
the time-based filtering of job table is enabled, the update of active
time range in turn updates the table to contain concurrent jobs only.

5.6 Exploration of Traffic Routing

The ability to dynamically highlight routing information on the
network enables the users to explore possible causes of network
congestion. Given the encoding of fat-tree topology described in
Section 5.1, the route between a pair of L1 switches in different
pods is illustrated in Figure 6. The figure is augmented by arrows
to help the reader trace the route; note that the arrows are not
shown in TREESCOPE, because in real use cases, multiple such
routes have to be visualized simultaneously, in which case such
line visualizations create clutter and perceptual complexity. In
particular, TREESCOPE visualizes routes by highlighting only the
corresponding links and switches by fading out (using opacity)
all others. Since we prefer to use quantitative single-hue color
maps to display traffic on links, a white-colored link implies low
traffic. In order to use opacity as a descriptive visual channel,
we must, therefore, use a non-white background, which allows
distinguishing a non-faded link with low traffic from a faded link.
We next describe the route-based queries enabled by TREESCOPE.

(T 7) Footprint of a (set of) job(s). A selection in the job table
implies the user’s intent to explore how traffic corresponding to
the selected job was routed through the network. Given a (set
of) selected job(s), J, TREESCOPE determines the set of switches
and links used by J. In particular, since main interest is in the
bottlenecks created due to job interference, only the links used by
all jobs in J are shown. Furthermore, since the goal is to understand
which switches could be sending the corresponding traffic, all the
switches used by any of the selected jobs are displayed.

(T 8) Footprint of a (set of) network component(s). The user can
select one or more switches/ports in the network as sources (click)
or destinations (shift+click), in which case, TREESCOPE highlights
the route between the selected end points, determined using the
active routing table.

(T 9) Combinations of the above. Common use cases combine
both types of selection: the job-based route is treated as primary,
and network selection is used to refine it into the final set of
switches and links to be visualized. For example, in a typical
exploration, a user would select a job, J, and then possibly select an
overloaded port, ` (say, as a source). Before the second selection,
all L0 nodes of J, N(J), are treated as both sources and destinations,
and all possible routes available to the job are visualized. Upon the
second selection, ` is treated as the source, and all possible routes
through ` that could carry traffic to N(J) are computed. Specifically,
if d(`) is the set of destinations that ` can forward any incoming
traffic to, then d(`) ∩ N(J) is used as the set of destinations for
computing routes. Through these interactive queries, the user can
investigate causes of congestion, e.g., due to job interference, as
discussed in Section 6.2.

6 Case Studies

The HPC domain experts, who have evaluated TREESCOPE,
include performance analysis and optimization experts, network
researchers, and system administrators at LLNL. They are
convinced that TREESCOPE provides novel capabilities for
intuitive and rapid analysis of performance monitoring data
gathered on HPC networks. System administrators can use
TREESCOPE to monitor the health of a supercomputer network
via the summary overviews. The summary views can also aid in
visually identifying time ranges of interest, which can then be
loaded in the detailed fat-tree view. Subsequently, one can identify
network hotspots or links with a high number of error counters
and also the switches and/or jobs responsible for the anomalies.
At the same time, TREESCOPE is a powerful tool to compare the
impact of different workloads, routing schemes, or job placements
on network congestion using data obtained either empirically
or via simulations. Here, we present two studies performed by
domain experts, who are also co-authors of this paper, to exemplify
the aforementioned utilities of TREESCOPE. These co-authors
work with the application developers and system administrators
on performance analysis and network optimization of scientific
workloads at LLNL. They have extensive experience in network
analysis of large scale parallel applications, and have worked with
other visualization tools designed for network analysis.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

H. Bhatia et al. / Interactive Investigation of Traffic Congestion on Fat-Tree Networks Using TREESCOPE

[1.0, 3.0 TB]
3000

2000

1000

0 2.0 TB1.0 TB 3.0 TB
0

12 PM 06 PM 06 AM12 AM

[2016.09.02 08:56:12, 2016.09.02 09:15:42]

400 GB
300 GB

100 GB
0

500 GB

200 GB

[1.0, 1.8 TB]
3000

2000

1000

0 1.0 TB500 GB 1.5 TB
0

12 PM 06 PM 06 AM12 AM

[2016.09.02 22:16:23, 2016.09.02 22:32:53]

400 GB
300 GB

100 GB
0

500 GB

200 GB

Figure 7: Interactive filtering in TREESCOPE allows the user to visualize only the hotspot links (using histogram selection) to refine the
understanding of network congestion. It is noted that whereas ftree routing (left) results in many links with above-average traffic (Figure 1),
the number of hotspots links is significantly smaller in comparison to SAR routing (right). This explains the 17% better performance obtained
with ftree routing for the selected application. The figure uses a diverging colormap for traffic, with yellow mapped to the average value.

6.1 Comparison of Routing Schemes

The first case study analyzes experimental data gathered to
compare different routing schemes for applications running on a
1296-node fat-tree cluster. A system reservation was requested for
24 hours and two routing schemes, denoted hereon as ftree and
SAR, respectively, were tested for 12 hours each. ftree is a static
routing [Zah10] used on many fat-tree based supercomputers. SAR,
on the other hand, is a scheduling-aware routing [DH16], which
attempts to distribute traffic over as many links as possible while
considering the jobs running in the queue. For the 24-hour period,
network counters were recorded along with job queue logs.

From the job queue logs, the domain experts identified two jobs,
ftree.qball and sar.qball, that were running the same application
(qball) with different routings and which had a significant
difference in performance. The goal was to investigate how changes
in network traffic due to routing were impacting the application’s
performance. Using two instances of TREESCOPE, the experts
loaded the data for the two routing schemes and selected the two
specific jobs. Once a job is selected, only counter data in the
corresponding time frame is displayed. Since only a single job
utilizing most of the machine (1024 nodes) is under consideration,
all the traffic during that time is due to the selected job.

The traffic generated by the application using the two routing
schemes is shown in Figure 1. The average traffic on a link
is almost the same (< 0.2 GB) for both schemes, as expected,
because the same application is sending traffic over the system.
However, the observed maximum traffic is significantly higher for

SAR (2.93 TB) as compared to ftree (1.78 TB). This can be seen
in the respective histograms on the right. To study network traffic,
we use a consistent diverging color map for the range 0–2.93 TB,
with its mid point (yellow) mapped to the average traffic, and the
maximum and minimum mapped to red and blue respectively. The
experts noticed that ftree results in more L1↔ L2 links with higher
than average traffic. Also notice that ftree uses a few specific L3
switches more heavily than others. In contrast, SAR distributes
traffic over more L3 switches. For L1 ↔ L2 links, SAR results in
an uneven distribution of traffic and fewer links with higher than
average traffic (in comparison to ftree).

In order to identify the cause of the performance difference in the
two executions (about 17%), the experts filtered the traffic to look
at hotspots links, i.e., links with traffic higher than 1 TB. As shown
in Figure 7, it was observed that SAR results in significantly more
hotspots as compared to ftree (at all levels), denoted by many more
L1↔ L2 links that are colored orange and red. This higher network
traffic is the cause for congestion, and therefore the performance
degradation with SAR. The experts also concluded that even for
the traffic-oblivious SAR, some adversarial traffic patterns exist
that slowed down the application when optimizing for intra-job
all-to-all communication.

What distinguishes such an exploration from a typical
otherwise-possible analysis is that TREESCOPE provides an easily
understandable spatial context to the observed numbers. The
domain experts can not only see the differences in distribution of
traffic, but also find out where such links exist in the network and

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

H. Bhatia et al. / Interactive Investigation of Traffic Congestion on Fat-Tree Networks Using TREESCOPE

Figure 8: Network traffic during the execution of several jobs on a 8-pod cluster is mapped to a white–orange color scale. Left: The overall
traffic is high, yet no perceivable traffic patterns are observed. Right: Restricting the visualization to congested links and the traffic from a
particular job, Qbox, highlights the connection between the two, suggesting the culpability of Qbox for creating congestion in all pods.

Figure 9: The same experiment (compare with Figure 8), when performed with a different job-placement policy, shows that much fewer links
are overloaded (left), suggesting less network congestion overall. Right: Visualizing the job-placement and traffic for the same job (Qbox),
which is now mapped to pods 2 and 3 only, creates fewer hotspots, restricted locally to the corresponding pods, thus avoiding reducing
congestion due to job interference.

how they are connected to the rest of the network. For example,
it becomes immediately obvious from the figure that even though
the ftree routing distributes the incoming traffic from compute
nodes (L0 → L1 → L2) very well and no hotspots are observed
on the corresponding links, the traffic distribution going “down”,
i.e., on L2 → L1 links, is not well balanced. Such insights are
highly valuable to the domain experts to further tune the routing
algorithms or job-placements for a supercomputer.

6.2 Optimizing the Performance of Applications

In this section, we demonstrate the utility of TREESCOPE for
investigating degraded network performance and finding solutions
that improve overall application performance on production HPC
systems. On such systems, simultaneous execution of multiple jobs
that share network resources often results in inter-job interference.
Even within a job, different MPI processes may contend with each
other for network bandwidth. These factors result in congestion
and negatively impact the performance of individual jobs. Here, the
goal is to help the domain experts identify root causes of network
congestion in multi-job environments.

Network simulation tools such as TraceR [JBW∗16] are used
to study congestion scenarios because they provide a high degree
of configurability to interconnect experts that is typically not
possible on production systems. Using TREESCOPE, the domain
experts explore the data obtained from one such simulation, where
multiple large jobs are concurrently simulated on a 3200-node,
8-pod prototype system built using 40-port switches and 400-node
pods. As is typical in a production system, nodes are assigned to
jobs in a fragmented fashion throughout the system, i.e., a typical
job is allocated nodes attached to several switches and pods.

Figure 8 (left) visualizes the traffic distribution for the entire
system due to all jobs, and highlights the presence of generally
high congestion (darker colors) without any specifically identifiable
patterns. Thus, despite observing congestion, it remains difficult
to correlate it with potential root causes, such as a particular job,
placement strategy, or communication pattern. In such scenarios,
TREESCOPE’s ability to select individual job(s) and show only its
footprint on the network, in combination with value-based filtering
of links, provides a useful functionality for exploring the traffic
distribution. By viewing the traffic hotspots created by different
jobs one by one, the domain experts were able to isolate a single
job, Qbox, which creates most of the heavily loaded links observed
in Figure 8 (right). The job placement for Qbox, highlighted in blue
on L1 nodes, shows that it was allotted a large number of nodes
across all available pods. For all other jobs, TREESCOPE showed
that a very small fraction of links were hotspot links, implying that
Qbox is the main cause of congestion on network in this workload,
and may negatively impact the performance of other jobs.

To isolate the traffic initiated by Qbox, the domain experts
devised a pod-based job-placement policy, where jobs are
(preferably) allocated to nodes belonging to same pods. Qbox
was assigned two dedicated pods, pods 2 and 3. Figure 9
(left) shows that for the pod-based placement policy, the traffic
distribution in different pods changes based on the job allocated
to them. Indeed, pods 2 and 3 show high traffic and non-uniform
distributions, whereas other pods, especially pods 4 and 7, show
light traffic and uniform distributions. TREESCOPE makes it
easy to confirm, through job-based and value-based filtering,
and through visualization of job-placement, see Figure 9 (right),
that almost all of the congestion is indeed created by Qbox.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

H. Bhatia et al. / Interactive Investigation of Traffic Congestion on Fat-Tree Networks Using TREESCOPE

Figure 10: Visualizing links that can be used for communication
from a switch or between a pair of switches show that task-to-node
mapping and routing policy result in overloading some links while
underutilizing other links. Traffic for two different jobs is shown.

Thus, as a result of the exploration enabled by TREESCOPE and
redesigning job-placement scheme, the performance of individual
jobs improves by 20.8% to 42.6%.

The isolation of job-specific traffic with a pod-based node
allocation policy also provides an opportunity for domain experts
to study link-usage patterns of individual jobs in order to optimize
their performance. Figure 10 demonstrates that viewing traffic on
all links available for communication to individual switches can
identify causes of congestion. The left image shows that when a
pair of switches is selected as a source-destination pair for Qbox,
some switches are overloaded whereas others are underutilized.
The image at the right shows that for a different job, when a switch
is selected as a source for communication with all other nodes used
for the same job, imbalance among switch utilization is present.
This suggests that an incompatibility between communication
patterns of these jobs and the static routing policy is the cause
of network congestion. These findings, which are hard to make
without the features provided by TREESCOPE, can help domain
experts devise solutions that can improve performance.

7 Conclusion

This paper introduces TREESCOPE, an interactive web-based
visualization tool for exploring traffic (and other relevant hardware
counters) and investigating the effects of job placement and routing
schemes on supercomputers using fat-tree networks. Using a new
matrix-based representation of the fat-tree topology, TREESCOPE

combines various sources of data, and supports a comprehensive
exploration through various types of complex queries. TREESCOPE

presents high-level and summarized, as well as detailed, per-link
and per-switch information to the user in a compact manner. Some
of the target users of TREESCOPE, both network researchers and
system administrators, have been actively involved in its design;
we summarize our collaborative process, including some important
decisions that led to the final visual design of TREESCOPE.

TREESCOPE enables users to not only identify hotspots in the
network, but also focus on the applications responsible for creating
the congestion. Using a combination of data (network counters, job
queue logs, job placements, and routing schemes), we demonstrate
the effectiveness of TREESCOPE in two case studies — one for
the traffic observed on real production systems, and another for a
simulated network study to design better job placement schemes.
In both scenarios, various features in TREESCOPE, such as traffic
visualization, visualization of job placement, and route-finding,
have proven useful allowing users to draw new insights.

Through evaluation of the current version of TREESCOPE, the
domain experts at LLNL have found it immensely useful for
a wide variety of domain queries. Several new directions have
also been identified to further improve the applicability of the
tool. Going forward, we plan to extend TREESCOPE to support
more-detailed data, such as the communication graph of processes
in an application, which will expose a new level of detail in
the analysis. Although the primary focus of TREESCOPE is on
commonly used three-level fat-tree topology for HPC clusters,
several aspects of the design are more generalizable than currently
supported in TREESCOPE. For example, the same visual design
could support other types of interaction and queries for the
administrators in data centers. The current visual design can also
be enhanced to support other configurations of fat-tree topologies,
such as beyond three-level fat-trees and dual-plane connections.
Finally, similar visualizations have been utilized in other related
contexts, such as inter-domain routing protocols [TRNC06]; we
would like to explore new application domains for TREESCOPE.

TREESCOPE addresses a clear need in the HPC community to
explore traffic on large-scale networks, as users are looking for
new ways to explore network data. To expand the user base beyond
our institution, TREESCOPE has been released publicly under BSD
license: https://github.com/LLNL/TreeScope.

Acknowledgements

We would like to thank Kevin Brown (Tokyo Institute of
Technology) and Israa Al-Qassem (Purdue University) for help and
ideas on the first prototype, as well as Todd Gamblin and Tim Meier
(both at LLNL) for fruitful discussions and feedback on several
prototypes of the tool. This work was performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore National
Laboratory (LLNL) under contract DE-AC52-07NA27344.

References
[ABC∗05] ADIGA N. R., BLUMRICH M. A., CHEN D., COTEUS

P., GARA A., GIAMPAPA M. E., HEIDELBERGER P., SINGH S.,
STEINMACHER-BUROW B. D., TAKKEN T., TSAO M., VRANAS P.:
Blue Gene/L torus interconnection network. IBM J. Res. Dev. 49, 2
(2005), 265–276. 3

[ABHR∗13] ALPER B., BACH B., HENRY RICHE N., ISENBERG T.,
FEKETE J.-D.: Weighted graph comparison techniques for brain
connectivity analysis. In Proc. of the SIGCHI Conf. on Human Factors
in Computing Systems (2013), pp. 483–492. 3

[AES05] AMAR R. A., EAGAN J., STASKO J. T.: Low-level components
of analytic activity in information visualization. In Proc. of the IEEE
Symp. on Information Visualization (2005), pp. 111–117. 5

[AS05] AMAR R. A., STASKO J. T.: Knowledge precepts for design and
evaluation of information visualizations. IEEE Trans. on Vis. and Comp.
Graph. 11, 4 (2005), 432–442. 3

[Bar] BARCELONA SUPERCOMPUTING CENTER: Paraver: a flexible
performance analysis tool. https://tools.bsc.es/paraver.
3

[BDM15] BROWN K. A., DOMKE J., MATSUOKA S.: Hardware-centric
analysis of network performance for MPI applications. In Proc.
of the IEEE Int. Conf. on Parallel and Distributed Systems (2015),
pp. 692–699. 3

[Ber67] BERTIN J.: Sémiologie graphique: Les diagrammes, les réseaux,
les cartes, editions de l’ecole des hautes etudes en sciences ed. Paris,
France, 1967. 3, 5

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/LLNL/TreeScope
https://tools.bsc.es/paraver

H. Bhatia et al. / Interactive Investigation of Traffic Congestion on Fat-Tree Networks Using TREESCOPE

[BETT98] BATTISTA G. D., EADES P., TAMASSIA R., TOLLIS I. G.:
Graph Drawing: Algorithms for the Visualization of Graphs, 1st ed.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1998. 3, 5

[BJL∗16] BHATELE A., JAIN N., LIVNAT Y., PASCUCCI V., BREMER
P.-T.: Analyzing network health and congestion in dragonfly-based
supercomputers. In Proc. of the IEEE Int. Parallel & Distributed
Processing Symp. (2016), pp. 93–102. 2, 3, 4

[BM13] BREHMER M., MUNZNER T.: A multi-level typology of abstract
visualization tasks. IEEE Trans. on Vis. and Comp. Graph. 19, 12 (2013),
2376–2385. 5

[BNTM16] BREHMER M., NG J., TATE K., MUNZNER T.: Matches,
mismatches, and methods: Multiple-view workflows for energy portfolio
analysis. IEEE Trans. on Vis. and Comp. Graph. 22, 1 (2016), 449–458.
3, 5

[Bre17] BREWER C. A.: ColorBrewer 2, Mar. 2017. http://www.
colorbrewer2.org/. 7

[CDJM14] CHENG S., DE P., JIANG S. H.-C., MUELLER K.:
TorusVisND: Unraveling high-dimensional torus networks for network
traffic visualizations. In Proc. of the 1st Work. on Visual Performance
Analysis (2014), pp. 9–16. 3

[Clo53] CLOS C.: A study of non-blocking switching networks. The Bell
System Technical Journal 32, 2 (1953), 406–424. 2

[DH16] DOMKE J., HOEFLER T.: Scheduling-Aware Routing for
Supercomputers. In Proc. of the Int. Conf. for High Performance
Computing, Networking, Storage and Analysis (2016), SC ’16,
pp. 13:1–13:12. 9

[GFC04] GHONIEM M., FEKETE J.-D., CASTAGLIOLA P.: A
comparison of the readability of graphs using node-link and
matrix-based representations. In Proc. of the IEEE Symp. on Information
Visualization (2004), pp. 17–24. 3, 5

[GFC05] GHONIEM M., FEKETE J.-D., CASTAGLIOLA P.: On the
readability of graphs using node-link and matrix-based representations:
A controlled experiment and statistical analysis. Information
Visualization 4, 2 (2005), 114–135. 3, 5

[HB03] HARROWER M., BREWER C. A.: Colorbrewer.org: An online
tool for selecting colour schemes for maps. The Cartographic Journal
40, 1 (2003), 27–37. 7

[HCR01] HAYNES R., CROSSNO P., RUSSELL E.: A visualization tool
for analyzing cluster performance data. In Proc. of the IEEE Int. Conf.
on Cluster Computing (2001), pp. 295–302. 3

[HE91] HEATH M. T., ETHERIDGE J. A.: Visualizing the performance
of parallel programs. IEEE Software 8, 5 (1991), 29–39. 3

[HF06] HENRY N., FEKETE J. D.: MatrixExplorer: a dual-representation
system to explore social networks. IEEE Trans. on Vis. and Comp.
Graph. 12, 5 (2006), 677–684. 3

[HMM00] HERMAN I., MELANCON G., MARSHALL M. S.: Graph
visualization and navigation in information visualization: A survey.
IEEE Trans. on Vis. and Comp. Graph. 6, 1 (Jan 2000), 24–43. 3, 5

[HS12] HEER J., SHNEIDERMAN B.: Interactive dynamics for visual
analysis. Commun. ACM 55, 4 (Apr. 2012), 45–54. 5

[IGJ∗14] ISAACS K. E., GIMÉNEZ A., JUSUFI I., GAMBLIN T.,
BHATELE A., SCHULZ M., HAMANN B., BREMER P.-T.: State of the
Art of Performance Visualization. In EuroVis - STARs (2014), Borgo R.,
Maciejewski R., Viola I., (Eds.), The Eurographics Association. 3

[JBW∗16] JAIN N., BHATELE A., WHITE S., GAMBLIN T., KALE
L. V.: Evaluating HPC networks via simulation of parallel workloads.
In Proc. of the Int. Conf. for High Performance Computing, Networking,
Storage and Analysis (2016), SC ’16, pp. 14:1–14:12. 2, 10

[Lei85] LEISERSON C. E.: Fat-trees: Universal networks for
hardware-efficient supercomputing. IEEE Trans. on Comp. C-34, 10
(1985), 892–901. 2

[LH92] LEVKOWITZ H., HERMAN G. T.: Color scales for image data.
IEEE Comp. Graph. and App. 12, 1 (1992), 72–80. 7

[LLB∗12] LANDGE A. G., LEVINE J. A., BHATELE A., ISAACS K. E.,
GAMBLIN T., SCHULZ M., LANGER S. H., BREMER P.-T., PASCUCCI
V.: Visualizing network traffic to understand the performance of
massively parallel simulations. IEEE Trans. on Vis. and Comp. Graph.
18, 12 (2012), 2467–2476. 2, 3, 4

[LMR∗17] LI J. K., MUBARAK M., ROSS R. B., CAROTHERS C. D.,
MA K.-L.: Visual analytics techniques for exploring the design space
of large-scale high-radix networks. In Proc. of the IEEE Int. Conf. on
Cluster Computing (CLUSTER) (2017), pp. 193–203. 2, 3

[LPP∗06] LEE B., PLAISANT C., PARR C. S., FEKETE J.-D., HENRY
N.: Task taxonomy for graph visualization. In Proc. of the AVI Work.
on BEyond Time and Errors: Novel Evaluation Methods for Information
Visualization (2006), BELIV, pp. 1–5. 5

[MIB∗14] MCCARTHY C. M., ISAACS K. E., BHATELE A., BREMER
P.-T., HAMANN B.: Visualizing the five-dimensional torus network of
the IBM Blue Gene/Q. In Proc. of the 1st Work. on Visual Performance
Analysis (2014), pp. 24–27. 3

[MSDS] MEUER H., STROHMAIER E., DONGARRA J., SIMON H.:
Top500 Supercomputer Sites. http://www.top500.org. 2

[Mun09] MUNZNER T.: A nested model for visualization design and
validation. IEEE Trans. on Vis. and Comp. Graph. 15, 6 (2009),
921–928. 3, 4

[PCJ97] PURCHASE H. C., COHEN R. F., JAMES M. I.: An
experimental study of the basis for graph drawing algorithms. J. Exp.
Algorithmics 2 (1997). 3

[SMM12] SEDLMAIR M., MEYER M., MUNZNER T.: Design study
methodology: Reflections from the trenches and the stacks. IEEE Trans.
on Vis. and Comp. Graph. 18, 12 (2012), 2431–2440. 3

[SMM∗13] SIGOVAN C., MUELDER C., MA K.-L., COPE J., ISKRA
K., ROSS R.: A visual network analysis method for large-scale parallel
I/O systems. In Proc. of the IEEE Int. Parallel & Distributed Processing
Symp. (2013), pp. 308–319. 3

[SSM11] SILVA S., SANTOS B. S., MADEIRA J.: Using color in
visualization: A survey. Comp. & Graph. 35, 2 (2011), 320–333. 7

[TRNC06] TEOH S. T., RANJAN S., NUCCI A., CHUAH C.-N.: Bgp
eye: A new visualization tool for real-time detection and analysis of bgp
anomalies. In Proc. of the 3rd Int. Work. on Vis. for Comp. Sec. (2006),
pp. 81–90. 11

[TSW14] THEISEN L., SHAH A., WOLF F.: Down to earth – how to
visualize traffic on high-dimensional torus networks. In Proc. of the 1st
Work. on Visual Performance Analysis (2014), pp. 17–23. 3

[WCC∗17] WANG X., CHOU J.-K., CHEN W., GUAN H., CHEN W.,
TIANYI LAO, MA K.-L.: A visual analytics system for optimizing
communications in massively parallel applications. In Proc. of the IEEE
Conf. on Visual Analytics Science and Technology (2017). 3

[Wij06] WIJK J. J. V.: Bridging the gaps. IEEE Computer Graphics and
Applications 26, 6 (Nov 2006), 6–9. 3

[XZWX17] XIA W., ZHAO P., WEN Y., XIE H.: A survey on data center
networking (dcn): Infrastructure and operations. IEEE Communications
Surveys Tutorials 19, 1 (2017), 640–656. 2

[Zah10] ZAHAVI E.: D-Mod-K Routing Providing Non-Blocking Traffic
for Shift Permutations on Real Life Fat Trees. Tech. rep., Israel Institute
of Technology, Aug. 2010. 9

[ZH16] ZHOU L., HANSEN C. D.: A survey of colormaps in
visualization. IEEE Trans. on Vis. and Comp. Graph. 22, 8 (2016),
2051–2069. 7

[ZSC03] ZHOU C., SUMMERS K. L., CAUDELL T. P.: Graph
visualization for the analysis of the structure and dynamics of
extreme-scale supercomputers. In Proc. of the ACM Symp. on Software
Vis. (2003), pp. 143–149. 3

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

http://www.colorbrewer2.org/
http://www.colorbrewer2.org/
http://www.top500.org

