
Enabling Discovery Through Visual Exploration

An Introduction to Data Visualization & Its Applications
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Visual metaphors have assisted human understanding since early days of mankind; the
modern scientific and social-scientific evolution especially benefits greatly from the visual
medium. With increasing size and complexity of contemporary data, visualization research
has focused on developing techniques for novel mathematical and visual representations to
assist data exploration for intended as well as fortuitous discovery. This article introduces
the reader to the field of visualization, and discusses some of its important applications.
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What is Visualization?
The human brain is capable of processing images and visual cues better and faster than
reading textual information. It has a tendency to find and retain patterns in everything that
the eyes see; visualization makes it easier for the brain to absorb information — “a picture
is worth a thousand words!” Visualization is a way of telling stories and finding patterns
in the data; it existed before computers, before technology, and even before language. The
prehistoric humans would look up at the sky and connect the stars by invisible lines to
imagine various constellations. Instead of the names of the stars, it was easier to remember
which constellations they belonged to— the dots makemore sense when they are connected.
Among countless success stories of visualization, we discuss one.

John Snow’s Cholera Map. In 1854, “the most terrible outbreak of cholera in the UK”
had spread, and within a month, about 500 people had died. The scientific hypothesis of
the day was that cholera spreads through air, leading the health administration to align
their efforts correspondingly, until a local physician John Snow published a map (see
Figure 1) clearly showing the cases of cholera centering around a certain water pump.
Since the contemporary technology could not adequately test the pump’s water for cholera,
the patterns identified by Snow’s visualization played a crucial role in convincing the
administration to investigate the water pump, which enabled them to identify the source
of contamination, establishing the true nature of cholera. This work is considered a major
event in the history of public health and geography, and gave birth to a new field —
epidemiology.

Visualization in the Modern Context. The goal of the contemporary visualization
research is to leverage existing scientific methods by providing new insights through



Figure 1: John Snow’s 1854 cholera map spatially visualized the distribution of
cholera cases in London around a particular pump (zoomed in), affecting the
administration to act correspondingly. Image source: Wikipedia.

visual medium. Recent advances in computing, sciences, and social sciences produce
more-sophisticated data, which requires more-advanced visualization techniques in order
to explore natural and man-made phenomena, and derive new knowledge. In the last
30 years, visualization has become increasingly important by demonstrating its utility in
enabling scientists to explore their increasingly complex experiments and simulations in
more detail, allowing them to ask questions of much greater import. A National Science
Foundation Panel initiative in 19851 provides a formal definition: “Visualization is a
method of computing. It transforms the symbolic into the geometric, enabling researchers
to observe their simulations and computations. Visualization offers a method for seeing the
unseen. It enriches the process of scientific discovery and fosters profound and unexpected
insights.”

Visualization researchers work at the intersection of many disciplines: computer science
and computer engineering, computer graphics, mathematics and statistics, cognition and
perception, etc., as well as a wide variety of application domains. Although the goal of
pure visualization research is to find novel visual representations of complex data to make
it easy to understand, visualization, often, goes in hand with data analysis. In particular,
visualization plays an important role in applying different mathematical techniques to
analyze the data. For instance, topological visualization focuses on applying rigorous
topological techniques to understand the shape of the data enabling concise mathematical
and visual representations, and define physical and/or intuitive features in mathematical
terms.

The goal of this article is to give an introduction and overview of visualization in the context
of some modern scientific and non-scientific application areas.

1“Visualization in Scientific Computing”. In: SIGGRAPH Computer Graphics 21.6 (1987). Ed. by B. H.
McCormick, T. A. DeFanti, and M. D. Brown. ISSN: 0097-8930.



Scientific vs. Information Visualization
The visualization community broadly categorizes itself into two: scientific vs. information
visualization. While there exist cases at the intersection of the two categorizes, the
classification is primarily based upon the application areas and types of data involved. As
the name suggests, scientific visualization typically addresses the use-cases in scientific
applications: climate modeling, combustion, aerodynamical designs, medical imaging,
molecular dynamics, etc., the end users of which are also mostly scientists and experts.
On the other hand, information visualization is a more general category that encompasses
all sorts of non-scientific data, e.g., social scientific data such as social networks, epidemic
outbreaks, sports, etc., the audience of which may include specialists as well as general
public.

The type of data usually targeted by scientific visualization is spatiotemporal— a quantity
whose variation is studied over space and time, and has up to 3 spatial and 1 time
dimensions. Examples include temperature or atmospheric pressure variation at the surface
of the earth, i.e., scalar fields, velocity of wind flows around an automobile and flow of
oceanic currents, i.e., vector fields, and the distribution of stress and shear in an elastic
material, i.e., tensor fields. On the other hand, information visualization addresses data
that does not fit the above description, e.g., graph-type data such as social networks,
high-dimensional tabular data such as housing market, which depends upon a number of
variables, sports or music data targeted at identifying patterns to improve a game or a
composition, etc.

Together, the two branches of visualization aim to assist both specialists and masses to
explore vast amounts of data and highlight hidden patterns and behaviors in the data.
Nevertheless, with its increasing impact on making informed scientific and/or policy
decisions, the concerns of uncertainty or errors in visualization have becomemore palpable.

Uncertainty Visualization
Imagine a surgeon using modern medical visualization tools to analyze the CT (computed
tomography) scans of a patient to detect cancerous cells, and decide how and where to
cut out the tumor. The CT scan captures different types of tissues as objects of different
densities, and the visualization system typically computes the “decision” surfaces between
cancerous and healthy cells using the difference in their densities. Needless to say that
the stakes are high, and the surgeon needs to be absolutely sure that the visualization
can be trusted, and can be used to plan the surgery. Even the slightest errors due to
numerical precision, or uncertainties in visualization and computational algorithms can
cause the surface to enclose a healthy tissue, or leave a cancerous tissue out. As a result,
the ideal visualization would acknowledge this uncertainty, and show the cancerous cells
it is absolutely certain about, along with the regions it may have compiled an error for —
honest and agnostic visualization is better than an oblivious one. The role of a visualization
scientist is not to decide what a cancerous cell is, but to assist the domain scientist, the
surgeon in this case, make the correct decision. Uncertainty visualization provides the
confidence required to make the right decisions, by displaying the data honestly and as



Figure 2: Contour Boxplot (right) provides an easy-to-understand visualization
of an ensemble of simulation runs of a weather model, showing median, order
statistics, and three outliers. Compare it with standard visualization of multiple
contours (left) which obscures the statistical behavior. Image source: Wikipedia.

accurately as possible.

Uncertainty visualization is also useful to study ensembles— collections of measurements
or simulations run with different parameters, where statistical behavior needs to be studied.
For example, Figure 2 shows an ensemble data created through different runs of a simulation
model with different perturbations of the initial conditions to account for the errors in the
initial conditions and/or model parameterizations. The ensemble consists of isocontours of
the temperature field (isovalue -15 ◦C) at 500mb in altitude. As illustrated in the figure,
the conventional visualization obscures the information, whereas Contour Boxplots,2 an
uncertainty visualization technique, displays the statistical variation cleanlymaking it easier
to understand the data and its implications.

Applications
In this section, we discuss a representative set of applications where visualization has been
integral in gaining new insights; we focus on application areas for both scientific and
information visualization. Almost all of the research referenced in this article is chosen
from recent years, to give the reader an idea of the current advancements of the field. This
choice is a very small subset of visualization research; it is neither extensive nor merit-based
representation of the field.

Visualization for Climate

Climate monitoring and modeling is an application area that uses visualization and analysis
extensively. Visualizations for climate data are as often created for public as they are for

2R. T. Whitaker, M. Mirzargar, and R. M. Kirby. “Contour Boxplots: A Method for Characterizing
Uncertainty in Feature Sets from Simulation Ensembles”. In: IEEE Transactions on Visualization and
Computer Graphics 19.12 (2013), pp. 2713–2722. ISSN: 1077-2626. DOI: 10.1109/TVCG.2013.143.

http://dx.doi.org/10.1109/TVCG.2013.143


Figure 3: Visualization of carbon emission levels. Image source: NASA.

Figure 4: Visualization created using UV-CDAT to explore climate data. Left:
Superposition of volume rendering, slicing, and isosurface visualization of zonal
wind. Right: Understanding temperature anamolies through volume rendering.
Image source: UV-CDAT.

Flow Analysis for Scientific Discovery
Harsh Bhatia, Shreeraj Jadhav, Peer-Timo Bremer, Guoning Chen, Joshua A. Levine, Luis Gustavo Nonato, Valerio Pascucci

   

www.sci.utah.edu

 S
CI

 IN
STITUTE Ɣ EXHIBIT Ɣ EXPLO

RE Ɣ EXC
ITE             EXPERIENCE Ɣ E

XCH
AN

G
E 
Ɣ 

 

SCI

Analysis of flow is indispensable for many applications in science and engineering
Ɣ�+RZHYHU��DSSO\LQJ�WKH�WKHRU\�RI�VPRRWK�IORZ�LQ�UHDO�ZRUOG�WR�VDPSOHG�GDWD�RQ�FRPSXWHU�KDUGZDUH�LV�FKDOOHQJLQJ
Ɣ�7UDGLWLRQDO�DSSURDFKHV�UHO\�RQ�QXPHULFDO�FRPSXWDWLRQV�DIIHFWHG�E\�DSSUR[LPDWLRQV��ZKLFK�DUH�XQVWDEOH�DQG�RIWHQ�SURGXFH�XQSK\VLFDO�UHVXOW
Ɣ�$V�D�UHVXOW��WKH�DQDO\VLV�PD\�EH�LQFRQVLVWHQW��LQDFFXUDWH��DQG�XQVWDEOH
Ɣ�7KLV�UHVHDUFK�IRFXVHV�RQ�GHYHORSLQJ�QRYHO�IORZ�UHSUHVHQWDWLRQV�WKDW�HQDEOH�FRQVLVWHQW��UREXVW��DQG�PRUH�DFFXUDWH�H[WUDFWLRQ�RI�LPSRUWDQW�IHDWXUHV�RI�IORZ
Ɣ�7KXV��HVWDEOLVKLQJ�QHZ�SDUDGLJPV�RI�DQDO\VLV�RI�ODUJH�VFDOH�FRPSOH[�IORZV�LQ�D�FRQVLVWHQW�PDQQHU

LLNL

Shifting the realm towards a consistent, 
robust, and more accurate analysis
Ɣ� 1HZ�IORZ�UHSUHVHQWDWLRQV��ZKLFK�DUH�IUHH�IURP�QXPHULFDO�DSSUR[LPDWLRQV��
� DYRLG�SRWHQWLDO�LQDFFXUDFLHV�DQG�LQFRQVLVWHQFLHV
Ɣ� (GJH�0DSV�>�����@�FDQ�GHVFULEH�WKH�IORZ�FRQVLVWHQWO\��DQG�ZLWKLQ�D�JXDUDQWHHG�
� HUURU�HQDEOLQJ�YLVXDOL]DWLRQ�RI�VSDWLDO�DQG�WHPSRUDO�HUURUV��)LJV����������
Ɣ� 4XDQWL]HG�IORZ�>�@�FDQ�H[WUDFW��IRU�WKH�ILUVW�WLPH��KLJKO\�XQVWDEOH�VWUXFWXUHV�OLNH�
� YRUWLFHV�FRQVLVWHQWO\�DQG�UREXVWO\��)LJV��������

Enabling scientific discovery
Ɣ� 8QGHUVWDQGLQJ�WKH�PDQLIHVWDWLRQV�RI�VSDWLDO�DQG�WHPSRUDO�HUURUV�LQ�DQDO\VLV�LV�WKH�ILUVW
� VWHS�WRZDUGV�D�FRQVLVWHQW��UREXVW�DQG�DFFXUDWH�VFLHQWLILF�GLVFRYHU\��)LJ����

Ɣ� 8QGHUVWDQGLQJ�WKH�VWUXFWXUH�DQG�IX]]LQHVV�LQ�VLPXODWLRQV�RI�WXUEXOHQW�PL[LQJ��ZKLFK
� RFFXUV�LQ�D�EURDG�VSHFWUXP�RI�SKHQRPHQD�UDQJLQJ�IURP�ERLOLQJ�ZDWHU�WR�DVWURSK\VLFV
� DQG�QXFOHDU�IXVLRQ��)LJ����

Ɣ� ,QYHVWLJDWLQJ�DQG�HYDOXDWLQJ�WKH�IORZ�SDWWHUQV�LQ�DXWRPRWLYH�FRPSRQHQWV�LQ�RUGHU�WR
� LPSURYH�DXWRPRWLYH�GHVLJQ�DQG�SHUIRUPDQFH��)LJ����

Ɣ� ,GHQWLI\LQJ�YRUWLFHV�LQ�PRGHUQ�+&&,��+RPRJHQHRXV�&KDUJH�&RPSUHVVLRQ�,JQLWLRQ�
� HQJLQHV�SURYLGHV�HIILFLHQF\�JDLQV�DQG�ORZHULQJ�RI�HPLVVLRQ�OHYHOV�OHDGLQJ�WR�D�FOHDQHU
� HQHUJ\��)LJ����

Ɣ� ,GHQWLI\LQJ�YRUWLFHV�LQ�VLPXODWLRQV�RI�JOREDO�RFHDQLF�FXUUHQWV��)LJ�����DQG�DXJPHQWLQJ
� WKH�DQDO\VLV�E\�LGHQWLI\LQJ�UHJLRQV�RI�XQLGLUHFWLRQDO�IORZ��)LJ�����KHOSV�XQGHUVWDQGLQJ
� JOREDO�HQYLURQPHQWDO�IDFWRUV�DQG�WKHLU�LPSDFW�RQ�FOLPDWLF�FKDQJHV

References
>�@�+��%KDWLD��6�� -DGKDY��3��7��%UHPHU��*��&KHQ�� -��$��
/HYLQH�� /�� *�� 1RQDWR�� DQG� 9�� 3DVFXFFL�� (GJH� 0DSV��
5HSUHVHQWLQJ� IORZ�ZLWK�ERXQGHG�HUURU�� ,Q�3URFHHGLQJV�
RI� �WK� ,(((� 3DFLILF� 9LVXDOL]DWLRQ� 6\PSRVLXP�� SDJHV�
�������0DU������
>�@�+��%KDWLD��6�� -DGKDY��3��7��%UHPHU��*��&KHQ�� -��$��
/HYLQH��/��*��1RQDWR��DQG�9��3DVFXFFL��)ORZ�YLVXDOL]D�
WLRQ� ZLWK� TXDQWLILHG� VSDWLDO� DQG� WHPSRUDO� HUURUV� XVLQJ�
HGJH�PDSV��,Q�,(((�7UDQVDFWLRQV�RQ�9LVXDOL]DWLRQ�DQG�
&RPSXWHU�*UDSKLFV��DFFHSWHG�
>�@�6��-DGKDY��+��%KDWLD��3��7��%UHPHU��-��$��/HYLQH��/��*��
1RQDWR��DQG�9��3DVFXFFL��&RQVLVWHQW�DSSUR[LPDWLRQ�RI�
ORFDO� IORZ� EHKDYLRU� IRU� �'� YHFWRU� ILHOGV� XVLQJ� HGJH�
PDSV��,Q�7RSRORJLFDO�0HWKRGV�LQ�'DWD�$QDO\VLV�DQG�9L�
VXDOL]DWLRQ� ,,� ±� 7KHRU\� $OJRULWKPV�� DQG� $SSOLFDWLRQV��
6SULQJHU�������7R�DSSHDU�
>�@�-��$��/HYLQH��6��-DGKDY��+��%KDWLD��9��3DVFXFFL��DQG�
3��7�� %UHPHU��$� TXDQWL]HG� ERXQGDU\� UHSUHVHQWDWLRQ� RI�
�'�IORZ��6XEPLWWHG�

)LJ���

)LJ���

)LJ���

)LJ���

)LJ���

)LJ���

Figure 5: Visualization of patterns in oceanic currents in North Atlantic Ocean
extracted using robust computational techniques. Image source: Harsh Bhatia.



Figure 6: Visualization of dispersion pattern of carbon particles in coal-boilers
allow scientists to understand and improve combustion and performance of such
engines. Image source: Uintah: http://uintah.utah.edu/gallery.htmlIEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006
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Fig. 1. An overview of a simulation (periodic in x and y) of Rayleigh-Taylor instability at four time steps on a 11523 grid. The light fluid has a
density of 1.0, the heavy fluid has a density of 3.0. Two envelope surfaces (at densities 1.02 and 2.98) capture the mixing region. The boundaries
of the box show the density field in pseudocolor. The heavy fluid is red and the light fluid is blue. Other colors represent intermediate compositions
of mixed fluid. We analyze the upper envelope (red) to study bubble structures and the midplanes to study mixing trends.
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Fig. 2. Processing pipeline for topological data analysis: (a) Extract
one isosurface or midplane per time-step; (b) Compute and simplify the
MS complex at time ti; (c) Store relevant statistical data, e.g. number
of critical points; (d) Perform geometric tracking and build merge-split
graph.

For both types of surfaces, our definitions and algorithms are based
on the mathematical foundations of Morse theory [21] which we
present in Section 4. For envelope surfaces, we define bubbles using
the constructs of the hierarchical Morse-Smale(MS) complex, imple-
ment a robust combinatorial algorithm to construct this complex, and
use topological persistence to automatically clean-up noise and iden-
tify bubbles at any user-defined scale. We track bubbles over time
using a geometric approach to connect the critical points of succes-
sive isosurfaces. Section 5 describes the algorithms used to extract
and track bubbles and the different types of topological information
gathered. We emphasize that all our algorithms are combinatorial in
nature and are therefore robust in the presence of noise and degenera-
cies. The hierarchical nature of our constructions enable us to analyze
the data at several scales in both space and time.

For analyzing midplanes, we take advantage of the hierarchical
Morse-Smale complex in order to provide persistence-based metrics.
We note that Cook et. al. [7] propose a model for the rate of growth
of the mixing layer based on the net mass flux through the midplane.
Their approach relates the growth rate, in the absence of diffusive ef-
fects, to a correlation between density and the Z-component of the
velocity at the midplane. In this paper, we analyze the topology of the
density and velocity fields on the midplane in order to determine if the
mixing phases are discernible and to examine asymptotic behavior in
late time. Investigating the topology of these fields constitutes a novel
approach.

2 Overview of our approach

The different stages of the analysis are pipelined as shown in Figure 2,
allowing us to stream through the original data and avoid storing inter-
mediate results. In stage (a), we extract one isosurface per time-step
of the data. This sequence of isosurfaces is then fed into stage (b)
where we construct the hierarchical MS-complex for each time-step.
The hierarchy information from this stage is used in stages (c) and (d)
which can operate in parallel. In stage (c), we compute and store the
required topological statistics, e.g., bubble counts. In stage (d), we
use the hierarchy computed in stage (b) to perform geometric tracking
of bubbles over time to produce a graph that indicates how bubbles

evolve by merging and splitting. Only the abstract information result-
ing from the topological analysis is ultimately stored. For example,
when generating bubble counts we store the number of bubbles at all
topological scales (see Section 4) for each time step. This information
is several orders of magnitude smaller than the original raw data and
can easily be queried and processed further on an off-the-shelf PC.

During the course of this work we spent several hours with fluid
dynamics researchers interactively visualizing the topological features
of the envelope surfaces. To accomplish this we computed the iso-
surfaces – stage (a) – as a preprocess. For small subsets of the data
(e.g. 2563) an interactive version of the topological analysis tool al-
lowed us to investigate the topological structures of these surfaces. In
order to interact with the MS-complex of the envelope surface at full
resolution we also precomputed the MS-complex and stored a com-
pact binary representation of the complex to disk. We modified the
streaming mesh viewer of Isenburg et. al. [18] such that a full reso-
lution envelope surface could be simplified and viewed along with its
Morse-Smale complex. We describe the specifics of this process in
Section 5.

In this way, visualization was used throughout the project to build
up intuition about the mixing behavior of the fluids, and to determine
an appropriate model for bubbles (defined in Section 5). Visualization
was also used to determine the persistence threshold that segmented
the envelope surfaces into bubbles as described in Section 5. For the fi-
nal data analysis, the work was parallelized over time steps on a Linux
cluster, with each node receiving a subset of the time steps to process.
In this case, the entire pipeline was executed so that no intermediate
isosurface files needed to be stored to disk.

Contributions. We develop:

1. A formal mathematical definition of a bubble based on the con-
struct of a Morse-Smale complex;

2. A hierarchical segmentation of the mixing envelope surface
into bubbles. We analyze the surface at several scales based on
persistence and produce statistical measures that corroborate pre-
vious observations and independent analysis [7].

3. A method to identify and track individual bubbles over time to
study their merge/split/birth/death behavior.

3 Prior Work

While models of RT mixing based on bubble interactions have been
proposed [1], the direct analysis of bubbles has only recently become
a research focus. Kartoon et. al. [9] segment bubbles from a set
of small simulations using a vertical velocity criterion. Their method
is not fully described in their paper, making it difficult to assess its
robustness. They focus on early time dynamics and appear to use a
single resolution strategy. Thus, it is likely their method would require
significant modification to handle the multiscale late-time behavior ob-
served in the present work.

Topology based methods have become increasingly popular in the
area of visualization. They are used directly as a means to provide
an abstract visualization as well as to guide traditional visualization
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Figure 7: Visualization and topological of Rayleigh-Taylor instability (turbulent
mixing of two fluids of different densities) allows explaining the evolution of
“bubble”-like structures in the data. Image source: IEEE TVCG.

climate scientists. For example, NASA3 publishes visualizations about climate change (see
Figure 3), weather predictions, geological and geographical data, terrestrial and planetary
information, etc., to convey the information to general public. On the other hand, climate
scientists utilize advance visualization and analysis techniques to understand and improve
their models and interpret the data. UV-CDAT4, for instance, is a set of visualization tools
for exploration and analysis of large-scale climate data (see Figure 4).

Visualization research challenges in such cases not only include addressing large-scale
data, but how to efficiently (often interactively) sift through the data to make scientific
queries, and how to develop visual representations to best identify and represent multiple
parameters affecting the system. Scientists are typically interested in understanding how
climatic factors, such as oceanic currents, wind flow, rainfall, etc., behave in certain
regions. Computationally robust techniques to identify features of interest form an
important research direction for visualization. In this context, Figure 5 shows a visualization
of oceanic flow with different isolated regions of currents in different colors. Robust
identification of such complex structures hinge upon delicate inaccuracies in data, numerics,
and visualization; therefore, techniques that provide explicit control over how data is
represented and processed are highly desirable.5

3NASA Scientific Visualization Studio: https://svs.gsfc.nasa.gov/
4Ultrascale Visualization – Climate Data Analysis Tools: http://uv-cdat.llnl.gov/index.html
5Harsh Bhatia. “Consistent Feature Extraction From Vector Fields: Combinatorial Representations and
Analysis Under Local Reference Frames.” PhD thesis. The University of Utah, 2015.

http://uintah.utah.edu/gallery.html
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http://uv-cdat.llnl.gov/index.html


Visualization for Combustion and Mixing

Simulation of complex chemical and physical reactions has been an integral component of
scientific advancement in the last half century. With increasing need for cleaner energy, a
huge amount of effort is directed towards developing low-emission combustion engines;
scientists regularly perform large-scale simulations of mixing and combustion of turbulent
fluids, fire, explosions, etc., and require innovative solutions to not only visualize but also
analyze the resulting data. As an example, Figure 6 visualizes simulations of coal-fired
boilers with different sizes of carbon particles. Understanding the difference between them
— smaller particles disperse evenly whereas large particles tend to form clusters — allows
improving the performance of the boiler. For applications ranging from astrophysics to
nuclear fusion, Laney et al.6 developed a topological analysis and visualization techniques
for exploring the turbulent mixing of two fluids. Using visualizations such as Figure 7, they
were able to characterize the evolution of “bubble”-like structures in the process, which are
a defining property of such turbulent mixing.

Visualization for Molecular Dynamics

Molecular dynamics (MD) is another important application area benefited by visualization.
In general, MD simulations create large-scale data containing complex behavior at
microscopic scale where the goal is to identify how atoms interact with each other.
Examples include understanding protein folding and unfolding, diffusion and solvation of
ions in certain electrolytes, effects of impurities on crystalline structures, etc. Topological
analysis and visualization has proven useful in this area as well. Gyulassy et al.7 developed
a technique to identify interstitial and interlayer sites through which lithium ions can diffuse
in batteries with graphitic electrolytes. In particular, by applying topological analysis,
they were able to identify the regions in the battery that allow the lithium ion to travel
through, directly allowing the scientists to understand the diffusion behavior, and hence,
the performance of the battery (see Figure 8). Günther et al.8 devised a new way of
characterizing molecular interactions by using a composite of two quantities derived from
the electron density. By applying topological analysis on these fields, they were able to
identify different types of bonds in the system, and presented a visualization system for the
same.

In some cases, tailored visualization systems can offer interactive exploration of statistics,
and therefore, reduce the effort required in sifting through large amounts of data.
For example, the interactive statistical exploration presented by Bhatia et al.9 allows

6D. Laney et al. “Understanding the Structure of the TurbulentMixing Layer in Hydrodynamic Instabilities”.
In: IEEE Transactions on Visualization and Computer Graphics 12.5 (2006), pp. 1053–1060. ISSN:
1077-2626. DOI: 10.1109/TVCG.2006.186.

7A. Gyulassy et al. “Interstitial and Interlayer Ion Diffusion Geometry Extraction in Graphitic Nanosphere
Battery Materials”. In: IEEE Transactions on Visualization and Computer Graphics 22.1 (2016),
pp. 916–925. ISSN: 1077-2626. DOI: 10.1109/TVCG.2015.2467432.

8D. Günther et al. “Characterizing Molecular Interactions in Chemical Systems”. In: IEEE Transactions on
Visualization and Computer Graphics 20.12 (2014), pp. 2476–2485. ISSN: 1077-2626. DOI: 10.1109/
TVCG.2014.2346403.

9H. Bhatia et al. “Interactive exploration of atomic trajectories through relative-angle distribution and

http://dx.doi.org/10.1109/TVCG.2006.186
http://dx.doi.org/10.1109/TVCG.2015.2467432
http://dx.doi.org/10.1109/TVCG.2014.2346403
http://dx.doi.org/10.1109/TVCG.2014.2346403


Figure 8: Visualization of carbon nanosphere including volume rendering, surface
visualization, and topological components to understand the defects in the material
and where lithium ions can diffuse to. Image source: Attila Gyulassy.

Visualizing Network Traffic to Understand the Performance of
Massively Parallel Simulations

Aaditya G. Landge, Joshua A. Levine, Katherine E. Isaacs, Abhinav Bhatele, Todd Gamblin,
Martin Schulz, Steve H. Langer, Peer-Timo Bremer, and Valerio Pascucci

Fig. 1. Network traffic resulting from two different runs of the parallel simulation pF3D. This simulation models laser plasma interaction
inside of a hohlraum chamber by decomposing the domain into a set of blocks (left). Depending on how data blocks are mapped
to processor cores (middle), different communication patterns occur. When staggering data placement (bottom right) we observe
significantly more balanced communication compared to a default mapping similar to how the domain is decomposed (top right).

Abstract—The performance of massively parallel applications is often heavily impacted by the cost of communication among compute
nodes. However, determining how to best use the network is a formidable task, made challenging by the ever increasing size
and complexity of modern supercomputers. This paper applies visualization techniques to aid parallel application developers in
understanding the network activity by enabling a detailed exploration of the flow of packets through the hardware interconnect. In
order to visualize this large and complex data, we employ two linked views of the hardware network. The first is a 2D view, that
represents the network structure as one of several simplified planar projections. This view is designed to allow a user to easily identify
trends and patterns in the network traffic. The second is a 3D view that augments the 2D view by preserving the physical network
topology and providing a context that is familiar to the application developers. Using the massively parallel multi-physics code pF3D
as a case study, we demonstrate that our tool provides valuable insight that we use to explain and optimize pF3D’s performance on
an IBM Blue Gene/P system.

Index Terms—Performance analysis, network traffic visualization, projected graph layouts.

1 INTRODUCTION

Computer simulations fill the gap between theory and experimenta-
tion, allowing scientists to model and study extremely complex phys-
ical phenomena in regimes where experiments are too expensive, too
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dangerous, or impossible to perform. In particular, scientists are inter-
ested in analyzing biological, climate, and high energy physical phe-
nomena, which require the immense computational power that only a
supercomputer provides. Such a system may consist of tens or hun-
dreds of thousands of compute nodes, each node typically made up of
several processor cores. These nodes communicate using a high speed
interconnection network. To perform massively parallel simulations,
nodes typically interleave local computations with communication be-
tween other nodes in the system. By working together, the nodes can
perform calculations that would require millennia to perform on mod-
ern personal computers.

The most common approach to implement parallel simulations is to
decompose the simulated domain, e.g., a combustion chamber, into a
collection of patches which are then distributed across processes. Each
process is responsible for performing the computation necessary for
its local data patch and intermittently exchanges data with other pro-
cesses to coordinate the global computation. In this work we primarily
focus on communication using the Message Passing Interface (MPI),

Figure 9: Visualization of 3-dimensional torus networks allow interacting with
complex topology and understand the communication behavior. Image source:
IEEE TVCG

visualizing 2-dimensional statistics of atomic trajectories, and detect certain time-scales
where trajectories show characteristic behaviors. As compared to generic visualization
tools, the custom design allows visualizing uncertainty and focusing on desired properties.

Visualization for High-Performance Computing

Understanding the communication and utilization patterns for HPC resources is an
important contemporary challenge. In order to make the most efficient use of the

associated uncertainties”. In: 2016 IEEE Pacific Visualization Symposium (PacificVis). 2016,
pp. 120–127. DOI: 10.1109/PACIFICVIS.2016.7465259.

http://dx.doi.org/10.1109/PACIFICVIS.2016.7465259


Figure 10: Poemage is a visualization system for exploring the sonic topology of
a poem. Image source: Nina McCurdy, http://www.sci.utah.edu/~nmccurdy/
Poemage/

investments in supercomputers, it is important to optimize their usage for large-scale
applications. A lot of research has been done in this direction; the primary challenges are
high-dimensionality of the data, e.g., complex network topology, and large amounts of data,
e.g., trace for thousands to millions of processors for tens of thousands of time-steps, with
an important constraint that the visualizations must maintain spatial, temporal, as well as
application-specific contexts.

To this end, Landge et al.10 developed a novel visualization scheme for network
layouts with 3-dimensional torus topology (see Figure 9), extended by McCarthy
et al.11 for 5-dimensional torus topology. Such visualizations have been useful
in identifying important communication bottlenecks for large-scale simulations over
distributed computing resources, and can help scientists redesign their simulations to make
more-effective use of the supercomputers. Isaacs et al.12 developed a visually intuitive
scheme for displaying traces of large-scale parallel codes using logical time. By considering
the ordering of message-passing (instead of actual time), they provide a simpler overview
and allows identifying bottlenecks in the code, ultimately enabling the scientists to improve
the simulation codes and/or improve job scheduling and node mapping on supercomputers.

10A. G. Landge et al. “Visualizing Network Traffic to Understand the Performance of Massively
Parallel Simulations”. In: IEEE Transactions on Visualization and Computer Graphics 18.12 (2012),
pp. 2467–2476. ISSN: 1077-2626. DOI: 10.1109/TVCG.2012.286.

11C. M.McCarthy et al. “Visualizing the Five-dimensional TorusNetwork of the IBMBlueGene/Q”. in: First
Workshop on Visual Performance Analysis (VPA), 2014. 2014, pp. 24–27. DOI: 10.1109/VPA.2014.10.

12K. E. Isaacs et al. “Combing the Communication Hairball: Visualizing Parallel Execution Traces
using Logical Time”. In: IEEE Transactions on Visualization and Computer Graphics 20.12 (2014),
pp. 2349–2358. ISSN: 1077-2626. DOI: 10.1109/TVCG.2014.2346456.

http://www.sci.utah.edu/~nmccurdy/Poemage/
http://www.sci.utah.edu/~nmccurdy/Poemage/
http://dx.doi.org/10.1109/TVCG.2012.286
http://dx.doi.org/10.1109/VPA.2014.10
http://dx.doi.org/10.1109/TVCG.2014.2346456


Visualization for Music, Poetry, and Sports

McCurdy et al.13 developed a visualization system (see Figure 10) for poetic compositions
by analyzing sound and sonic devices — the literary devices involving sound that are used
to convey meaning or to influence the experience of the listener or the reader, such as
rhyme, rhythm, meter, etc. By formalizing the linguistic semantics of the words, they
consider the topology of a poem, which reduces the complex structures formed by the
interactions of words into simpler visual representations. When fully mature, this type
of visualization research could potentially quantify the quality of a poem in an objective
manner by identifying some defining constructs that are appealing to the human mind and
make a certain composition delightful.

Polk et al.14 designed a visualization system to analyze tennis matches to assist
non-professional tennis coaches and players. Utilizing easily collectible data such as
scores and videos, and combining a variety of simple visualizations based upon real-life
metaphors, the system provides insights into match performance by giving a holistic
visualization of the match progress as conveyed by the data. The authors plan to work
towards extending the system to include multiple matches, which could make it a powerful
tool for non-professional players to assess and improve their performance.

Discussion
Visualization is, in general, a multidisciplinary field, aiming to assist in deriving insights
from data. It is an umbrella term that encompasses data and applications of a wide variety.
This article introduces the reader to the field of visualization research— both scientific and
information. It describes some key aspects of visualization, and discusses few important
application areas benefited by visualization.

Nevertheless, a small overview article cannot do justice to the entire field. We invite
the interested reader to consider attending/following important visualization conferences:
IEEE Visualization (http://www.ieeevis.org/), European Conference on Visualization
(http://www.cs.rug.nl/jbi/eurovis2016/), IEEE Pacific Visualization Symposium
(http://www.pvis.org/), Topology-based Methods in Visualization (http://vis.
uni-kl.de/topoinvis/), IEEE Symposium on Large Data Analysis and Visualization
(http://www.ldav.org/), etc., and journals: IEEE Transactions on Visualization and
Computer Graphics, Computer Graphics Forum, Information Visualization, etc. Readers
may also find useful publicly-available visualization tools and softwares for a variety
of scientific and non-scientific data: Paraview (http://www.paraview.org/) and VisIt
(https://visit.llnl.gov/).

13N. McCurdy et al. “Poemage: Visualizing the Sonic Topology of a Poem”. In: IEEE Transactions on
Visualization and Computer Graphics 22.1 (2016), pp. 439–448. ISSN: 1077-2626. DOI: 10.1109/
TVCG.2015.2467811.

14T. Polk et al. “TenniVis: Visualization for Tennis Match Analysis”. In: IEEE Transactions on Visualization
and Computer Graphics 20.12 (2014), pp. 2339–2348. ISSN: 1077-2626. DOI: 10.1109/TVCG.2014.
2346445.
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Visualization research has made substantial progress in the past two decades. However,
going forward, there exist important challenges that must be met. With increasing
size of data, the conventional visualization approaches are often reaching their
bottlenecks, and novel techniques and frameworks are required to address large- and
extreme-scale visualization. Similarly, as mathematical models and simulations become
highly-sophisticated, the resulting data is becoming more complex, and new ideas are
required to address the additional complexity. Finally, uncertainty visualization, which has
been identified as one of the top research problems in visualization, requires much work to
encompass all kinds of data and visualization techniques.
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