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ABSTRACT

Exploration of atomic trajectories is fundamental to understanding
and characterizing complex chemical systems important in many
applications. For instance, any new insight into the mechanisms of
ionic migration in catalytic materials could lead to a substantial in-
crease in battery performance. A new statistical measure, called
the relative-angle distribution, has been proposed to understand
complex motion – whether Brownian, ballistic, or diffusive. The
relative-angle distribution can be represented as a collection of 1D
histograms, but is currently created in a slow, offline process, mak-
ing any parameter exploration a tedious and time-consuming task.
Furthermore, the resulting plot can hide uncertainty in both the data
and the visualization. As a result, once rastered or printed at a fixed
resolution, these histograms can be misleading.

We present a new analysis tool for the exploration of atomic tra-
jectories that combines an interactive histogram visualization with
uncertainty information for both data and plotting errors, and is also
linked to an interactive 3D display of trajectories. Our tool enables
a holistic exploration of trajectories previously not feasible, with
the potential for significant scientific impact. In collaboration with
domain experts, we have deployed our tool to analyze molecular dy-
namics simulations of lithium-ion diffusion. Users have found that
the tool significantly accelerates the exploration process and have
used it to validate a number of previously unconfirmed hypotheses.

1 INTRODUCTION

Understanding the stochastic nature of random walks in complex
dynamical systems offers insights into the underlying phenom-
ena, such as in molecular dynamics [18, 22], turbulence model-
ing [3], cell biology [10, 14, 26], and ecology and social biol-
ogy [21, 24, 25]. One particularly interesting application is the
design of batteries, where atomic trajectories, modeled as random
walks, may provide insight into the diffusive behavior of lithium
ions. Lithium-ion batteries are currently one of the most common
portable energy sources, powering everything from hand-held con-
sumer devices to electric vehicles. Typically, such batteries consist
of an anode and a cathode separated by an electrolyte, and lithium
ions move between the two ends to generate external voltage. The
speed at which an ion moves is often quantified by its diffusion co-
efficient, which determines the cycling rate performance of a bat-
tery. As a result, the exploration of atomic trajectories to charac-
terize their diffusive behavior is key to understanding the under-
lying complex dynamics and ultimately to improve battery perfor-
mance [18, 27].

The structure of complex atomic trajectories is typically explored
manually through 3D spatial visualization tools such as VMD [13].
In addition, various statistical indicators, such as mean-square dis-
placement, are computed to derive quantitative properties, such as
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the diffusion coefficient [2, 9]. To understand the properties of com-
plex trajectories, a new statistical measure, called the relative-angle
distribution [5], was proposed recently. The idea is to measure the
directional motion of a particle by computing the distribution of
relative angles of its positions along its trajectory (see Section 3).
The shape of the distribution can highlight different effects, such as
the restricted motion due to neighboring molecules vs. consistent
forward motion, Brownian vs. non-Brownian motion, and the like.
This measure is especially important since the diffusion coefficient
alone cannot characterize non-Brownian motion.

The relative-angle distribution for a given time-scale, visual-
ized as a histogram, has proven useful in a variety of applica-
tions [3, 5, 14, 23, 26]. However, the application of our interest
requires studying these distributions for a wide range of time-scales
simultaneously. These distributions can be visualized as a 2D im-
age (Figure 1a), where the horizontal axis represents time-scales,
and each column is a 1D histogram of relative angles for the corre-
sponding time-scale. Although useful in theory, such visualizations
pose important challenges, especially for large-scale data.

In particular, the approximation of a relative-angle distribution
through histograms with a finite number of bins and a finite sam-
pling of points along a trajectory introduces errors, which are typ-
ically disregarded. Even though the combination of bin-size and
sample-size can significantly impact the shape of the resulting his-
togram, current tools, unfortunately, are too cumbersome to allow
an exploration of various settings and their consequences. For ex-
ample, the existing Mathematica-based tool chain required about
5-6 minutes of computation time, and about an hour of human time
to produce the result in Figure 1, which shows 160 histograms with
36 bins for a time-scale resolution of 0.025 picoseconds (ps). Since
repeating this process sufficiently often to explore bin sizes and
sampling uncertainties is impractical, scientists currently use a best-
guess single solution for the analysis.

There is a clear need and significant interest to interactively
explore the solution space, e.g., to highlight certain time-scales,
changing bin sizes, zooming and panning in the 2D image, etc.,
as well as to understand the uncertainties in data. Furthermore,
once an interesting feature in the relative-angle visualization has

We can take different starting positions along each of these trajectories depicted in Figure 3

and calculate the relative angle for different values of D. In Figure 4, we show histograms of

the probability distribution of the relative angles for different D values using Li+ in EC as an

example. We show that at time 0, the distribution is sharply peaked near 0� which is indicative

of forward ballistic motion. At 50 fs, we see that the peak is centered closer to 180� which is

characteristic of caging, where the ion is trapped by its solvent molecules similar to a "cage"

and reverses directions frequently. Closer to the end of the simulation, the distribution becomes

broader and more uniformly distributed, which is symbolic of Brownian-like motion, where the ion

has equal probability of moving in all possible directions and represents ideal diffusive behavior.

Figure 5: Histograms of the relative angle probability distribution at different time intervals D of
(a) Li+ and (b) PF�

6 . One-dimensional cuts at different D values are shown on the right. The color
scheme matches the color of the dashed lines on the left histogram.

We can examine trends in the relative angle probability distribution at different time scales by

combining the 1D histograms similar to Figure 4 for many different D values. Results for Li+

and PF�
6 in ethylene carbonate (EC) are shown in Figure 5. We also include one-dimensional cuts

at specified D values on the right of the histograms. We observe that both ions have sharp peaks

at (0,0) corresponding to forward ballistic motion at the shortest time scales. In general, we see

7

Figure 1: Relative-angle distribution for a lithium ion for different
time-scales shown as a 2D image and two histograms correspond-
ing to the highlighted columns.
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been found, the natural next step is to explore the corresponding
3D visualization of the associated atomic trajectories. However,
currently there exists no link between the statistical analysis and the
3D visualization, resulting in a tedious and error-prone workflow of
manually synchronizing, e.g., the time-scales of interest.

Finally, the visualization itself can cause additional errors, which
are rarely evaluated or even acknowledged. Creating a 2D visual-
ization of multiple histograms in a tool such as Mathematica will
render it at a fixed resolution, and without special precaution, this
resolution is often chosen to be one pixel per data item, i.e., his-
togram bin. However, if histograms computed at high resolution
are downscaled to match a lower image resolution, over-plotting
and color blending can occur, which might cause spurious and mis-
leading effects. On the other hand, if the data is low resolution, the
final image will be upscaled by the rendering engine, causing the
distributions to appear artificially smooth due to blurring, and pos-
sibly suffering from false color interpolation. Both situations cause
visualization errors that can even outweigh the data uncertainties.

Contributions. We present an interactive tool addressing these is-
sues by creating and rendering 2D visualizations of a relative-angle
distribution at desired resolution and granularity, while presenting
both the corresponding data and visualization uncertainties. Fur-
thermore, the statistical analysis is tightly integrated with 3D visu-
alization of associated trajectories. In particular, we demonstrate:
• Interactive visualization of a relative-angle distribution for arbi-

trary time-scale ranges and bin sizes;
• Integrated analysis and illustration of uncertainties in both the

data and visualization of the resulting plots;
• A linked-view framework to explore, analyze, and compare tra-

jectories using relative-angle distributions and 3D visualization;
and

• Application of our techniques to a first-principles simulation of
lithium ion diffusion, which has allowed our collaborators to val-
idate previously unconfirmed hypotheses, as well as observe a
number of unexpected phenomena.

2 RELATED WORK

Visualization of relative-angle distributions, proposed in 2013 [5],
has not gone far beyond the obvious solution of displaying 1D
histograms for a given time-scale using line graphs [3, 5], bar
graphs [23], or star plots [14, 26]. So far, only Savage et al. [22]
have used 2D visualizations for multiple 1D histograms for differ-
ent time-scales, which, however, are non-interactive, omit uncer-
tainties, and can introduce visualization errors.

One way to interactively visualize the temporal evolution of his-
tograms is TimeHistograms [15]. However, TimeHistograms can-
not be used for our application; since the number of data samples in
histograms decreases substantially with increasing time-scale (cf.
Section 4), we must treat the data as a collection of 1D distributions
(a 2D image) and not as a 2D histogram.

2D image visualization. Specifically, we consider the problem of
displaying N×B data (distributions for N time-scales with B bins
each) onto an output resolution of n×b. Depending upon these val-
ues, one can run into two important visualization challenges: under-
plotting and over-plotting.

Under-plotting occurs when the output resolution is much higher
than the input resolution. A small amount of data is mapped to a
large image, often performed implicitly by the renderer, which in-
terpolates between adjacent pixels. Depending on the specific ren-
dering, the interpolation might blur the image, implying a nonexis-
tent continuity, and may incorrectly interpolate colors.

Over-plotting, on the other hand, occurs when a large amount
of data must be visualized on a relatively smaller output space, and
multiple data points end up sharing the same space, such that not all
data points are discernible to the viewer. A number of ideas have

been proposed to remove or reduce over-plotting [8]. These ap-
proaches can be broadly categorized into three classes: (a) chang-
ing the appearance of data points; (b) jittering the data points; and
(c) reducing the amount of data, e.g., by subsampling, filtering, or
aggregating the data, to visualize only representative data points.

For example, embedded plots [11] organize a collection of
graphs into a larger graphic, and the Abstract Rendering frame-
work [6] provides an explicit control over the rendering pipeline.
Considering the rendering process as binning allows unifying the
different strategies discussed above. Continuous scatterplots [1]
and continuous parallel coordinates [12] have been developed that
use combinations of the above strategies to display discrete data as
continuous, thus, indirectly addressing over-plotting problems.

It must be noted that, although similar in the sense of the um-
brella definition, our problem of reducing N×B data to n× b pix-
els is not the same as the over-plotting generally considered by the
visualization community. As a result, existing techniques do not
apply here. In general, strategies (a) and (b) are not helpful, since
changing the appearance (colormap) does not reduce over-plotting,
and pixel positions cannot be changed. Furthermore, representing
discrete 2D histograms as continuous information is not meaningful
in this case, as discontinuities across different time-scales represent
important information, and removing them can be misleading. As
a result, we are left with strategy (c) and have elected to aggregate
data in a controlled and meaningful way.

Ensemble visualization [19, 20] is a common technique that em-
ploys aggregation of related datasets, and the resulting aggregated
data is visualized along with associated uncertainties. For example,
surface temperature may be available using a number of climate
models or different parameters for the same model, and one may
wish to display the mean and the standard deviation only.

The goal in ensemble visualization is to show a representative
of the underlying models defining a function on the domain. The
representative is typically derived from hundreds or thousands of
samples. However, our goal is to compress a few (of the order
of tens) 1D histograms into a single one. Since these histograms
for different time-scales may or may not show similar behavior,
computing statistical measures, such as standard deviation, is not
meaningful in general.

3 APPLICATION DATA AND SIMULATION DETAILS

This paper focuses on applying visualization principles to better
understand data generated by large-scale simulations of lithium-ion
battery systems. In particular, these are first-principles molecular
dynamics (FPMD) simulations that use density functional theory
(DFT) with the projector augmented wave (PAW) method as imple-
mented in the Vienna ab initio simulation package (VASP) [16, 17].

The simulation was performed in a cube 19.283 Angstroms in
each dimension containing one molecule of a lithium salt, LiPF6,
dissolved in 63 molecules of ethylene carbonate (EC), i.e., a total
of 638 atoms: 1 lithium, 1 phosphorus, 6 fluorine, 189 carbon, 189
oxygen, and 252 hydrogen. The equations of motion were inte-
grated using a time step of 0.0005 picoseconds (ps). After 7.5 ps of
equilibration, atomic trajectories of 30 ps were run to gather statis-
tics. Further computational details on the simulation setup and data
generation were provided by Ong et al. [18].

Given a particle trajectory, X(t), and a time-scale of interest, ∆,
the relative angle, θ(t), with respect to ∆ is defined as

θ(t; ∆) = cos−1
(

V(t; ∆) ·V(t +∆; ∆)
|V(t; ∆)| |V(t +∆; ∆)|

)
, (1)

where, V(t; ∆) is the displacement vector for the particle between
time t and t +∆, i.e., V(t; ∆) = X(t +∆)−X(t) (see Figure 2).

Essentially, θ measures the change in the particle’s directional
motion after ∆ time units. The distribution of θ for a given ∆
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Figure 2: As an atom moves along a trajectory, with the position
given by X(t), a single angle θ(t; ∆) records the deviation from
straight line motion for the positions X(t), X(t+∆), and X(t+2∆).

is approximated using a histogram of sampled values along X(t),
which helps understand the characteristics of the particle’s motion.
In particular, an evenly-distributed, “flat” histogram indicates a
Brownian-like motion where the relative angles are uncorrelated in
time; the particle has an equal probability of moving in all possible
directions, representing ideal diffusive behavior. On the other hand,
a histogram centered around some angle suggests non-Brownian
motion, typically not easily characterized by previously used indi-
cators, such as the mean-square displacement. For example, for
bonded atoms, strong peaks around higher angles may indicate “re-
bounding” as the bond is stretched and compressed.

4 VISUALIZATION OF RELATIVE-ANGLE DISTRIBUTION

Given a discrete and sampled trajectory X[t] for 0 ≤ t < T , we
compute relative angles for each consecutive atom position X[t0]
using Eq. (1). Since each computation requires two future posi-
tions, X[t0 +∆] and X[t0 + 2∆], we can use only T − 2∆ samples
for computing relative angles. This raw data is then used for the
computation of histograms for the required number of bins.

Typically, the relative-angle distribution is visualized as a his-
togram of angles with respect to a given time-scale ∆, allowing
characterization of atomic motion; e.g., Figure 3 indicates non-
Brownian motion. Nevertheless, since a histogram aggregates data,
all temporal and causality information is lost. We augment the vi-
sualization by also showing the distribution of angles vs. time (Fig-
ure 4), which helps in two ways. First, this additional plot high-
lights patterns in the time history of the atom, identifying possibly
recurring behavior, e.g., the figure indicates some periodicity where
the particle exhibits sharp turns with periods of smaller deviations,
and then back again. Second, the span of the time axis gives an in-
dication of the number of samples available for this time-scale to in-
directly assess the quality of the corresponding histogram. Finally,
we show a histogram of time-scales for a given angle, which indi-
cates whether or not an angle under consideration is significantly
more frequent for certain time-scales (Figure 5). Such 1D statis-
tics can be direct indicators for detecting prominent time-scales for
different characteristic motions.

Multiple distributions as a 2D image. Next, we compute relative-
angle distributions for time-scales ranging from 0.005 ps to 14.995
ps with a sampling of 0.005 ps – 5x finer resolution than Figure 1.
For the purpose of exploration, the largest possible range of time-
scale was chosen for the experiments. These histograms are visu-
alized as a 2D image, as shown in Figure 6, where the time-scale
increases left to right, and the angle increases from bottom to top.
For the best perceptual understanding of the relative-angle distri-
butions, a color map that varies a single hue was used. Each col-
umn represents a histogram, which must be normalized individually
to allow consistent comparison of distributions across time-scales.
This normalization is crucial to the analysis, because the number
of data samples decrease with increasing ∆. In our experiments,
the left-most histogram (∆ = 0.005 ps) contains 59,980 data points,
whereas the right-most histogram (∆ = 14.995 ps) has only 20 sam-
ples. This large disparity between the number of samples exposes
a challenge in applying a color map. Individual samples become
relatively more important for larger time-scales, resulting in higher
peaks in the distribution. As a result, a global color map applied
to individually normalized histograms causes the histograms for

Figure 3: Histogram of angles for ∆ = 4.95 ps.

Figure 4: Distribution of angles with time for ∆ = 4.95 ps.

Figure 5: Histogram of time-scales for θ = 166◦.

smaller time-scales to be “washed out” and impairs the visualiza-
tion (Figure 6a). Although the resulting image provides a direct
comparison of histograms, which is the most significant aspect of
the data, it loses detail for shorter time-scales, and the correspond-
ing histograms appear similar. To remedy this limitation and to
allow visualizing regions of interest in greater detail, the color map
is applied dynamically only to the visible range of data values in-
teractively as the user zooms or pans inside the image (Figure 6c).

5 VISUALIZATION OF UNCERTAINTY

Given relative-angle distributions for multiple time-scales, next we
describe how to visualize the corresponding uncertainties. We con-
sider two types of uncertainties: data uncertainty and visualization
uncertainty. The uncertainty in data arises from a number of dif-
ferent sources, ranging from the simulation parameters to sampling
methods. In particular, scientists are interested in understanding
how well a histogram, computed on a given sample of points along
a trajectory, estimates the true distribution. The second source of
uncertainty is the visualization technique itself. The goal is to show
the user exactly how much the data might have been distorted by
the visualization in order to create a given plot.

5.1 Data Uncertainty
A histogram of relative angles is defined by a time-scale, ∆, and
a number of bins, B. The computation of this histogram requires
sampling along a given trajectory and measuring relative angles us-
ing Eq. (1). Given S such samples and corresponding angles, the
goal is to estimate how well the histogram computed on the given
set of samples represents the true distribution. Since the true dis-
tribution is unknown, we use statistical techniques to estimate the
accuracy of a histogram. In particular, we use a random sampling
technique called jack-knifing, a variant of bootstrapping [7], which
allows capturing confidence intervals and error estimates by com-
puting statistics on random subsets of data. Specifically, given a
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(a)

0

0.2

0

0.05

(b) (c)

Figure 6: Relative-angle distribution visualized for multiple time-scales visualized as a single 2D im-
age; each column is a 1D histogram. Vast differences in number of samples between histograms cause
the left of the image (smaller time-scales) to be “washed out” when the color map is applied to the func-
tion range [0, 0.2] of the entire image (a). To remedy this, the same color map (b) must be dynamically
mapped only to the function range, i.e., [0, 0.05], in the visible area to improve the visualization (c).

Figure 7: A lithium ion (dark
gray) is shown at the center, and
is bonded to four carbonyl Oxy-
gen atoms (magenta), which are
part of the EC molecules.

sample set of size S, we pick a random subset of size R without
replacement and compute the histogram on the subset. Analyzing
the differences between different random samples and especially
the variance among them provides an indication of the sampling
quality of a given histogram. For example, a very low error with
R = 0.5 ∗ S would indicate that even using half the samples, the
histogram would not change, indicating that the sample size is suf-
ficient. The two important parameters for jack-knifing are the num-
ber of resampling steps and the size of the resampled subset R. In
order to choose these parameters, we study the convergence of his-
togram errors with respect to the number of sampling steps for var-
ious sizes of the resampled subset. Figure 8 shows a log-log graph
of error metrics on the vertical axis with the number of resampling
steps on the horizontal axis. Different curves represent the mean L2
and mean L∞ errors for subset sizes ranging from 40% to 90% of
S. The figure shows that the errors converge after about 500 resam-
pling steps, irrespective of the size of the resampled subset. Similar
behavior was observed in the convergence of histograms of other
values of ∆ and B. Therefore, with the goal of making a moder-
ately conservative choice, we pick R = 70% of S, and perform 1000
resampling steps for the visualizations of data uncertainty.

We note that uncertainty computation is, unsurprisingly, a com-
putationally intensive process, and currently cannot be performed
interactively. In our unoptimized implementation, jack-knifing a
single histogram using the above-mentioned parameters takes up
to 36 seconds for the shortest time-scales with the largest sample
sizes. Therefore, to preserve interactivity, we precompute data un-
certainties for various bin sizes and store the results in separate files
for each ∆. This data is then read on demand by the analysis tool,
and information is updated to the user in real time.

Figure 9 shows the evolution of data uncertainty with time-scale
in a log-linear plot. The error metric used here is the mean L2 er-
ror normalized with respect to the number of samples available for
each time-scale. It can be concluded that for small time-scales (less
than 5 – 6 ps), the computed histogram captures the distribution
well: an expected behavior since a large number of samples are
available for small time-scales, and therefore, the distribution can
be approximated more accurately.

5.2 Visualization Uncertainty
Given N histograms with B bins each, this section discusses how
to visualize this information using an output resolution of n× b

Figure 8: Mean L2 (solid lines) and mean L∞ (dashed lines) in the
computed PDFs appear to have converged after about 500 steps of
bootstrapping using any of the subset sizes which we experimented.

Figure 9: Visualizing data and visualization uncertainties in his-
tograms for all time-scales.

through aggregation. The typical value of B is 180, with the bin-
resolution of one degree per bin, whereas a typical N can be much
greater. In the data used for our experiments, N equals 2999. On the
other hand, the typical resolution used for such 2D plots by standard
viewing is of the order of a few hundreds in each dimension.

In order for each aggregated data point to be visually discernible,
we show it using k× k pixels. Therefore, for the given output res-
olution n× b, we reduce the data from N×B to n/k× b/k. In the
visualizations presented here, we use k = 3. However, to keep the
discussion simple, we assume k = 1 without loss of generality and
describe N×B to n× b reduction. Depending upon the input and
output resolutions, we can have the following cases:
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(a)

(b) (c)

err (a) err (b) err (c)

Figure 10: Visualization error in a given 2D image (a) can be reduced by either zooming in with in the limited resolution (i.e., reducing N for
a given n) (b) or increasing the total available resolution (c) (i.e., increasing n for a given N).

Case 1: b < B. When the output resolution allows displaying fewer
than B bins, we must recompute 1D histograms for the smaller num-
ber of bins. We emphasize that it is not enough to simply aggregate
B bins into b, because that can cause round-off errors. For example,
consider the simple case of B = 3 and b = 2. The correct width of
output bins is 90◦, but collapsing 3 bins into 2 will make the bin
widths uneven: one output bin will represent a 60◦ span whereas
the other will represent a 120◦ span. The uneven bin-widths will
skew the histogram and mislead the analysis.
Case 2: n < N. This case requires aggregating N histograms into n.
In particular, each output histogram Hi where 0≤ i< n is computed
by merging m input histograms {H j}, for all j ∈ [M(i),M(i+1)).
The mapping M must be injective, monotonic, and ensure that
M(0) ≥ 0 and M(n− 1) ≤ N − 1. We use Bresenham’s rasteri-
zation algorithm [4] to define this mapping, i.e., M(i) = N · i/n,
rounded to the nearest integer.

Assuming B = b, merging of histograms can be performed by
averaging corresponding bins. Although one may consider other
more-sophisticated kernels to perform this merging, we believe that
averaging (rectangular kernel) is the best choice since it weighs in-
put histograms uniformly. Furthermore, we perform this aggrega-
tion of (unnormalized) frequencies rather than distributions. In this
sense, we are creating a single histogram covering the considered
range of time-scales, rather than an average distribution. As before,
we normalize the resulting histogram to create a sampled distribu-
tion. Finally, we compute the L2 error for every input histogram
with respect to the output histogram and use the maximum value as
the visualization error for the output histogram.

As n decreases, more histograms must be aggregated, leading to
a higher visualization error. Therefore, unsurprisingly, in order to
reduce the visualization error, one requires a higher output resolu-
tion, as illustrated in Figure 10.
Case 3: b > B and/or n > N. When either dimension of the out-
put texture is greater than the corresponding dimension of the input
data, we must be careful to repeat data values to create an n× b
texture. If only an N×B texture is created, the underlying graphics

renderer usually stretches the texture to output size, e.g., OpenGL
uses linear interpolation to map the texture size to data size. As
a result, the visualization gives a false sense of continuity in the
data. Furthermore, this interpolation is performed on the color map,
rather than on the function values. The final color further depends
on the color map used, making the effect of such color interpolation
even more unpredictable. As a result, the duplication of values is
important, and we use the mappingM for this purpose.

6 DESIGN CHOICES AND VISUALIZATION TOOL

Here, we present an interactive tool for the visualization and anal-
ysis of atomic trajectories, also demonstrated in the supplemental
video. Illustrated in Figure 11, our tool has two main components:
the 3D spatial visualization of trajectories and the statistical visual-
izations of relative-angle distributions. The user can choose to link
both components into an integrated environment of one or more 2D
windows for statistical visualization of individual trajectories and a
single 3D viewer visualizing all selected trajectories. The input to
the main application is a set of atomic trajectories as sequences of
space-time positions.

6.1 3D Spatial Visualization of Trajectories
The default application window offers the following features:
Atom selection and centering. To avoid visual clutter, the user
can choose the atoms for which trajectories should be displayed.
Furthermore, since the domain is periodic in all three dimensions, it
is often useful to display the data in the reference frame of a chosen
atom. To facilitate this, the user can pick any atom around which
the visualization is centered, or view the trajectories in the original
reference frame of the simulation.
Chemical bond visualization. Trajectory analysis has been aug-
mented with the visualization of chemical bonds. In the molecu-
lar system under consideration, lithium ion bonds with four oxygen
atoms, which form a tetrahedron that encloses lithium (cf. Figure 7).
Visualizing bonds and tetrahedral shapes helps clarify the interplay
between diffusion and solvation.
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(a) 3D visualization of trajectories. (b) 2D visualization of relative-angle distribution statistics.

Figure 11: Screenshots of our integrated analysis and visualization tool for interactive exploration of atomic trajectories.

Animated and static trajectories. Besides showing the entire tra-
jectories with respect to a chosen starting time (“offset”) and sam-
pling (∆), the tool can also animate them to understand the temporal
dimension in the system. The user can control the animation speed,
manually set time-step for display, and also view a short past history
(controlled by the “tail length” parameter in Figure 11a).

6.2 Visualization of Relative-Angle Distributions

The user can interactively trigger the computation and visualization
of relative-angle distributions for any atom. For a holistic under-
standing of the statistics, all information is displayed within a single
application window, as illustrated in Figure 11b.
Multiple distributions as a 2D image. The (potentially) reduced
data is visualized as a 2D image at the center of the window. The
horizontal and vertical axes represent time-scales and angles, re-
spectively. Nevertheless, the available resolution is often wider than
it is high, in which case, the resolution available for angles is typi-
cally lower than that for the time-scales. We provide the function-
ality to toggle the orientation so that angles map to the horizontal
axis, whereas time-scales vary along the vertical axis. For simplic-
ity, however, the following discussion assumes time-scales on the
horizontal axis and angles on the vertical axis.
1D histograms. The user can select a point on the 2D image using
a crosshair, which spans the entire image with a circle around the
selected point. The 1D histograms corresponding to the selected
values of angle and time-scale are shown below and to the left of
the image. Since the horizontal axes of both the 2D image and
the bottom plot represent time-scales, they are synchronized with
respect to zooming and panning. Furthermore, the bottom plot is
vertically inverted, i.e., the horizontal axis is at the top instead of
the bottom, and the values on the vertical axis increase downward.
Similarly, the vertical axes of the 2D image and the left plot are
synchronized, and the latter is horizontally inverted. This layout
provides a more coherent visualization, leading to a more intuitive
interaction, and saves space by making redundant axes dispensable.
Uncertainty plots. A plot containing data and visualization uncer-
tainties is displayed at the top of the 2D image, with a synchronized
time-scale axis. The values for visualization uncertainty are sam-
pled using the visualization data, i.e., n time-scales, whereas those
for data uncertainty are sampled using the original data, N time-
scales. Nevertheless, displaying both errors in the same plot gives
a sense of their absolute as well as relative scales.

Angle vs. time. The angle vs. time for the selected time-scale is
shown to the right of the center plot. This plot shows the function
θ(t;∆) for the time-scale ∆ selected, with absolute time t on the
long axis. Note that this plot uses raw data, and does not depend on
the reduced data for visualization.
User Interactions. The following user interactions are supported:

• The user can zoom and pan within the 2D image, with synchro-
nized updates to axes and secondary plots.

• Upon window resizing, the new size available for displaying the
2D image is computed. New visualization data is computed by
reducing the raw data, and visualizations are updated.

• When the user moves the selection, all four graphs around the 2D
image are updated with respect to the new selection.

These interactions are linked through multiple visualization win-
dows, such that selection in one is reflected in all others as well.

7 EVALUATION

We have deployed our tool to explore FPMD simulations of lithium-
ion cells (see Section 3). The main advantage of our approach is that
it enables an interactive exploration of large-scale simulation data,
which until now has required tedious manual effort. In particular,
our collaborators have been able to easily analyze the relative-angle
distributions for various atoms in a synchronized manner.

The first goal of the exploration was to confirm some expected
features in the relative-angle distribution, which previously could
not be tested due to practical time constraints. The first of these
features is the attraction and repulsion of surrounding molecules
inhibiting Brownian or ballistic motion. Through much of the sim-
ulation, the lithium ion is bonded to four oxygen atoms, and pre-
vious analysis has shown a strong cyclic behavior of the pair-wise
distances between the lithium ion and its bonded oxygens with a
period of ≈ 0.1 ps. Zooming into the angle distributions at around
∆= 0.05 ps (Figure 12) shows a strong peak at about 150◦, suggest-
ing that lithium has a distinct tendency to reverse at the expected
time-scale of traversing the tetrahedron formed by the surrounding
oxygen atoms. This confirms the expectation that on short time-
scales, the motion is dominated by the constraints due to bonds.

A second assumption was that histograms at longer time-scales
are less reliable than those at shorter ones, as fewer samples are
available. Although this general trend is observed (cf. Figure 9),
the behavior is somewhat unexpected. The number of available
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Figure 12: The 2D histogram at ∆ = 0.05 ps, and θ ≈ 150◦, along
with the two respective histograms along the corresponding axes,
indicate coherent behavior correlated with confined motion.

samples decreases linearly as the time-scale increases, but the error
shows highly non-linear behavior, with most increases concentrated
in the longest time-scales. This behavior may indicate that this
error is not necessarily due to the decreasing number of samples,
but more likely due to an increasing complexity of the histograms.
The latter argument would also explain why the visualization un-
certainty changes even more drastically (though at a smaller mag-
nitude), as the aggregation of more complex and faster-changing
histograms will cause more errors. In collaboration with the do-
main experts, we are currently discussing potential implications.

Next, we exploit interactivity to compare the histograms of dif-
ferent species of atoms. Figure 13a compares the lithium trajec-
tory to that of the phosphorous atom in the PF6

- ion, which shows
markedly different behavior compared to lithium. The peaks in this
distribution are not as prominent, and the distribution is wider, indi-
cating a more Brownian-like motion. Comparing oxygen atoms that
always bond with lithium with those that never bond also demon-
strates interesting behavior. As expected, the relative-angle distri-
bution for bonded oxygen atoms is similar to that of lithium for
anything but very short time-scales as their motion is coupled. Nev-
ertheless, the similarities are not as strong as one might expect. In
particular, the similarities do not increase for longer time-scales, in-
dicating that the independent local motions still have a significant
influence on the relative angle distribution. The unbonded oxygen
atoms, on the other hand, show a more uniform histogram, much
like phosphorous, reflecting a more diffusive behavior.

7.1 User Feedback
The initial feedback from our collaborators has been positive. The
tool has an intuitive interface with a short learning curve and has
been used independently by the scientists. In particular, they have
been able to explore trajectories in a number of different simula-
tions with different electrolytes and physical parameters, e.g., ex-
ternal voltages. One important goal of the exploration was to un-
derstand whether lithium drags the bonded molecules, or switches
oxygens by breaking and re-forming bonds as it moves through the
liquid. The interactive analysis enabled by our framework has led
our collaborators toward the former hypothesis in which lithium’s
motion is affected by its bonded molecules, which matches the con-
jecture by Xu et al. [27], and would help to explain why lithium
diffuses slower than PF6

-, which does not bond.
The interactive visualization of relative-angle distribution has

been effective as well. By reducing the time to display from minutes
to seconds, our tool significantly lowers the barrier to create differ-
ent histograms. As a result, the domain experts have become inter-
ested in cross-comparisons of relative-angle distributions between

different atoms, opening a new direction for exploration. Further-
more, dynamic zooming helps in the observation of small struc-
tures, such as restricted motion, and the corresponding rescaling of
the color map significantly improves the differentiation of small-
scale features (see Figure 6). The additional information on the 1D
slices as well as the time-dependent angle provide a fast way to ex-
plore details of the distributions that are difficult to extract from the
2D image. Similarly, the direct link between the statistical analysis
and the 3D trajectories makes the entire process more intuitive and
faster, with corresponding improvements in productivity. Finally,
the ability to directly evaluate uncertainty in both data and visu-
alization provides an important level of confidence in the analysis
and the resulting plots. Our framework, for the first time, allows a
holistic and interactive exploration of atomic trajectories and their
corresponding statistics. In the words of our collaborators, this tool
will save substantial amounts of time and effort, and as discussed,
has already led to new questions that would have been too time
consuming to explore previously.

8 CONCLUSION AND FUTURE WORK

This paper presents an interactive visualization and analysis tool
for the exploration of atomic trajectories, along with their relative-
angle distributions. Our integrated solution provides a synchro-
nized visualization to enable exploring parameters, such as time-
scales, in both 3D space and parameter space, to effectively high-
light phenomena, such as Brownian vs. non-Brownian motion, re-
stricted motion due to neighboring molecules, etc.

This work addresses important challenges in the visualization of
2D images representing collections of 1D histograms. In particular,
the problems of under-plotting and over-plotting, which can cause
spurious and misleading visualizations due to blending and interpo-
lation in color space performed by the rendering engine, have been
addressed. By systematically recomputing the histograms depend-
ing upon the available output resolution, we provide explicit control
of the visualization. Furthermore, we visualize the uncertainties in
both data and visualization to allow making scientific claims with
improved confidence.

We have demonstrated our tool using first-principles molecular
dynamics simulation of lithium-ion systems. The tool is available
to domain experts and has been effectively utilized to validate hy-
potheses and explore in more detail phenomena that are not yet well
understood. In addition to the application presented in this paper,
the tool can be applied, with minor adaptations, to a variety of other
applications where the relative-angle distribution describes the be-
havior of complex trajectories.

Going forward, we are working toward understanding data un-
certainty in more detail. In particular, we wish to understand the
statistical dependence between adjacent samples along a trajectory
and its relevance for the underlying physical phenomena. It is also
important to better understand and characterize the various high-
frequency variations in the 2D visualizations and separate physi-
cally meaningful features from noise.
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(a) Li+ (top) with PF6
-(bottom) ions. (b) Two O atoms that always bond to Li. (c) Two O atoms that never bond to Li.

Figure 13: Comparison of relative angle distributions of different species of atoms in the simulation.
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