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Abstract—The Helmholtz-Hodge Decomposition (HHD) describes the decomposition of a flow field into its divergence-free and curl-
free components. Many researchers in various communities like weather modeling, oceanology, geophysics, and computer graphics

are interested in understanding the properties of flow representing physical phenomena such as incompressibility and vorticity. The
HHD has proven to be an important tool in the analysis of fluids, making it one of the fundamental theorems in fluid dynamics. The

recent advances in the area of flow analysis have led to the application of the HHD in a number of research communities such as flow
visualization, topological analysis, imaging, and robotics. However, because the initial body of work, primarily in the physics

communities, research on the topic has become fragmented with different communities working largely in isolation often repeating and
sometimes contradicting each others results. Additionally, different nomenclature has evolved which further obscures the fundamental

connections between fields making the transfer of knowledge difficult. This survey attempts to address these problems by collecting a
comprehensive list of relevant references and examining them using a common terminology. A particular focus is the discussion of

boundary conditions when computing the HHD. The goal is to promote further research in the field by creating a common repository of
techniques to compute the HHD as well as a large collection of example applications in a broad range of areas.

Index Terms—Vector fields, incompressibility, boundary conditions, Helmholtz-Hodge decomposition

Ç

1 INTRODUCTION

THE Helmholtz-Hodge Decomposition (HHD) of vector fields
is one of the fundamental theorems in fluid dynamics. It

describes a vector field in terms of its divergence-free and
rotation-free components. Such a description simplifies the
analysis of vector fields since some important properties
like incompressibility and vorticity can be studied on the
components directly.

Due to the ubiquitous nature of vector fields, this
fundamental theorem of fluid motion has been applied by
various research communities to a wide variety of applica-
tions. More theoretically inclined communities like fluid
mechanics, physics, and mathematics have developed
projection methods [19], [20] which employ the decomposi-
tion for the simulation of incompressible fluids using the
Navier-Stokes equation (NSE). Since many simulated
domains have boundaries, different boundary conditions
and their impact on the decomposition have received
special attention. Other communities have focused primar-
ily on exploiting the different properties of the HHD to, for
example, create more realistic visualizations of fluids [34],

[92], detect singularities [83], [84], or to smooth vector fields
[97]. Application areas span everything from visualization
and computer graphics, to astrophysics [40], [67], [95],
geophysics [3], [4], computer vision and robotics [38], [43],
[44], [73], imaging [52], etc. In all these applications, the
HHD plays a key role in modeling, analyzing, or manip-
ulating fluids.

1.1 Motivation

As discussed above, a variety of research communities are
actively exploring techniques to compute and apply the
HHD. Nevertheless, while there exist cases of successful
knowledge transfer (see, for example, the vision and
robotics research in Fig. 1) most advances are made within
a given community. Furthermore, through multiple deriva-
tions seemingly minor details such as boundary conditions
can get lost resulting in a sometimes confusing and
contradictory publication record.

For example, Stam [92] follows the HHD as defined by
Chorin and Marsden [22] and adapts it for a specific no-
flow boundary setting. Under such a setting, a Neumann
boundary condition can be imposed on the decomposition,
while Colin et al. [23] discuss the same Neumann boundary
conditions without a no-flow setting, in which orthogon-
ality, a very important and much desired property of the
decomposition is lost. Subsequently, following both Colin
and Stam, Petronetto et al. [81] comment that the usual
boundary conditions in the general case are Neumann
boundary conditions. Thus, while every publication in-
spires new research, older results can be overlooked in a
multilayered literature.

One particular detail of interest are the boundary condi-
tions and their influence on the results of the decomposition.
In his diploma thesis, Wiebel [101] following Polthier and
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Preuß [83], [84], and Tong et al. [97] comments that there exist
failure cases of the 2D HHD. More specifically, he shows that
if critical points lie on or near the boundary of the domain, the
structure of the decomposed components of the field is
changed significantly. We argue that such artifacts should be

attributed to the boundary conditions of the decomposition,
which are needed to maintain orthogonality. Orthogonality is
a delicate issue in HHD and has been studied thoroughly in
literature. However, in the recent approaches, especially in
the visualization community, there has been little discussion
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Fig. 1. A chronological chart showing the articles on HHD. The different shapes classify the articles into theoretical advances and computation
techniques for different domains and discretizations. Different colors classify the articles into the communities they were published in (as
tabulated in Table 1). Solid arrows and dashed lines between two articles represent a direct inheritance or extension, and a weaker connection
between them, respectively.



on orthogonality of the decomposition, and hence, a more
thorough understanding of the interplay between orthogon-
ality and boundary conditions is needed.

While there already exist some excellent review papers
on related topics, their scope is typically limited. For
example, Aref et al. [6] and Morino [75] review the
Helmholtz decomposition in context of vorticity problems,
Joseph [57] discusses it in context of viscous fluids, Kobe
[60] reviews the connection between Helmholtz and Hodge
decompositions, and Sprössig [91] describes generalizations
of the Helmholtz decomposition for different domains.
Nevertheless, there is a need for a more detailed study of
the HHD that discusses the relevant theory from a broader
perspective and in particular includes techniques to
compute the discrete HHD. We believe that this compre-
hensive survey will aid future studies and help avoid
diverging research branches by creating a common reposi-
tory of references and techniques described in a single
consistent terminology.

1.2 Contributions

This survey aims to explain the theory behind the HHD in a
notationally consistent manner, discussing the effects of
boundary conditions, and surveying the recent advances in
computing the discrete HHD. We introduce the funda-
mentals of the decomposition from a historic point of view
and summarize the theory presented in different books and
articles. We provide a thorough discussion on boundary
conditions highlighting any existing discrepancies between
different articles. Additionally, we survey the different
techniques proposed in various communities regarding the
computation of the HHD.

The remainder of this survey is structured as follows:
Section 3 investigates the origin and history of the

decomposition. It establishes the mathematical foundations
of the decomposition in a consistent notation and refers the
reader to the appropriate literature for a more detailed
discussion. Section 4 introduces several relevant applica-
tions using the HHD surveyed from various communities.
Section 5 discusses the interconnection between orthogon-
ality and boundary conditions, highlighting existing dis-
crepancies in recent articles. Finally, Section 6 surveys the
most common techniques to compute the discretized for of
the HHD.

2 THE HISTORY OF THE HHD

We begin with studying Fig. 1, which provides a chron-
ological chart summarizing the publication history of the
HHD, classifying some important books and articles into:
1) theoretical advances and computation techniques for
different domains and discretizations, and 2) different
research communities. This visual summary highlights the
different research trends, as well as the connections between
various communities. Since its introduction in 1858, the
subject of HHD has been studied in various communities.
Under the umbrella of projection methods, the computa-
tional fluids community has consistently used and refined
them because their first development in the 1960s.

With its development in 1990s, the graphics and
visualization community started making use of the projec-
tion methods in fluid modeling and animation. While
virtually every article in fluid animation uses projection
methods, only a few important articles dealing especially
with computing the HHD are shown. The seminal paper by
Polthier and Preuß [83] in 2000 proposes a new technique
for the computation of discrete HHD, which has led to a
renewed interest in the topic. Their ideas are introduced to
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Classification of Various Journals, Conferences and Workshops into Communities Shown in Fig. 1



the computer vision and robotics community by Guo et al.
[42], who further propose extensions tailored to the
particular application. Similarly, Stam’s ideas [92], [93]
have inspired Hinkle et al. [52] to use the HHD in the
Fourier domain for applications in imaging. Recent advan-
tages in the visualization community by Petronetto et al.
[81] draw their inspiration from Colin et al. [23] in
computational physics community. Overall, Fig. 1 sum-
marizes the different research thrusts and the connections
between them, some of which will be discussed in more
detail in this survey.

3 THEORY

This section investigates the theoretical foundations of the
HHD and describes its mathematical properties in general.
We begin with discussing the origin and theory of the
Helmholtz decomposition of vector fields. While the
Helmholtz decomposition is defined for vector fields on
real domains, another decomposition, called the Hodge
decomposition, exists, which is defined for differentiable
forms on Riemannian manifolds. For completeness,
we discuss the Hodge decomposition in Section 3.2. This
brief discussion assumes some basic knowledge of the
Hodge-de Rham theory, and can be skipped by readers only
interested in understanding the fundamentals of the vector
field (Helmholtz) decomposition. Then, we present the
HHD as used in modern day research, which defines the
decomposition of vector fields on domains with or
without boundary.

Before we begin, it is worth mentioning that different
applications and researchers have used different names
(any of the following: Helmholtz, Hodge, Helmholtz-
Hodge, or Hodge-Helmholtz) for the decomposition. As
shown in Section 3.3, the decomposition may define two or
three nonzero components. However, since in the case of
vector fields, this difference is only due to the domain and
boundary conditions, the motivation to choose one name
over the other seems rather subjective, and conceptually,
these names can be used interchangeably. Hence, we
wish to warn the reader not to get confused when
encountering different names. Irrespective of the name
used, the theory behind the underlying decomposition
should be clearly understood.

3.1 The Helmholtz Decomposition Theorem

In 1858, Prof. Hermann von Helmholtz, in his seminal
paper, Über Integrale der hydrodynamischen Gleichungen,
welche den Wirbelbewegungen entsprechen [50] explained
how potential functions can be used to extract the
rotational and irrotational components from a flow field.
Following its success and popularity, an english translation
On Integrals of the Hydrodynamical Equations, which express
Vortex-motion was published in The Philosophical Maga-
zine by P. G. Tait [51].

In [50, Section 1], Helmholtz explained that the motion
of a volume element of a continuous fluid media in IR3

consists of: 1) expansion or contraction in three orthogonal
directions, 2) rotation about an instantaneous axis, and
3) translation. The expansion/contraction can be repre-
sented as the gradient of a scalar potential function because

it is irrotational. Similarly, the rotation can be represented
as the curl of a vector potential function since it is
incompressible. Translation, however, being both incom-
pressible and irrotational can be represented as either the
gradient of a scalar potential, or the curl of a vector
potential. Equivalently, the translation can also be repre-
sented as a separate harmonic component. We will come
back to the discussion on the harmonic component. For
now, we discuss Helmholtz’s original ideas, which repre-
sent the translation as the gradient of a scalar potential
(with the irrotational component).

According to Helmholtz, under suitable asymptotic
behavior at infinity, any vector field in IR3 consists of two
parts:

1. The first part is incompressible representing the
rotation, and can be expressed as the curl of a vector
potential function.

2. The second part is irrotational representing transla-
tion and compression/expansion, and can be ex-
pressed as the gradient of a scalar potential function.

These scalar and vector potentials can be computed
from the divergence and the curl of the vector field. Thus,
when its divergence and the curl are known, a vector field
can be uniquely constructed. An excellent summary of
Helmholtz’s ideas is given by Lamb [63], who formulates
them as follows:

Theorem 3.1 (Helmholtz Decomposition). The motion of a
fluid ~!ðxÞ in an infinite space (x 2 IR3) such that it vanishes at
infinity is determinate when we know the values of "ðxÞ and
~!ðxÞ, where

"ðxÞ ¼ r $~!ðxÞ ðDivergenceÞ
~!ðxÞ ¼ r%~!ðxÞ ðCurlÞ:

ð1Þ

On the other hand, if the motion of the fluid is limited to a
simply connected region ! & IR3 with boundary @!, it is
determinate if "ðxÞ, ~!ðxÞ and the value of the flow normal to
the boundary, !nðxÞ ð¼ ~!ðxÞ $ ~nÞ for x 2 @!, are known.

In later theoretical advances, an inverse problem to
Helmholtz’s ideas was formalized, which decomposes a
given vector field into its divergence-free (incompressible)
and curl-free (irrotational) components. This inverse pro-
blem is also called the Helmholtz Decomposition. The inverse
problem states that any smooth vector field ~! : IR3 ! IR3

can be expressed as a sum of the gradient of a scalar
potential and the curl of a vector potential:

~! ¼ rDþr% ~R; ð2Þ

where the scalar potential D and the vector potential ~R are
calculated from " and ~!, respectively, as:

DðxÞ ¼ ( 1

4#

Z
"ðx0Þ
jx( x0j

dx0

~RðxÞ ¼ 1

4#

Z
~!ðx0Þ
jx( x0j dx

0:

ð3Þ

By definition,rD is curl-free ðr%rD ¼ 0Þ andr% ~R is
divergence-free ðr $r% ~R ¼ 0Þ.
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In 1905, Blumenthal [12] proved the uniqueness of the
decomposition. The vanishing condition at infinity is
imposed to ensure that the integrals in (3) converge. Note
that the potentials D and ~R are unique up to a constant;
hence, the decomposition is unique. Similarly, for domains
with boundaries, the normal velocity !n is required to
ensure uniqueness.1

Since its introduction, the Helmholtz decomposition
theorem has been thoroughly discussed in general. It has
also been investigated in different domains like smooth Lr
spaces [36], convex domains [39] and antisymmetric
second-rank tensor fields [59]. Hauser [48], [49] generalized
Helmholtz’s theorem to IR4 by proving it for second-rank
tensors. A recent article by Sprössig [91] gives a brief
overview of the variants of the Helmholtz theorem under
specific or general conditions and domains.

Note that under the vanishing condition at infinity, the
translation (harmonic component) is zero. However, in the
case of a bounded domain, a nonzero harmonic (irrota-
tional and incompressible) component may be present.
Such a decomposition is called the Hodge decomposition.
For domains with boundary, the harmonic component is
zero if the flow on the boundary is zero, and for simply
connected domains, this harmonic component can be
represented by either rD or r% ~R. Hence, the normal
velocity !n is required to ensure that the translation is
represented entirely by the irrotational component leading
to a unique decomposition.1

3.2 The Hodge Decomposition Theorem

Similar to the Helmholtz decomposition for vector fields, a
decomposition called the Hodge decomposition, named
after W. V. D. Hodge, exists for differential forms. The
theory of differential forms is intended to perform multi-
variable calculus with a more generalized viewpoint, i.e.,
independent of the coordinates. Using the calculus defined
on the differential forms, it is possible to generalize the
vector analysis from real domains (IRn) to differentiable
manifolds. The Hodge decomposition decomposes a differ-
ential k-form defined on a Riemannian manifold into three
mutually L2-orthogonal components.

We briefly discuss the theorem as described by Abraham
et al. [1]. For details on Hodge de Rham theory, harmonic
fields and Hodge decomposition the reader may refer to
[53], [61], [89]. In the following theorem, !kðMÞ is the space
of smooth, weakly differentiable k-forms on the manifold
M, ~d is the exterior derivative on k-forms, ~$ is the
codifferential operator, and H denotes the vector space of
harmonic k-forms, such that

HkðMÞ ¼ f% 2 !kðMÞ j ~d% ¼ 0; ~$% ¼ 0g:

Theorem 3.2 (Hodge Decomposition). Let M be a compact,
boundaryless, oriented, Riemannian manifold. Then, the space
of differential k-forms on M, !ðMÞ can be decomposed as a
direct sum of the exterior derivative of a k( 1 form, the
codifferential of a kþ 1 form, and a harmonic k-form. The
three components are mutually L2-orthogonal, and thus are
uniquely determined

!k ¼ ~d!k(1 ) ~$!kþ1 ) Hk:

In other words, if ! 2 !kðMÞ, then ! can be decomposed as

! ¼ ~d%þ~$& þ ';

such that % 2 !k(1ðMÞ, & 2 !kþ1ðMÞ, ' 2 HkðMÞ. Further-
more, ~d%, ~$&, and ' are mutually L2-orthogonal, and thus are
uniquely determined.

On the other hand, if M is a compact, oriented,
Riemannian manifold with boundary @M, then the decom-
position takes the form

!k ¼ ~d!k(1
t ) ~$!kþ1

n ) Hk;

where

!k(1
t ðMÞ ¼ f% 2 !k(1ðMÞ j % is parallel to @Mg

!kþ1
n ðMÞ ¼ f% 2 !kþ1ðMÞ j % is normal to @Mg:

Here, parallel and normal are defined with respect to the metric
defined on the Riemannian manifold [1].

The Hodge decomposition is closely related to the
Helmholtz decomposition, although, the former is not a
direct generalization of the latter. A study of differential
forms as a basis for vector analysis was provided by Schleifer
[88], who commented that the Hodge decomposition is the
differential form analog of the Helmholtz decomposition in
vector analysis. Cantarella et al. [18] provide an insightful
discussion on the topology of mutually orthogonal vector
spaces in three dimensions, and Schwarz [89] provides an
extensive discussion on the generalized Hodge decomposi-
tion for nonsimply connected domains.

3.3 The Helmholtz-Hodge Decomposition (HHD)

In this section, we will discuss the HHD of vector fields.
While to the best of our knowledge, there is no known origin
of the Helmholtz-Hodge Decomposition Theorem, or a formal
merging of the names Helmholtz and Hodge, Denaro [27]
attributes it to Ladyzhenksaya [62]. For the remainder of this
paper, we restrict our attention to the simply connected
domains with boundary.

3.3.1 HHD—Two Component Form

Most of the modern day research refers to the HHD as
presented by Chorin and Marsden [22] which is:

Let ~! be a sufficiently smooth vector field on a bounded domain
!, with a smooth boundary @!. Then, ~! can be uniquely
decomposed in the form

~! ¼ rDþ~r;

where D is a scalar potential function, the vector field ~r has zero
divergence and is tangential to the boundary along @!.

Chorin and Marsden [22] state the boundary condition
~r $ ~n ¼ 0 for the decomposition, and prove the existence,
orthogonality, and uniqueness of the decomposition under
this condition. Denaro [27] proves the existence, ortho-
gonality, and uniqueness for an additional boundary
condition, which states that the irrotational component is
normal to the boundary (~n% ~d ¼ 0). His version of the
HHD states that:
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A vector field ~! is uniquely determined when its divergence
ðr $~!Þ and curl ðr%~!Þ are assigned, along with the normal
ð!n ¼ ~n $~!Þ or tangential ð~!t ¼ ~n%~!Þ component on the
boundary

~! ¼ rDþr% ~R

¼ ~dþ~r;

with

r $ ~d ¼ r $~! ¼ "D ð4aÞ

r%~r ¼ r%~! ¼ r% ðr% ~RÞ; ð4bÞ

and either of the following boundary condition being satisfied:

~n $~r ¼ 0, ~n $rD ¼ !n ð5aÞ

~n% ~d ¼ 0, ~n% ðr% ~RÞ ¼ ~!t; ð5bÞ

where ~n is the outward normal to the boundary. Here, ~d is
irrotational (r% ~d ¼ 0), and ~r is incompressible (r $~r ¼ 0).

We present short proofs of the decomposition’s exis-
tence, orthogonality, and uniqueness for both these bound-
ary conditions (as given in [27]).

Existence. When the boundary condition 5a is specified, (4a)
is solved to compute ~d. The following Poisson equation is
obtained with Neumann boundary conditions:

"D ¼ r $ ~! on !

rD $ ~n ¼ !n on @!:
ð6Þ

We know that a Poisson equation with Neumann
boundary conditions

"( ¼ f on !

@(

@~n
¼ g on @!

has a solution unique up to an additive constant if and only
if the following compatibility condition is satisfied [24]:

Z

!
f dV ¼

Z

@!
g dA:

The additive constant can be removed by requiring that
(ðx0Þ ¼ 0, x0 2 !. Note that, the divergence theorem [41]

Z

!
r $~! dV ¼

Z

@!

~! $ ~n dA

ensures that the compatibility condition for the Poisson (6)
is satisfied, hence, it has a solution D, which is unique up to
a constant leading to the existence of a unique ~dð¼ rDÞ and
thus a unique ~r ¼ ~! ( ~d.

Alternatively, if the boundary condition 5b is used, (4b) can
be solved to compute ~r. Since r% ðr% ~RÞ ¼ ( ~r2~R, where
~r2 is the vector Laplacian operator,2 (4b) can be simplified

into a vector Poisson equation with Neumann boundary
condition as follows:

~r2~R ¼ (r%~! on !

~n% ðr% ~RÞ ¼ ~!t on @!:
ð7Þ

Once again, it can be shown that the Green’s theorem
[41] satisfies the compatibility condition for (7). Thus, it
admits a solution ~R which is unique up to a constant
leading to the existence of a unique ~r ¼ r% ~R and, thus, a
unique ~d ¼ ~! (~r.

Orthogonality. The orthogonality with respect to the L2

inner product ð f; gh i ¼
R
f $ gÞ is established by showing that

Z

!

~d $~r dV ¼ 0:

Corresponding to the boundary conditions (5a) and (5b),
respectively, it is shown that: 1) the space of gradient vector
fields is orthogonal to the space of divergence-free vector
fields that are parallel to the boundary, and 2) the space of
divergence-free vector fields is orthogonal to the space of
gradient vector fields that are normal to the boundary.

In the case of boundary condition (5a) (~n $~r ¼ 0),
Z

!

~d $~r dV ¼
Z

!
rD $~r dV : ð8Þ

By the chain rule,

r $ ðD~rÞ ¼ rD $~rþDðr $~rÞ
) r $ ðD~rÞ ¼ rD $~r ðas r $~r ¼ 0Þ:

ð9Þ

Substituting in (8),
Z

!

~d $~r dV ¼
Z

!
r $ ðD~rÞ dV : ð10Þ

Using the divergence theorem [41] on the RHS
Z

!

~d $~r dV ¼
Z

@!
D~r $ ~n dA ¼ 0: ð11Þ

In the case of boundary condition (5b) (~n% ~d ¼ 0),
Z

!

~d $~r dV ¼
Z

!

~d $ ðr% ~RÞ dV

¼
Z

!
r $ ð~R% ~dÞ dV :

Using the divergence theorem [41], and then the vector
identity ~A $ ð~B% ~CÞ ¼ ð~A% ~BÞ $ ~C

Z

!
r $ ð~R% ~dÞ dV ¼

Z

@!
ð~R% ~dÞ $ ~n dA

¼
Z

@!

~R $ ð~d% ~nÞ dA ¼ 0:
ð12Þ

Thus, for the decomposition to be L2-orthogonal, the
boundary conditions (5a) and (5b) are both sufficient, but
not necessary. The orthogonality may be established with
other types of boundary conditions as well. This will be
discussed in more detail in Section 5.

Uniqueness. As already discussed, the boundary condi-
tions imposed on the decomposition determine the unique-
ness. It is important to note that the two boundary
conditions (5a) and (5b) may give different unique decom-
positions, as the harmonic component is represented
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differently. Here, we show the uniqueness of the decom-
position corresponding to these boundary conditions.

Assume that two different orthogonal decompositions of
a vector field (with respect to boundary condition (5a)) exist,
such that

~! ¼ rD1 þ~r1 ¼ rD2 þ~r2

, 0 ¼~r1 (~r2 þrðD1 (D2Þ:
ð13Þ

Taking the inner product of (13) with ~r1 ( ~r2 gives

0 ¼
Z

!

!
k~r1 (~r2k2 þ

!
~r1 (~r2

"
$rðD1 (D2Þ

"
dV :

The second term in the integral is zero as shown below
Z

!

!
~r1 (~r2

"
$r
!
D1 (D2

"
dV

¼
Z

!

!
~r1 $rD1 þ~r2 $rD2 (~r1 $rD2 (~r2 $rD1

"
dV

¼ 0(
Z

!

!
~r1 $rD2 þ~r2 $rD1

"
dV ðby orthogon:Þ

¼ 0(
Z

@!

!
D2~r1 $ ~nþD1~r2 $ ~n

"
dA ðby ð11ÞÞ

¼ 0 ðby boundary condition ð5aÞÞ:

Thus, the above equality is satisfied only if
R

! k~r1 (
~r2k2 dV ¼ 0)~r1 ¼~r2, which implies rD1 ¼ rD2 which
violates the assumption. Thus, the decomposition given
by the boundary condition (5a) is unique.

Similarly, by taking the inner product of (13) with
rðD1 (D2Þ, it can be shown that the decomposition given
by the boundary condition (5b) is unique.

Intuitively, if the physical system guiding the decom-
position specifies the normal component !n, a unique and
orthogonal decomposition can be computed using (6). In
this case, any harmonic component in the field is
represented within ~d. Analogously, if the tangential
component ~!t is specified, (7) can be used to obtain a
unique and orthogonal decomposition, where the harmonic
component is represented within ~r.

However, if the system can specify both !n and ~!t, the
harmonic component can be extracted out of both ~d and ~r,
and represented independently, giving rise to the three
component form of the HHD.

3.3.2 HHD—Three Component Form

As discussed in Section 3.1, the harmonic field is zero in
case of an infinite space. However, for domains with
boundary, it can be induced by a nonzero flow on the
boundary (~! 6¼ 0 on @!). If the value of ~!ð¼ !n $ ~nþ~!tÞ is
known at the boundary, one can formulate the three
component form of the decomposition as follows [97]:

Theorem 3.3 (Helmholtz-Hodge Decomposition). A smooth
vector field ~!, defined on a bounded or an unbounded domain,
can be uniquely decomposed into three components: 1) an
irrotational component ~d, which is normal to the boundary; 2)
an incompressible component ~r, which is parallel to the
boundary; and 3) a harmonic component ~h.

The components ~d and ~r can be calculated as the gradient
of a scalar potential (D) and the curl of a vector potential
(~R), respectively,

~! ¼ rDþr% ~Rþ ~h

¼ ~dþ~rþ ~h:
ð14Þ

In IR2 (or a 2-manifold embedded in IR3), curl is a scalar
quantity in the upward normal direction. Hence, instead of
needing a vector potential ~R, the incompressible component
can be represented using the curl of a scalar potential R to
simplify the decomposition as

~! ¼ rDþ JrRþ ~h

¼ ~dþ~rþ ~h;
ð15Þ

and the Poisson equations (4) become

" D ¼ r $~!

" R ¼ (r $ J~!;
ð16Þ

where R is a scalar potential, and the operator J rotates a
2D vector counterclockwise by #=2. Equations (15) and (16)
can be derived using the properties of J . By definition, if
~v ¼ ðv1; v2Þ, then J~v ¼ ð(v2; v1Þ. Now,

r%~v ¼ (r $ J~v:

This can be derived simply as:

r $~v ¼ @v1

@x
þ @v2

@y

r%~v ¼ @v2

@x
( @v1

@y
¼ r $ ðv2;(v1Þ

¼ r $ ð(Jðv1; v2ÞÞ
¼ (r $ J~v:

Now, consider a scalar field S. Then, JrS is an incom-
pressible vector field, because r $ JrS ¼ (r%rS ¼ 0.
Thus, instead of defining ~r ¼ r% ~R, the incompressible
component can be defined as ~r ¼ JrR, where R is a scalar
potential and avoid using the vector potential. The curl-curl
equation (4b) can be simplified as follows

r%~r ¼ r%~!

(r $ Jð~rÞ ¼ (r $ J~!

(r $ JðJrRÞ ¼ (r $ J~!

r2R ¼ (r $ J~!:

For both (14) and (15), r% ~d ¼ 0, r $~r ¼ 0, and r $ ~h ¼
0 and r% ~h ¼~0. Under the application of both the
boundary conditions ~r $ ~n ¼ 0 and ~d% ~n ¼ 0, the proofs
of existence, orthogonality, and uniqueness given in
Section 3.3.1 hold.

4 APPLICATIONS

A wide spectrum of applications in various communities
have used the HHD and this section discusses a represen-
tative set.
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4.1 Projection Methods in Solving NSE for
Incompressible Fluids

The Projection methods, introduced by Chorin [19], [20],
[21], are widely used by researchers to solve the NSE for
incompressible fluids. Due to its applicability in the
projection methods, the HHD is one of the most important
theorems in fluid dynamics.

The incompressible NSE describes the motion of fluids
and are used in countless applications in science and
engineering. The incompressible NSE is given as

@t~uþ ð~u $rÞ~uþ
1

)
rp ¼ *

)
"~uþ ~F ð17aÞ

r $~u ¼ 0; ð17bÞ

where ~u is the velocity field of an incompressible fluid, p
represents the hydrodynamic pressure, * is the kinematic
viscosity, ) is the fluid density, and ~F represents any
external forces. Using (17), the projection methods model
the fluid motion by taking small steps in time. For each time
step, the velocity from the previous time step is used to
update the velocity.

As discussed in Section 3.3.2, the space of gradient vector
fields (rq) is orthogonal to space of divergence-free vector
fields (r $~u ¼ 0) under appropriate boundary conditions.
For each time step, the projection methods compute the new
velocity in two substeps. In the first substep, only the
momentum equation (17a) is used to compute an inter-
mediate velocity ~u*i (green) from the divergence-free
velocity, ~ui(1 (red) and pressure, pi(1 of the previous time
step. This substep ignores the incompressibility constraint
(17b). In the second substep, the intermediate velocity is
projected on to the space of divergence-free vector fields
using the HHD to get the get the divergence-free velocity, ~ui
(blue). The projection step can be written as ~u ¼ Pð~u*Þ,
where the projection P is the HHD

~! ¼~rþrD + ~r ¼ Pð~!Þ:

The key advantage of using the HHD in this context is the
decoupling of pressure and velocity fields. If the computa-
tion preserves orthogonality of the decomposition, any
error in one of the terms is not reflected in the other. This
procedure is more efficient than solving a coupled system of
NSEs for velocity and pressure.

An immense amount of literature is available in
computational physics, which deals with different techni-
ques to enforce incompressibility in projection methods.
Bell et al. [9], [10] and Stephens et al. [96] propose solutions
of NSE with second order accuracy. Popinet [85] uses a
solver using an octree data structure leading to an

asymmetric linear system, which can be efficiently solved
using multigrid methods. Min et al. [71], [72] introduce a
second order accurate method to compute projection on
nongraded adaptive grids. A more descriptive discussion
and analysis on projection methods and their applications
can be found in [15], [45], [62].

4.2 Vector Fields in Animation

Researchers in computer graphics and animation are
interested in modeling and rendering fluids such as water,
smoke, fire, and so on. Unlike most other areas in which
most applications are primarily concerned with accuracy,
graphics applications are typically more interested in real
time and visually compelling animations. Such applications
may choose to trade accuracy for speed.

As before, to ensure incompressibility in the fluid, a
projection step using the HHD is involved as a part of the
algorithm. The Eulerian formulation of the fluid simulation
allows for a straightforward application of the HHD in the
projection step. However, the Lagrangian formulation
represents the fluid motion using the material derivative,
which induces a divergence that needs to be taken into
account. An excellent survey on the methods for fluid
simulation is given in the book by Bridson [14].

Foster and Metaxas [34] use the Successive Over
Relaxation (SOR) scheme to maintain mass-conservation
property. This was the first of its kind method that solved
the full 3D NSE to animate fluids. Stam [92] improves it by
introducing the semi-Lagrangian method for the convection
term. Fedkiw et al. [32] also use a semi-Lagrangian
approach for vorticity confinement to simulate smoke with
visually rich small scale rolling motion. The proposed
solver removes the problems of numerical dissipation in
[92]. They use a staggered grid where the fluid samples are
defined on the faces of the voxels (instead of centers of the
voxels as in [92]). Stam [93], Foster and Metaxas [35],
Nguyen et al. [77] have been able to achieve visually
compelling and near-accurate simulations and animations
of fluids. Losasso et al. [64] simulate water and smoke on an
octree. Maintaining the flow divergence free is the key
component of the entire process, which makes the applica-
tion of the HHD indispensable. A survey on the methods
used for physically realistic fluid animations is given in [55],
while the readers interested in photo realistic fluid render-
ing may refer to [82].

4.3 Vector Field Design and Analysis

Polthier and Preuß [83], [84] propose to identify the
singularities in a vector field as the critical points of the
potential functions of its HHD. Their global variational
approach provides continuous and piecewise linear (PL)
scalar potentials, which help identifying the features in the
individual components (~d and~r), respectively, which might
otherwise not be visible due to overwhelming other compo-
nents. This work is limited to 2D flow fields only, because 3D
HHD gives a vector component and a scalar component.

Tong et al. [97] extend this technique for 3D feature
identification by defining the scalar and vector potential
functions on vertices of the given triangulation, while all the
vector fields are defined at the center of the cells. Wiebel
[101] applies this method for vortex detection by extracting
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the ridge and valley lines of the magnitude field of the
vector potential ~R. Applications in computer vision and
robotics employ critical point detection in various forms.

As motivated by Tong et al. [97], for complex flow fields,
obtaining a multiscale representation which can highlight
or obfuscate features at a user-desired scale can enhance the
visualization. It is useful to be able to observe a general
trend in the field, and then be able to refine the resolution to
visualize smaller details. Once the HHD of the field has
been calculated, the two potentials can be smoothed out and
recombined to give a HHD-consistent smoother version of
the vector field. As pointed out by Tong, the vector fields
given by the smoothed potentials will maintain their
incompressible and irrotational properties.

Wang et al. [99] followed by Fisher et al. [33] use the
HHD for design of tangent vector field by placing sources
and sinks at the vertices (0-forms) to define ~d, and vortices
at the faces (2-forms) to define ~r. Then, the tangent vector
field ~! is defined on edges (1-forms) by combining them
using the HHD.

4.4 Computer Vision and Robotics

Recently, the field of computer vision and robotics has
started exploiting the HHD. Guo et al. [43] did the seminal
work in this field by decomposing the motion fields defined
on regular grids using the discrete HHD proposed by
Polthier and Preuß [83], [84]. They extend their work to
cardiac video analysis by using a sequence of images to
represent the motion [44]. Palit et al. [80] have used HHD
for hurricane eye detection and fingerprints matching, and
Gao et al. [38] to detect the singularities (core and delta
points) in fingerprint images. Mochizuki and Imiya [73]
developed algorithms to detect free space and directions to
guide robot navigation, and Hatton and Choset [47] use the
HHD to determine an optimum choice of coordinates for
locomotive systems.

4.5 Others

The HHD has been widely used in context of a variety of
other applications. In the imaging community, Hinkle et al.
[52] have proposed a robust image reconstruction method
to track organ motion, which applies the projection in the
Fourier domain.

In the field of acoustic tomography, Johnson et al. [56]
use the HHD to study velocity vector fields in blood vessels
from acoustic time-offlight measurements. Norton [78], [79]
derive a reconstruction method for the vector fields using
the HHD in Fourier domain. These methods only deal with
the incompressible component of the field. Later, Braun and
Hauck [13] have shown how to compute the irrotational
component, thus completing the decomposition of flow in
2D, and Prince [86] extends this work to 3D.

Georgobiani et al. [40], [67], [95] used the HHD to
decompose the flow fields obtained from the simulations of
solar convection to separate turbulence from acoustics,
while Scharstein [87] uses the HHD to decompose the
surface electric current in electromagnetic scattering pro-
blems. Miller [70] also discusses the HHD in context of
classical electromagnetism. The HHD has also been used in
Seismology [3], [4] for geomagnetic field modeling to
approximate the solution to Maxwell’s equations.

5 BOUNDARY CONDITIONS FOR THE HHD

The boundary conditions are one of the most important
aspects of the decomposition. In particular, the consistency
of the boundary conditions influences the orthogonality
and uniqueness of the decomposition. Various researchers
have experimented with the boundary conditions under
general or specific settings. This section focuses on the
impact of boundary conditions, and discusses a few of them
found in literature.

5.1 Boundary Conditions and Orthogonality

From Section 3.3.1, we know that an L2-orthogonal (and
hence, unique) decomposition can be obtained by applying
either (two-component form) or both (three-component
form) of the following boundary conditions:

. ~d% ~n ¼ 0, i.e., the irrotational component is normal
to the boundary.

. ~r $ ~n ¼ 0, i.e., the incompressible component is
parallel to the boundary,

where ~n is the outward normal to the boundary. For
shorthand, these boundary conditions will be referred to as
the N-P (normal-parallel) boundary conditions.

However, these conditions are only sufficient but not
necessary for orthogonality. Any boundary condition that
satisfies that either of the expressions (11) or (12) is zero
ensures orthogonality. For example, suitable periodic bound-
ary conditions can be applied to enforce orthogonality.

For certain specific settings, the boundary conditions
can be simplified while maintaining orthogonality. For
example, considering no-flow ð!n ¼ 0 on @!Þ or no-slip
ð~! ¼ 0 on @!Þ boundary conditions imposed on the fluid,
the boundary condition (5a) translates into rD $ ~n ¼ 0 ¼
@D
@~n , which still guarantees the orthogonality of the decom-
position. Similarly, for no-slip boundary, ~r% ~n ¼ 0 main-
tains orthogonality.

Orthogonality of vector spaces is an important property
which has interested mathematicians for a long time. In
1940, Weyl [100] and in 1960, Bykhovskiy and Smirnov [16]
studied orthogonality of L2 vector spaces. Around the same
time, the projection methods were developed by Chorin
[19], [20] that exploited the orthogonality of the HHD for
fluid modeling. Since then, they have been an integral part
of fluid modeling.

If orthogonality is not required, the decomposition can
take various forms depending upon the boundary condi-
tions. More general, HHD-like nonorthogonal decomposi-
tions, ~! ¼ rDþr% ~R, and their existence and uniqueness
properties under different boundary conditions on D or ~R
have been studied, e.g., [5], [8].

However, Weinan and Liu [31] comment that the choice of
boundary conditions of projection methods is controversial
and raised the question “whether orthogonality is really
important?” They consider the effect of numerical application
of boundary conditions on the boundary layer structure.
Denaro [27] followed up with a numerical validation and
comparison of orthogonal and nonorthogonal decomposi-
tions and concluded that “orthogonality of the decomposition
should be always maintained for all the flow problems of practical
interest.”
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5.2 Harmonic Field and the Topology of the Domain

So far, we have concentrated on simply connected domains
with boundary, and showed that a harmonic component
is obtained by applying varying boundary conditions.
Section 3.1 argues that this harmonic component can be
represented as gradient of a scalar function, or the curl of a
vector function.

However, for more general (nonsimply connected)
domains, this harmonic component ~h in the HHD can be
further split by applying boundary conditions:

~h ¼ rHs þ ~h1

!
~h1 $ ~n ¼ 0 at @!

"
ð18aÞ

~h ¼ r% ~Hv þ ~h2

!
~h2 % ~n ¼ 0 at @!

"
: ð18bÞ

Such a decomposition is often referred to as the Hodge-
Morrey-Friedrichs Decomposition (HMFD). Note that the
HMFD is a general form of the HHD, and is always valid.
However, for simply connected domains, ~h1 ¼ ~h2 ¼ 0, and
hence it reduces to HHD. For more details on general forms
of HHD, the reader may refer to Schwarz [89].

5.3 HHD Boundary Conditions in Projection
Methods

When computing projection methods for fluid modeling
using NSE, scientists are interested in experimenting with
new models of flow, in terms of spatial and/or temporal
discretization, and boundary conditions. There exists rich
literature in the communities of fluid modeling, computa-
tional physics, and numerical methods that investigates the
accuracy and convergence of such models. While their
prime objective is to provide better approximations to the
solution of NSE, the HHD forms a smaller, yet, an integral
part of the entire process. The discretization methods and
the boundary conditions of the system as a whole have a
strong influence on their choice of boundary conditions in
the projection step.

For example, consider the modeling of a fluid (water,
smoke, and so on) bounded by air. Air, being lighter than the
modeled fluids, is assumed to have only a small effect on the
fluid. Since the entire atmosphere cannot be modeled, only an
interesting region of the space is modeled, and the fluid is free
to enter or exit the domain. This kind of boundary is called the
free boundary, and is modeled by setting the pressure to zero
at the boundary. Note that, p ¼ 0 leads torp being normal to
the boundary, and the orthogonality is respected.

There exist two approaches to compute the projection:
1) the gradient component ðrDÞ can be computed, and then
the divergence-free component is given as ~r ¼ ~! (rD, as
done by Chorin [19], [20], [21] and van Kan [98]; and 2) the
divergence-free component can be directly solved for, as
done by Bell, Stephens and others [9], [10], [96]. Depending
upon the type of discretization chosen for either of these
approaches, one may make a choice for boundary condi-
tions that improve accuracy. For example, the MAC grid
[46] used in finite volume methods, where the pressure is
stored at the cells centers and the velocity components are
stored at their respective cells faces, is common, because it
offers a straightforward mechanism to enforce the incom-
pressibility discretely. However, other arrangements have
been shown to produce higher order accurate schemes for

the velocity field, without enforcing the incompressibility
condition at the discrete level (e.g., [15], [31]).

To maintain the focus of this survey, we do not delve into
the numerous technical details of the choice of boundary
conditions in projection methods, because they do not
pertain to our discussion on the HHD. Irrespective of the
choice of boundary conditions for the projection step,
however, the orthogonality of the decomposition is always
desirable.

5.4 HHD Boundary Conditions in Flow Analysis and
Visualization

In topological analysis and flow visualization, orthogonality
might be desirable for obtaining a unique decomposition.
Since there are no boundary conditions superimposed by
the fluid model, the treatment of the issue is less involving.
Polthier and Preuß [83], [84] as well as Tong et al. [97]
enforce the N-P boundary conditions for the extraction of all
the three components of the HHD.

Guo et al. [42], [43] and others extending these ideas (see
Fig. 1), however, do not specify any boundary conditions.
According to [42], [43], setting the potentials zero at only
one vertex is sufficient to compute the decomposition
uniquely, although, they do not make any claims about the
orthogonality of the decomposition. For better accuracy in
results, they propose to further decompose the harmonic
component recursively. The need for a recursive solution
remains unclear, because with consistent boundary condi-
tions there should exist a unique solution up to numerical
precision, which can be computed directly as in the
methods of Polthier and Tong. In Guo’s case, this seems
to be due to the lack of proper boundary conditions,
because as discussed in Section 3, the correct boundary
conditions must be specified to obtain a unique decom-
position. The technical details of Guo’s work will be
discussed in Section 6.1.3.

Wiebel [101] also implements and uses Polthier’s algo-
rithm for the 2D discrete HHD. He provides an example of
an incompressible vector field rotating counterclockwise
with the center of the rotation lying on the boundary. Fig. 2
shows his example along with the corresponding potential
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Fig. 2. Example given by Wiebel [101] to show drawbacks of the HHD.
Top: The original vector field (left) and potential function (right). Bottom:
The recovered vector field (left) and potential function (right) after HHD.
After recombination the rotation is inverted and an additional critical
point is introduced.



function of the rotational component having a maximum at
the boundary. As shown in the figure, decomposing this
field results in an entirely different vector field in which the
rotation is clockwise for most of the domain. Examining the
corresponding potential function shows that a new mini-
mum is introduced near the boundary, while the magnitude
of the original maximum is reduced. Wiebel notes this as a
drawback of the decomposition.

This can, however, be explained in terms of the
boundary conditions. Suppose the original vector field is
purely irrotational, and the flow on the boundary is
distributed arbitrarily (not necessarily normal everywhere
on the boundary). One such example is the vector field
defined by a nodal source at the origin of a square domain,
as shown in Fig. 3. If the HHD is computed for this vector
field, the incompressible component will be zero. However,
in light of boundary conditions ~d ? ~n ¼ 0, it can be easily
observed that at the boundary, a disagreement occurs
between the original vector field and the boundary
conditions. The manifestations of such disagreements are
stronger when the critical point lies closer to the boundary.
Thus, these artifacts are the by-product of the boundary
conditions, and are admitted in the solution to obtain a
unique and orthogonal decomposition.

In a recent paper, Petronetto et al. [81] compute the 2D
HHD with a different set of boundary conditions, which are
opposite to the N-P boundary conditions. According to
them, these boundary conditions are the usual boundary
conditions for the decomposition. For shorthand, these
boundary conditions will be referred to as the P-N

(parallel—normal) boundary conditions. According to the
P-N boundary conditions,

. ~d $ ~n ¼ 0, i.e., the irrotational component is parallel to
the boundary.

. ~r% ~n ¼ 0, i.e., the incompressible component is
normal to the boundary.

Petronetto draws inspiration from Colin et al. [23] who
compute the divergence-free flow from a given flow using
the projection. Without citing any literature, Colin uses the
Neumann boundary conditions @D

@~n ¼ 0 for boundaries,
which are neither no flow, nor no slip. As it has already
been discussed, @D

@~n ¼ 0 satisfies orthogonality only when
no-slip or no-flow boundary is in place, i.e., !n ¼ 0. As we
show in [11], the P-N boundary conditions are, in general,
invalid, and cannot be used to compute the HHD of a
general vector field. Thus, there is a discrepancy in the
understanding of the boundary conditions of HHD, which
needs to be illuminated.

6 TECHNIQUES FOR HHD COMPUTATION

This section will briefly introduce the most common
methods to compute the discrete HHD developed in various
communities. The aim is to provide the reader with a general
overview of potential techniques and references to the
relevant papers.

The majority of techniques using the HHD do so
incidentally as part of a projection method for fluid
modeling. Here, we briefly discuss the different approaches
of computing the projection and provide a more detailed
discussion on techniques designed specifically to compute
the HHD. The primary focus will be the discretization of the
necessary differential operators and the different boundary
conditions but where available the numerical performance
is discussed as well. Table 2 summarizes these techniques to
allow an easy comparison.

6.1 Least Squares Finite Elements Method
(LS-FEM)

Many of the recent techniques to compute the discrete HHD
employ a variational approach where certain energy
functionals, created using finite element approach, are
minimized to compute the irrotational and incompressible
components. These techniques work for piecewise constant
(PC) vector fields (defined on the triangles of the mesh),
resulting in PL potential functions (defined on the vertices
of the mesh) after the decomposition.
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TABLE 2
A Comparative Summary of Techniques for HHD Computation

For each category, the required domain and the applicable boundary conditions are given. Coherence measures the amount of divergence and curl
in the obtained components, and L2 ortho. measures the error in orthogonality of the obtained components. (y: The numbers are taken from our
implementation of [84]. The original publication does not provide a numerical analysis. *: "t is the time discretization step size.)

Fig. 3. An example to show artifacts of N-P boundary conditions. (a) The
original vector field ð~V ðx; yÞ ¼ ðx; yÞÞ. (b) The irrotational component (~d)
recovered after HHD. Artifacts are seen near the boundary because the
N-P boundary conditions enforce the flow to be normal to the boundary.
The incompressible component ~r is zero for this example, while the
harmonic component ~h also shows similar artifacts due to residual.



6.1.1 HHD for 2D Triangular Meshes Using LS-FEM
Polthier and Preuß [84] provide definitions for the discrete
divergence and discrete rotation on a 2-manifold similar to
weak derivatives in the finite element methods, and use
them to propose a simple implementation of the discrete
HHD. The 2D HHD (15) is computed by solving the Poisson
equation (16) using a variational approach, where energy
functionals are minimized for the irrotational and incom-
pressible components. Finally, the harmonic component is
computed as the residual and thus is less accurate, because
the error caused due to the approximation or the boundary
conditions are reflected in the residual.

The discrete divergence and discrete rotation for a PC
vector field are defined as PL scalar functions. McCormick
[68] discusses in detail the finite-element approach using
primal potential and dual vector fields. In the following, let
SSðpÞ denote the star of the vertex p:

1. Discrete Divergence (r $~!): For a vertex p, the discrete
divergence can be defined as the net flow normal to
the boundary of SSðpÞ. It can be calculated as the
integrated dot product of the vector with the outward
normal for every triangle in SSðpÞ. The outward
normal can also be calculated by rotating the normal-
ized edge vector ~c (of the triangles in SSðpÞ), which
does not have p as one of its vertices

r $~!ðpÞ ¼
Xk

i¼1

#
~!ir(pi

$
¼ ( 1

2

Xk

i¼1

#
~!iJ~cpi

$

where k is the number of triangles in SSðpÞ, r(p is the
Lagrange basis function corresponding to vertex p,
and J rotates a vector counterclockwise by #=2
degrees.

2. Discrete Rotation (r%~!): For a vertex p, the discrete
rotation can be defined as the net flow tangential to
the boundary of SSðpÞ. It can be calculated as the
integrated dot product of the vector with the rotated
outward normal for every triangle in SSðpÞ. The
rotated outward normal is same as the normalized
edge vector ~c in SSðpÞ

r%~!ðpÞ ¼ (
Xk

i¼1

#
J~!i;r(pi

$
¼ 1

2

Xk

i¼1

#
~!i~cpi

$
:

The two energy functionals are given by

F Dð Þ ¼
Z !

~! (rD
"2

¼
Z !
jrDj2 ( 2

#
rD;~!

$"
þ
Z
j~!j2

G Rð Þ ¼
Z !

~! ( JrR
"2

¼
Z !
jJrRj2 ( 2

#
JrR~!

$"
þ
Z
j~!j2:

To achieve these minimizations, the derivatives of both the
functionals should vanish at every vertex. Explicit repre-
sentations of the derivatives at p are given by

d

dDp
F Dð Þ ¼ (

Xk

i¼1

rDi (~!i
% &

; J~cpi

D E
¼ 0

d

dRp
G Rð Þ ¼

Xk

i¼1

rRi þ J~!i
% &

; J~cpi

D E
¼ 0:

ð19Þ

Once the irrotational and incompressible components have
been computed, the harmonic component is found as the
residual, i.e., ~h ¼ ~! (rD( J rR.

The N-P boundary conditions are used to get the unique
decomposition. Fig. 4 shows the results of HHD as
presented in [84]. Note that no numerical analysis of the
technique is given in [84], and Table 2 shows the analysis of
our implementation of this technique.

6.1.2 HHD for 3D Tetrahedral Meshes Using LS-FEM

Tong et al. [97] extend Polthier’s method [84] to 3D by
defining the discrete divergence, discrete curl, and mini-
mizing the energy functionals for PC vector fields on a
tetrahedral mesh. Like the previous method, the potentials
D and ~R are defined per-vertex (PL), but here in 3D, the
incompressible component needs a vector potential ~R. After
defining the decomposition for 3D fields, Tong et al. define
a multiscale model to compute the decomposition. The
discrete operators used are:

1. Discrete Divergence (r $~!): For a vertex p, the discrete
divergence can be defined as

r $~!ðpÞ ¼
Xk

i¼1

#
r(pi ; ~!ijTij

$

where k is the number of tetrahedra in SSðpÞ, jTij is
the volume of the tetrahedron Ti, and for imple-
mentation purposes, r(pi is the normal vector to
the face fpi opposite to p in Ti, pointing toward i,
with magnitude of kr(pik ¼

areaðfikÞ
2jTkj .

2. Discrete Curl (r%~!): For a vertex p, the discrete curl
can be defined as

r%~!ðpÞ ¼
Xk

i¼1

#
ðr(pi %~!iÞjTij

$

where the symbols are same as defined above.
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Fig. 4. Results provided by Polthier and Preuß [84]. Top left to bottom
right: The irrotational component, ~d, with scalar potential D, the
incompressible component, ~r, with scalar potential R, the harmonic
component (~h), and the original vector field (~!).



Once again, the two potentials can be calculated by
minimizing the quadratic functions corresponding to the
two Poisson equations (6) and (7)

F ðDÞ ¼
Z !

~! (rD
"2

Gð~RÞ ¼
Z !

~! (r% ~R
"2
:

Explicit representations of the derived linear systems are
given as

Xk

i¼1

r(pi $ ðrDiÞjTij ¼
Xk

i¼1

r(pi $~!ijTij

Xk

i¼1

r(pi %
!
r% ~Ri

"
jTij ¼

Xk

i¼1

r(pi %~!ijTij:

Similar to [84], the harmonic component is found as a
residual. Also, the same (N-P) boundary conditions are
used. Fig. 5 shows the results of HHD as presented in [97].

6.1.3 HHD for 2D Regular Grid Data using LS-FEM

Guo et al. [43] formulate a simpler implementation of the
HHD for their applications of motion fields extracted from
image sequences. Since the image sequences are based on
regular grids, they argue the need for a simpler implemen-
tation for decomposition.

To use the setup proposed by Polthier and Preuß [84],
the vector field data on a regular grid is converted into a PC
vector field on a triangulation by converting the regular
grid into a regular triangulation, and assigning each
triangle, the average of the vector values at its vertices.
Then, the linear systems representing (19) is derived and
solved for the potentials. Working with triangulation
derived from regular grids reduces the computational
complexity because the area of every triangle is same,
hence can be computed once. Also the matrices represent-
ing the linear systems only depend on the grid size and,
thus, typically need to be created only once.

However, no boundary conditions are specified in their
solver, which may explain some of the artifacts in their
results (see Fig. 6). Guo’s MS thesis [42] explains in more
detail that if the potential functions (D and R) are set to zero
on the boundary, the rank of the matrices they create
becomes small, and their derivation breaks. Instead, they set
D1 ¼ 0 and R1 ¼ 0 and argue that this is sufficient to obtain
a unique decomposition. That is, enforcing the potentials to
be zero on just a single vertex results a unique solution.
However, they provide no discussion on whether the

resulting decomposition is orthogonal, which casts some
doubt on the uniqueness.

For better accuracy in results, they propose to further
decompose the harmonic component recursively

~! ¼ ~d1 þ~r1 þ ~h1

¼ ~d1 þ~r1 þ
!
~d2 þ~r2 þ ~h2

"

¼ ~d1 þ~r1 þ
!
~d2 þ~r2 þ

!
$ $ $ $ $ $ $ $ $ þ ~dn þ~rn þ ~hn

""

¼
!
~d1 þ ~d2 þ $ $ $ $~dn

"
þ
!
~r1 þ~r2 þ $ $ $ $~rn

"
þ ~hn

¼ ~dþ~rþ ~hn:

Unfortunately, the need for a recursive algorithm remains
unclear because if there exists a unique solution, it should
be obtained after the first solve as in previous techniques
[84], [97].

6.2 Smoothed Particle Hydrodynamics (SPH)

Smoothed Particle Hydrodynamics is a computational
method used for simulating fluid flows. Although origin-
ally designed for the simulations of astrophysical problems
[65], SPH has been successfully used in the graphics
community for fluid simulations [94]. Since it is a meshfree
approximation for particle systems based on the Lagrangian
description, it overcomes any mesh artifacts caused due to a
Eulerian approach. SPH reduces the complexity of the
simulation, by making the mass conservation equations and
convection terms dispensable. For a detailed discussion on
SPH, the reader may refer to [74].

The SPH approximation models a set of particles in space
carrying individual physical attributes. These attributes or
functions can be estimated for a particle at point ~x using a
smoothing kernel W to approximate in a local neighbor-
hood within distance h as follows:

f
!
~xi
"
¼
X

j2Ni

mj

)j
f
!
~xj
"
W
!
~xi (~xj; h

"
;
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Fig. 5. Two-dimensional results provided by Tong et al. [97]. L-R: The
original field, ~!, irrotational (~d), and incompressible (~r) components. The
divergence and rotation in critical points in ~! are shown in yellow.

Fig. 6. Results provided by Guo et al. [43]. The figure shows (a) cardiac
motion field (~!), (b) irrotational (~d), (c) incompressible (~r) and
(d) harmonic (~h) components.



where mj is the mass, ~xj is the position, )j is the density and
fj is the quantity f for the neighboring particle j, and Ni is
the set of neighboring particles with j~xi (~xjj , h. Using
SPH, the derivatives of a function f can be obtained by
using the derivatives of the smoothing kernel.

6.2.1 HHD for 2D Vector Fields using SPH

Colin et al. [23] presented an SPH solution of HHD to
achieve a divergence-free vector field in an incompressible
fluid simulation. The choice of approximations of the
differential operators made in [23] are as follows:

rfi ¼
1

)i

' (X

j2Ni

mjðfj ( fiÞrW
!
~xi (~xj; h

"

!
r $ ~f

"
i
¼ 1

)i

' (X

j2Ni

mj

!
~fj ( ~fi

"
$rW

!
~xi (~xj; h

"

"fð Þi ¼
1

)i

' (X

j2Ni

mjfðfi ( fjÞ"W
!
~xi (~xj; h

"

( 2

)i
"W

!
~xi (~xj; h

"
$r)jg:

Using these approximations, the Poisson equations (15) are
solved with Neumann boundary conditions @D

@~n ¼ ~d $ ~n ¼ 0.
Using a similar SPH approach, Petronetto et al. [81]

present results of HHD in 2D by calculating the irrotational
and harmonic components as well. Their approximation of
the differential operators is given below:

rfi ¼
X

j2Ni

mj

)j
ðfj ( fiÞrW

!
~xi (~xj; h

"

!
r $ ~fÞi ¼

X

j2Ni

mj

)j

!
~fj ( ~fi

"
rW

!
~xi (~xj; h

"

"fð Þi ¼
X

j2Ni

2
mjðfj ( fiÞ
)jk ~xijk2 ~xijrW

!
~xi (~xj; h

"
;

where ~xij ¼ ~xi ( ~xj, and W is a quartic smoothing kernel for
a given value of h. The decomposition can be found by
using the SPH approximations for Poisson equation for 2D
(16) using the SPH approximations for Laplacian defined
above. The authors provide results for both N-P and P-N
boundary conditions (Fig. 7).

6.2.2 Discussion on SPH HHD Boundary Conditions

Both [23] and [81] present results for the P-N boundary
conditions in addition to the usual N-P boundary condi-
tions. The P-N boundary conditions can be enforced by
ensuring that @D

@~n ¼ rD $ ~n ¼ 0 ¼ rR $ ~n ¼ @R
@~n.

Both [23] and [81] consider the usual boundary condi-
tions for HHD to be the P-N boundary condition; however,
no literature is cited to corroborate this statement.

In [11], we present a simple analytical example to show
that the P-N boundary conditions are not valid in general,
and can be used only if the global divergence and the global
curl of the field is zero. An earlier article on SPH projection
method [26] acknowledges that the Poisson equation must
satisfy a compatibility constraint to ensure unique solution.
In their explanation, they mention that the condition

R
!r $

~d dV ¼
R
@!
~d $ ~n dA ¼ 0 must be accompanied by a condi-

tion that the sum of the discrete source terms ð
PN

i¼1r $~!Þ
must be zero. In the absence of any constraint (likeR

!r $~! ¼ 0), these boundary conditions are invalid and
may make the convergence of the solver extremely difficult.
In our implementation of 2D HHD using the LS-FEM
method (Section 6.1.1), we have found that the energy
minimization using the P-N boundary conditions does not
converge.

6.3 Finite Difference Methods (FDM)

The FDM are commonly used to numerically approximate
differential operators for solving differential equations.
They have also been used in the projection methods for
solving Poisson equation (4) for solutions of incompressible
fluid simulations.

Foster and Metaxas [35] propose a finite difference
approximation scheme for voxel-based fluid simulations.
The scalar potentialD at every vertex (represented by indices
i; j; k) is calculated for each time step hþ 1 as follows:

Dhþ1
i;j;k ¼

2

8="+2

)
( ðr $~!Þi;j;k þ

1

"+2

*
Dh
iþ1;j;k þD

h
i(1;j;k

þDh
i;jþ1;k þD

h
i;j(1;k þD

h
i;j;kþ1 þD

h
i;j;k(1

+,
(Dh

i;j;k:

The divergence operator is defined as follows:

ðr $~!Þi;j;k ¼
1

"+

*
!xðiþ ;j;kÞ ( !xði(;j;kÞ þ !yði;jþ;kÞ ( !yði;j(;kÞ

þ !zði;j;kþÞ ( !zði;j;k(Þ
+
;

where iþ and i( represent the positions iþ 1=2 and i( 1=2,
respectively. Once again, no-flow boundary conditions are
used, i.e., ~! $ ~n ¼ 0 ¼ ~d $ ~n. As discussed in Section 6.4,
Hinkle et al. [52] also use a finite difference approach to
approximate the DFT of the divergence of the vector field.

6.3.1 Galerkin Formulation Using Finite Differences

Building upon a Galerkin formulation of projection
methods proposed by Stephens et al. [96], Bell et al. [9]
propose a second-order projection method for the
incompressible NSE for fluids defined on 2D regular grid
cells. The Galerkin formulation refers to a class of
methods for approximating the discrete counterparts of
continuous differential operators used in differential
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Fig. 7. Results provided by Petronetto et al. [81]. Decomposition using
(a) N-P, and (b) P-N boundary conditions. The vector magnitudes have
been mapped to color to enhance the visualization.



equations by defining a basis of a vector space of
functions.

The unknown velocity is defined cell centered at the
interior of the cells, and at the midpoints of cell edges for
the boundary cells. The scalars (potential and divergence)
are defined at the corners of the grid cells. Then, the
gradient operator (r) is defined as follows:

ðrDÞx;ij ¼
1

2"x

!
Diþ;jþ (Di(;jþ þDiþ;j( (Di(;j(

"

ðrDÞy;ij ¼
1

2"y

!
Diþ ;jþ (Diþ;j( þDi(;jþ (Di(;j(

"
;

where ði; jÞ are the positional coordinates of the cells in the
grid, and iþ and i( represent the positions iþ 1=2 and
i( 1=2, respectively. The divergence operator (r $ ) can be
derived from the discrete form of integration by parts,
which is

ðr $~!; DÞs ¼ (ð~!;rDÞv;

where ð; Þs and ð; Þv are the inner products defined on the
discrete scalar and vector spaces, respectively. This condi-
tion also guarantees that the projection is orthogonal. These
discrete differential operators are then used to define a basis
 such that

 iþ;jþ ¼ (JrDiþ;jþ :

Finally, the divergence-free velocity~r can be computed as a
linear combination of the basis functions, where the weights
%s are chosen such that

X
%iþ;jþ iþ;jþ ;  kþ;lþ

"
v
¼
!
~!;  kþ;lþ

% &

v
:

A number of other variants of Galerkin formulations
have been proposed for the NSE. However, the approxima-
tion for the projection steps remains largely similar with
slight modifications to the discrete differential operators.
For example, Bell and Marcus [10] extend the approxima-
tions of [9] for variable density flows. A similar Galerkin
approach was used by Solomon and Szymczak [90], and
Ingber and Kempka [54].

6.4 Fourier and Wavelets Domains

Stam [92], [93] and Hinkle et al. [52] make use of the
Fourier domain to compute the divergence-free component
of vector fields for fluid simulation and 4D image
reconstruction, respectively. To compute the Discrete
Fourier Transform (DFT) of a d-dimensional vector field,
the Fourier transform of d components of the vector field
are computed independently. If ~v is a d-dimensional vector
~v ¼ fvjgj¼0 to d, then

DFT ~vf g ð!Þ ¼ fDFTfvjgð!Þgj¼0 to d:

Computing mass conserving and gradient vector fields is
simple in Fourier domain because differentiation in the
spatial domain is equivalent to multiplication by the
wavenumber in the Fourier domain

DFT r~vf gð!Þ ¼ ~k $DFT ~vf gð!Þ:

Stam [92] introduces an unconditionally stable algorithm
for modeling real-time fluid motion, which is based on a
combination of a semi-Lagrangian Scheme [25] and implicit
solvers to solve the NSE. As compared to [35] where
stability of the model is dependent upon the step size of the
integration scheme, this method is stable even for larger
step sizes. He also suggests that it is more accurate than
[35]. The flow is defined at the center of the cells of a regular
grid, and the boundary is assumed to be fixed or periodic.
For either case, no flow is allowed to cross the boundary (no
flow), i.e., ~! $ ~n ¼ 0. As a result of these boundary condi-
tions, the harmonic component in the HHD vanishes.
Furthermore, the system focuses on real time visually
consistent simulations rather than numerically accurate
simulations. The last step of their 4-step system is the
projection or the HHD, and is calculated as a part of a Fast
Fourier Transform (FFT) of the system. The projection step
solves the Poisson equation (4a), with Neumann boundary
condition @D

@~n ¼ 0 because ~! $ ~n ¼ 0. The FFT system is solved
using the library FISHPAK.

Based on [92], Stam [93] presents another algorithm to
compute the velocity of mass-conserving fluids using FFTs.
The solver works for regular grid data, however, is
specialized for domains with periodic boundary, i.e., the
d-dimensional grid is assumed to be a torus. Once again, the
solver sacrifices accuracy for speed and stability.

A slightly different approach is used by Hinkle et al. [52],
where the DFT of the divergence of a vector field ðr $~vÞ is
computed using the discrete finite-difference derivative

DFT r $~vf gð!Þ ¼W ð!Þ $DFT ~vf gð!Þ;

where

Wð!Þ ¼ i

2

1

hx
sin

!x
Nx

1

hy
sin

!y
Ny

1

hz
sin

!z
Nz

0

BBBBB@

1

CCCCCA
:

Here, i ¼
ffiffiffiffiffiffiffi
(1
p

, and N and h are the number of samples in
grid and the spacing between adjacent grid points,
respectively, given component wise in x; y; z directions.

Using this definition, the projection step to compute the
mass-conserving vector field ~r can be performed as

DFT f~rgð!Þ ¼ DFT f!gð!Þ (W ð!Þ $DFTf~!gð!Þ
kWð!Þk2

CC3

Wð!Þ:

Deriaz and Perrier [28], [29], [30] propose an iterative
algorithm to compute the HHD in wavelet domain. Due to
the localized nature of wavelets in both physical and
frequency domains, such a decomposition is localized in
physical space as compared to the decomposition in Fourier
domain. They provide a basis for 2D and 3D decomposi-
tions which is generalizable to arbitrary dimension, and is
extendable to nonperiodic boundaries.

6.5 Statistical Learning Using Matrix-Valued
Kernels

Macêdo and Castro [66] propose using sparse, unstruc-
tured, and possibly noisy samples of a vector field, to
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construct its incompressible and irrotational components
using matrix-valued radial basis function (RBF) kernels. A
vector field can be learned as linear combination of a kernel.
~V ðxÞ ¼

PN
i¼1 Kðx; xiÞð%i ( %*iÞ, where the weights ð%( %*Þ

are computed by optimizing a loss function [69]. The
problem then reduces to finding the appropriate kernels.

According to Narcowich and Ward [76] and Fuselier [37],
the matrix-valued divergence-free and curl-free kernels can
be obtained from the divergence-free and curl-free matrix-
valued RBFs as Kðx; x0Þ ¼ #ðx( x0Þ, such that

#dfðxÞ ¼ H(ðxÞ ( tr H(ðxÞf gI
#cfðxÞ ¼ (H(ðxÞ;

where ( is a scalar-valued RBF, H is the Hessian operator,
such that ðH(Þij ¼

@2(
@xi@xj

, and I is the identity matrix. It can
be verified that the columns of #df and #cf are divergence-
free and curl-free, respectively.

According to Macêdo and Castro [66], it is possible to
consider a convex linear combination of the kernels Kdf and
Kcf to obtain a kernel for learning any kind of vector field.
More importantly, this allows to reconstruct the divergence-
free and curl-free parts separately, leading to a HHD-like
vector field decomposition. Although, they do not consider
the harmonic component in their study, it appears that the
harmonic component can be computed as the residual.
Fig. 8 shows their results, in which they use a Gaussian
scalar RBF (ðxÞ ¼ eð(kxk

2=2,2Þ, and obtain

Kdfðx; x0Þ ¼ Gx;x0 Ax;x0 þ ðd( 1Þ ( kx( x
0k2

,2

 !
I

" #

Kcfðx; x0Þ ¼ Gx;x0 I (Ax;x0
* +

;

where

Gx;x0 ¼
1

,2
e(

kx(x0k2

2,2

Ax;x0 ¼
x( x0

,

' (
x( x0

,

' (T
:

One can note a similarity between the method of
“learning” vector fields and the Galerkin formulation
because the kernels Kdf and Kcf span some divergence-
free and curl-free subspaces.

6.6 A Non-HHD Decomposition of Flow Fields

Wiebel et al. [102] propose another two-component vector
field decomposition, which is substantially different from
the HHD. However, since it is based on a similar
goal—decomposing the vector field into components with

desired properties, it has been included in this survey. Fig. 9
shows their results.

The first component, called the potential flow matches the
original field on the boundary of a subdomain, but is
otherwise simple in the sense that it has vanishing
divergence and curl. It represents the laminar flow induced
by the geometry of the domain, and its boundary values. In
the context of HHD, the potential flow can be seen similar
to the harmonic flow ~h in a certain way, because both
these flows maintain the property of being both divergence
free and curl free. However, it is interesting to see that while
the potential flow matches the flow on the boundary of
the domain, no such condition is imposed on the harmonic
component in HHD. In fact, in the aforementioned
computation techniques, the harmonic component is calcu-
lated as the residual after calculating the incompressible
and irrotational components.

The other (residual) component, called the localized flow
(or the region-specific flow), promises to capture the entire
divergence and curl of the original flow, and hence,
provides deeper insights about the features in the original
flow. Any analysis that make use of the these two quantities
is not affected by the decomposition of the flow. All the
critical points (except all saddles) show up in this
component. This method works for an arbitrary subregion,
with a piecewise smooth boundary. A HHD of the localized
flow should further decompose it into incompressible and
irrotational components.

7 DISCUSSION

As demonstrated in Fig. 1 and Section 4, the HHD is useful
in a large number of applications across a broad spectrum
of research communities. Going forward, there is a need for
a better consistency between the various communities on
the topic. This survey attempts to bring together the
diverging branches of research in different communities
on this common topic of interest. It presents a comprehen-
sive discussion on the theory and practice of the HHD and
intends to provide a solid starting point for future research.
While the topic is too extensive and spans too many
communities to be fully captured in a single article, the goal
is to include a representative cross section of the relevant
literature across research areas. Furthermore, this paper
includes a notationally consistent discussion on the theory
of the HHD to provide an entry point to the area as well as a
chronological survey to convey the historical development
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Fig. 8. Results provided by Macêdo and Castro [66]. From left to right:
The original field, the learned divergence-free component, and the
learned curl-free component.

Fig. 9. Results provided by Wiebel et al. [102], showing the cylinder data
set (top) decomposed into (bottom) potential and localized flows.



of the area. Finally, a detailed discussion on the different
boundary conditions is provided aimed at clarifying and
unifying some of the recent results.

Nevertheless, some open questions related to the HHD
remain to be explored, both theoretical and practical. For
instance, the effect of boundary conditions on the topology
of the resulting components needs to be studied more
thoroughly. Theoretical results of the Hodge decomposition
using exterior calculus have already been successfully
borrowed and applied to analysis, visualization, and design
of vector fields. However, a better understanding of their
numerical performance is needed, with respect to its
convergence and L2-orthogonality, especially in the gra-
phics and visualization community.

On a more applied front, one may expect to see a step up
in the dimensionality of some recent computation techni-
ques. For example, a SPH technique for 3D vector fields and
a LS-FEM like technique for PL vector fields may prove
really useful. Moreover, there is a need for further
exploration of different boundary conditions aiming for
topological consistency between the original field and the
resulting components.
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[12] O. Blumenthal, “Über Die Zerlegung Unendlicher Vektorfelder,”
Mathematische Annalen, vol. 61, no. 2, 235-250, 1905.

[13] H. Braun and A. Hauck, “Tomographic Reconstruction of Vector
Fields,” IEEE Trans. Signal Processing, vol. 39, no. 2, pp. 464-471,
Feb. 1991.

[14] R. Bridson, Fluid Simulation For Computer Graphics. A.K. Peters,
2008.

[15] D.L. Brown, R. Cortez, and M.L. Minion, “Accurate Projection
Methods for the Incompressible Navier-Stokes Equations,”
J. Computational Physics, vol. 168, pp. 464-499, 2001.

[16] E.B. Bykhovskiy and N.V. Smirnov, On Orthogonal Expansions of
the Space of Vector Functions Which Are Square-Summable over a
Given Domain and the Vector Analysis Operators. Academy of
Sciences USSR Press, 1960.

[17] J. Caltagirone and J. Breil, “A Vector Projection Method for
Solving the Navier-Stokes Equations,” Comptes Rendus de l’Acadé-
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