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Abstract

Analysis and visualization of complex vector fields remain major challenges when studying large scale simulation

of physical phenomena. The primary reason is the gap between the concepts of smooth vector field theory and their

computational realization. In practice, researchers must choose between either numerical techniques, with limited

or no guarantees on how they preserve fundamental invariants, or discrete techniques which limit the precision

at which the vector field can be represented. We propose a new representation of vector fields that combines the

advantages of both approaches. In particular, we represent a subset of possible streamlines by storing their paths

as they traverse the edges of a triangulation. Using only a finite set of streamlines creates a fully discrete version

of a vector field that nevertheless approximates the smooth flow up to a user controlled error bound. The discrete

nature of our representation enables us to directly compute and classify analogues of critical points, closed orbits,

and other common topological structures. Further, by varying the number of divisions (quantizations) used per

edge, we vary the resolution used to represent the field, allowing for controlled precision. This representation is

compact in memory and supports standard vector field operations.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology
and Techniques—Graphics data structures and data types; G.1.2 [Numerical Analysis]: Approximation—
Approximation of surfaces and contours

1. Introduction

Vector fields are widely used in science and engineering
applications to model flow in domains as varied as the sim-
ulation of combustion, aerodynamics, climate, and high en-
ergy physics. Regardless of the application a robust analysis
and faithful visualization are crucial to understand, manipu-
late, and describe complex flow structures. Currently, there
exist two broad classes of techniques for visual analysis of
vector fields. One class of approaches derives various scalar
quantities from the flow, e.g. vorticity [SPP04,HRAW07] or
finite time Lyapunov exponents [Hal01,SP09]. The resulting
fields can then be analyzed using well known scalar-based
techniques. The main drawback is that during the transfor-
mation some information is lost and many features of inter-
est such as closed orbits or stable and unstable manifolds are
difficult or impossible to extract from the scalar reduction.

Alternatively, topology-based approaches have been de-
veloped that aim to describe the global flow structure
through the behavior of its streamlines. The limit sets of
streamlines—critical points and closed orbits—are of partic-
ular interest as is the topological skeleton of the flow which
segments the domain into regions of uniform flow. Topolog-
ical approaches are attractive as they produce an abstract yet
complete description of the global flow behavior and thus
form an ideal starting point for analysis as well as visualiza-

tion. The theoretical foundations of this approach are well
understood and have been a longstanding focus of a vibrant
community [GLL91, HH89].

However, the application of these ideas to practical prob-
lems has proven challenging. The majority of theoretical re-
sults are based on smooth vector fields defined on smooth
manifolds. In practice, one typically deals with sampled vec-
tor fields extended to a domain through interpolation, which
are rarely smooth. Furthermore, to extract the flow, i.e. the
streamlines, from a given vector field numerical integration
techniques are used which can be highly accurate but are
hardly ever exact. As a result, the flow constructed in this
manner no longer fulfills the assumptions of the theory and
can violate even basic invariants such as the fact that stream-
lines should never cross. Consequently, the remaining theory
is no longer applicable preventing downstream analysis and
severely restricting the effectiveness of such techniques.

This work is based on the insight that the challenge of
constructing theory compliant flow can be split into two or-
thogonal problems. First, sampled vector fields have a lim-
ited smoothness based on interpolant (e.g. piecewise linear
flow is only C1 continuous), and thus the flow they define
is not smooth. Second, the flow extracted from these vec-
tor fields uses numerical techniques that introduce various
approximation errors. We address the second problem by in-
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Figure 1: Oceanic currents of the North Atlantic. We show a 600× 600 tile from the larger simulation (center). Each image on the side is a

zoomed view visualizing the topology for the tile. (Left) Black lines are separatrices grown from all saddles (blue balls), and green curves show

detected closed orbits. (Right) Different colored regions are unstable manifolds grown from all the sources (green balls).

troducing a new representation that directly encodes the flow
by efficiently storing a large but finite set of streamlines.
Once constructed, this eliminates the need for any numer-
ical integration, allowing for algorithms that guarantee the
theoretical consistency of all streamlines. Given a consistent
set of streamlines, the first problem of smoothness can be
overcome by a careful adaptation of theory in the spirit of
recent scalar field approaches addressing the corresponding
problem [GNP∗06,LBM∗06]. The resulting vector field rep-
resentation is guaranteed to be consistent with the theory and
supports the combinatorial computation of all critical points,
closed orbits, and the topological skeleton.

Contributions We propose a new representation, called
quantized flow, that supports discrete computations like
the approaches discussed above while enabling a multi-
resolution approximation of a given piecewise linear (PL)
vector field. Instead of encoding the vector field and extract-
ing its streamlines, the flow is quantized directly by effi-
ciently storing a large but finite number of streamlines (our
implementation scales up to 232 streamlines passing through
every edge). We accomplish this using a structure similar
to the edge maps of [BJB∗12, JBB∗12] where only the in-
tersections of streamlines with mesh edges are represented.
However, unlike [BJB∗12] quantized flow does not rely on
numerical critical point detection and classification nor does
it employ a floating point mapping between edges which is
susceptible to round-off errors. Specifically, quantized flow:

A. Provides a combinatorial representation of flow that still
maintains a geometric fidelity to an input field;

B. Is constructed with an embarrassingly parallelizable al-
gorithm using any given streamline computation;

C. Supports user-defined levels of approximation which
control the level of geometric fit; and

D. Utilizes a compact, memory efficient data structure.

These properties enable a unified setting for:

1. Computing consistent streamlines combinatorially;
2. Detecting and classifying all critical points using a dis-

crete equivalent of the Poincaré index;
3. Progressively detecting and classifying closed orbits; and
4. Extracting and visualizing the entire topological skeleton.

2. Related Work

Starting with Helman and Hesselink’s seminal pa-
per [HH89], vector field topology has been a staple of vec-
tor field visualization. Helman and Hesselink define a two-
dimensional vector field’s topological skeleton as a graph
constructed using a special set of streamlines, i.e. separa-

trices that connect the critical points of the field. Separa-
trices are the four streamlines that (asymptotically) travel
to and from each saddle point and a large number of ap-
proaches exist to approximate such structures in both two-
and three-dimensional vector fields using numerical inte-
gration [GLL91,TSH01,TWHS03]. Similar techniques have
been extended to multi-resolution representations as well as
time-dependent flows [GTS04, TWHS05].

The topological skeleton described above provides only
a partial picture of a flow’s topological behavior. In partic-
ular, there can exist periodic orbits not connected to sad-
dles which cannot be detected by following separatrices. No-
table exceptions that augment the skeleton with periodic or-
bits have been proposed in two [LI07, TWHS04, WS01] and
three [WS02] dimensions. The topological skeleton as well
as the orbits describe the boundaries between regions of uni-
form flow and thus, by definition, consist of the most unsta-
ble streamlines. Consequently, it is well known that comput-
ing a valid topological skeleton can be numerically unstable
due to errors inherent in the integration and potential incon-
sistencies among neighboring triangles [CMLZ08].

To address the problems introduced through numerical in-
tegration, several schemes have been developed to discretize
vector fields in various ways. Reininghaus et al. [RLH11]
convert PL vector fields into discrete vector fields according
to Forman’s definition [For98]. They represent flow as pairs
of mesh elements, e.g. vertex-edge or edge-triangle pairs.
Topological structures can be efficiently extracted through
graph traversals. However, discrete vector fields no longer
correspond to traditional interpolation and may lose much of
their geometric information. Furthermore, certain elements
such as rotating critical points cannot be represented directly.
Thus, the benefit of combinatorial robustness comes at a high
cost. The geometric resolution of a discrete vector field is
limited by the mesh resolution, and it is unclear how well a
given PL vector field can be approximated.
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Chen et al. [CMLZ08] create a triangle level graph by de-
termining how the image of a triangle is advected and de-
formed by the flow. While the graph is computed using the
underlying PL vector field, the accuracy of this technique
remains limited by the triangle resolution. However, their
technique enables classification of Morse sets via Conley
indices [CDS∗12], which provides meaningful information,
albeit at a coarse granularity. Szymczak and Zhang [SZ12]
focus on piecewise constant (PC) vector fields, and extract
a similar structure, the transition graph that subsequently
can be used to extract topological structures. The transition
graph can be seen as a PC equivalent of the link graph used in
Section 6.1 to extract orbits from PL vector fields. The graph
provides a more generic refinement mechanism. Either the
mesh may be refined (similar to Chen et al. [CMLZ08]), or
the graph may be refined by splitting nodes. What is missing
is a notion of when split nodes converge to an input field in a
geometric sense. Szymczak later extends this work to allow
the representation of sets of vectors for each triangle [Szy11]
and model the stability of the computation.

Our goal is to have the benefits of the combinatorial ap-
proaches described above, but allow for a structure that cap-
tures a geometric approximation of the flow. We accomplish
this by relying on the edge maps of Bhatia et al. [BJB∗12,
JBB∗12] which stores the intersections of streamlines with
mesh edges. While edge maps discretize the mapping be-
tween edges, they do not discretize the flow at a streamline
level. As a result, it is difficult to compute edge maps with-
out a strong set of assumptions on the input. Moreover, it
is challenging to compute closed orbits robustly with edge
maps alone, as numerical instabilities and finite precision
arithmetic can still cause inconsistencies. However, Bhatia et
al. describe how this structure may be used for bounded er-
ror refinement [BJB∗12] with respect to an input PL flow—a
feature that quantized flow also provides.

3. Vector Fields as Quantized Boundary Maps

Consider a 2-dimensional vector field ~V : M → R
2. For

simplicity, we assume M ⊂ R
2 but all concepts extend to

embedded, two-dimensional manifolds. Interpreting ~V as a
steady velocity field, it implicitly describes the parametric
path that massless particles travel. The flow, Φ(x, t), is given

by the solution of the differential equation dΦ(x,t)
dt = ~V (x)

with the initial condition Φ(x,0) = x0. Fixing a point x0 and
varying t, we call the set of points Φ(x0, t) a streamline.

Typically, a subset of R2 is represented by a triangulation
T = (V,E,C) with the set of vertices V , edges E, and tri-
angles C. There currently exist two popular approaches to
define a vector field on T . Either a set of sample vectors, e.g.
~V (vi) = (xi,yi), vi ∈ V , is provided and extended by (gener-
ally, PL) interpolation to M. Alternatively, a discrete vector
field can be defined as a set of simplex pairs, e.g. (vi,e j) and
(ek,cl), where each pair represents “flow” from the lower
dimensional to the higher dimensional simplex. Instead, we
follow a third convention based on encoding the flow Φ of~V
directly rather than representing ~V .

(a) (b)

Figure 2: Quantized streamlines using ξ+ indicated by the solid

and ξ− by the dashed arrows. ξ+ and determine the quantized

source–destination pairs. (a) The red streamline (using ξ+) inter-

sects the green streamline (using ξ−). (b) Adjusted ξ± pairing picks

the rightmost source/destination wrt the tracing direction. The for-

ward and backward streamlines share a bin but do not intersect.

3.1. Sampling Flow

Given a sampled vector field the flow is typically con-
structed by numerically integrating streamlines. Conceptu-
ally, this approach describes infinitely many streamlines for
a triangle. Instead, we encode a subset of representative
streamlines. These quantized streamlines encode an approx-
imation of the infinite continuum of flow. Quantized stream-
lines are defined based on a discrete set of sample points
{p0, p1, . . . , pn} on each edge of the triangulation. Let us as-
sume that at each of these samples ~V is not parallel to the
corresponding edge, i.e. each sample can be classified into
inflow or outflow with respect to a given triangle. Section 4.1
will discuss enforcing this in practice. The streamline Si for
any inflow sample pi either leaves the triangle at an outflow
point o or approaches a critical point c on the interior. A
quantized streamline disregards the path of Si and instead
stores a pair (pi, p j) or (pi,c) for Si, where p j is the sample
point closest to o. We call these source and destination pairs.

3.2. Quantized Streamlines

Given a source and destination for each sample we define
a quantized streamline as the sequence of samples reached
by following the destination maps forward and the source
maps backward. However, in order to use quantized stream-
lines as a stand-in for smooth streamlines we must ensure
that they observe the same set of invariants most impor-
tantly the fact that streamlines do not intersect. Using only
the above definition of source and destination does not main-
tain this invariant. While each sample has exactly one source
and one destination, multiple samples can have the same
source/destination and the source-destination maps are not
necessarily inverse to each other. Therefore, in areas of suf-
ficient divergence, quantized forward streamlines can cross
backward lines creating an inconsistent flow (Figure 2(a)).

To avoid this problem we modify the mapping slightly and
define the forward map ξ+(p) of a sample p by considering
all pairs (p,qi). We define ξ+(p) as the rightmost (relative to
~V ) sample qi. Symmetrically, we define the backward map
ξ−(p) as the leftmost sample among all pairs (qi, p), see
Figure 2(b). Using the modified maps ensures that quantized
streamlines may share samples (equivalent to becoming in-
finitely close) but never cross. This builds quantized stream-
lines that are a provably consistent approximation of Φ.
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(a) (b) (c)

Figure 3: (a) Edge map of a spiraling source. Transition points

(white squares) and their images (black dots) form the colored in-

tervals. (b) An interior orbit touching an edge creates an ITP whose

boundary flow (c) appears as an ETP.

4. Vector Field Conversion

Using quantized streamlines to approximate a vector field
has several advantages in terms of consistency and ease of
use. However, storing the ξ± maps naively quickly becomes
infeasible for all but the coarsest representations. We in-
troduce a simple data structure to efficiently approximate a
large number of quantized streamlines and a straightforward
and parallelizable algorithm to convert PL vector fields into
the new representation.

4.1. Quantized Edge Maps

To encode quantized streamlines efficiently we exploit the
fact that the ξ± maps represent an approximation of Φ. In
particular, the ξ±’s can be seen as a quantized version of the
edge maps recently introduced by Bhatia et al. [BJB∗12].
They show that the boundary map induced by Φ is con-
tinuous almost everywhere and naturally partitions triangle
boundaries into open intervals that map to either interior
critical points or other intervals. The boundaries of inter-
vals are either transition points at which the flow is parallel
to an edge, sources/destinations of transition points (image

points), or intersections with separatrices called sepx points,
see Figure 3(a). Furthermore, they classify transition points
into internal and external transition points (ITPs and ETPs)
based on the local flow geometry.

However, edge maps rely on some inconvenient assump-
tions such as the fact that all critical points of ~V must lie
on the interior of triangles. These are difficult to enforce
in practice and prevent the modeling of higher order criti-
cal points. Furthermore, edge maps use barycentric coordi-
nates to encode the geometry of intervals and linear interpo-
lation for the mapping. Both operations introduce round off
errors making it difficult to ensure consistency. We introduce
quantized edge maps to adapt the concepts of edge maps for
use with quantized flow. Quantized edge maps eliminate the
need for most assumptions and numerical computations.

To discretize an edge we explicitly quantize it into n = 2k

bins, with k = 32 unless otherwise noted. Each bin corre-
sponds to the sample point at its center and in the remainder
of the paper we use bins and samples interchangeably. To en-
sure that each bin can be classified into inflow and outflow
we only require that no edge is entirely parallel to ~V or con-
versely that all transition points are isolated. Note, that this
condition is weaker than those of the original edge maps and

Figure 4: The map of a triangle (CCW orientation) is stored as a

linked list of intervals. Each interval stores a k-bit value (k = 3 here)

for the beginning bin of the interval and a two byte descriptor.

allows the existence of critical points on both edges and ver-
tices. Given that each bin represents either inflow or outflow
all transition points exist on the boundary of bins. Conse-
quently, their sources and destinations must also lie on the
boundary of bins. Furthermore, the construction algorithm
of Section 4.2 guarantees that a sepx point can also exist
only between bins. This allows the ξ± maps to be stored
efficiently by encoding the mapping between intervals.

A sequence of bins representing an interval is uniquely
identified through two integers, its edge number and its first
bin. Since intervals will be stored contiguously, their extent
can be inferred by their neighbor. Mapping an interval with
m bins onto an interval with n bins can be solved by any
rasterization procedure, in our implementation we use Bre-
senham’s algorithm [Bre65]. Given a bin i < m, we compute
its destination by computing n ∗ (i/m) to the nearest inte-
ger. This computation can potentially produce a round off in
which case we output n∗ (i/m)+1. Note that while this ras-
terization emulates a linear interpolation, it is an entirely in-
teger procedure. Additionally, the rasterization naturally cre-
ates consistent ξ±’s in the sense of Section 3.2.

Finally, one can classify transition points into external and
internal by analyzing the local maps. At an ETP the two
bins on either side will be mapped to each other while at
an ITP both bins will map to disparate locations. Note this
classification disregards the paths streamlines would take. If
there exists a closed orbit in the interior of a triangle which
touches an edge, the corresponding point is an ITP by the
original edge maps (Figure 3(b)). However, according to the
local flow behavior, it is classified as an ETP. This discrep-
ancy reflects the fact that quantized edge maps only store the
flow behavior as it pertains to the boundary. Nevertheless, ei-
ther classification is consistent with the given boundary map.

Data Structure For each triangle we store a circular linked
list of intervals around the boundary. Each interval stores
a k-bit integer as the index of the first bin for the interval.
Additionally, two bytes per interval are bit-packed with the
following information: 2-bits for the edge number within the
face since bin numbering is only unique per edge; a 1-bit flag
indicating inflow or outflow; 1-bit indicating the orientation
of the interval, relative to the bin numbering; and 12-bits for
the index of the paired source/destination interval.

Figure 4 shows a schematic of our quantized edge map
datastructure. Given this information a streamline is traced
through the triangle by finding its source/destination interval
followed by a rasterization step to map the corresponding
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(a) (b) (c)

Figure 5: Map refinement at maximal error (wrt the edge length) of

(a) 0.18%; and (b) 0.023%. The initial refinement causes a large

change in the unstable region to the west of Florida (top-left of

dataset). (c) Total mapping error as a function of average number

of links shows well-behaved convergence as more links are used.

bin. Across edges there exists a trivial map between bins and
we find the corresponding interval through a binary search.

4.2. Converting Piecewise Linear Fields

One of the disadvantages of the original edge map rep-
resentation is that it relies on constructing non-degenerate
local flow numerically. Furthermore, edge maps are con-
structed by tracing transition points and separatrices, by def-
inition the most unstable structures in the flow. Any numeri-
cal instabilities encountered during the construction can pro-
duce inconsistencies causing the conversion to fail. Instead,
the quantized edge map construction is designed to first and
foremost produce a consistent map independent of any errors
in tracing streamlines or classifying inflow outflow points.
Furthermore, contrary to the edge map algorithm the struc-
ture of the mapping, e.g. the number and connection of in-
tervals, is computed using the most stable aspects of the flow
and thus typically produces a more accurate map as well.

Quantized edge maps are constructed using a divide-and-
conquer approach for each triangle. For each edge of the tri-
angle, we first determine the connected intervals of inflow
to outflow bins. Next, given these intervals we find the tran-
sition points on vertices and edges and classify these into
internal and external. Note that, since a triangle is convex
all transition points on vertices must be external. Transition
points on edges are classified by examining the local flow di-
rection. Flow switching from inflow to outflow in a counter-
clockwise traversal indicates an ITP while a switch from out-
to inflow indicates an ETP. Furthermore, any ITP is imme-
diately classified as ETP in its neighboring triangle since by
definition a dual ITP classification is inconsistent with a PL
flow. Unlike edge maps this construction allows for critical
points on edges, e.g., a transition point classified as ETP on
both sides naturally produces a rotating critical point.

Our method is to divide edges into intervals where the
flow maps continuously and pair the resulting intervals to
form links. Starting from the initial inflow/outflow intervals,
we select the largest interval (outflow or inflow) and cast
a streamline (numerically) from its center bin to identify
its corresponding source/destination. This divides the flow
within the triangle into two subregions.

Subsequently, we recursively handle each region sepa-
rately until we reach one of the three possible final configu-

rations: (a) A region without transition points; (b) A single
ITP; or (c) A single ETP with only two intervals. In (a) we
either have only two intervals which must be linked or mul-
tiple intervals that must contain sepx points. For the latter
case we numerically identify candidates for separatrices and
split the intervals accordingly. For (b) we determine the for-
ward and backward image of the ITP and split the intervals.
Finally, for (c) we link the two intervals around the ETP. By
the time the algorithm resorts to numerically tracing poten-
tially unstable streamlines the basic structure of the maps
has been established. Thus, the tracing simply computes the
best geometric fit to a known flow structure. In a last cleanup
step we merge intervals not separated by transition, image,
or sepx points to construct the final quantized edge map.

Consistency The construction algorithm relies on two types
of numerical computations: the identification of transition
points and the tracing of streamlines. We compute the former
by solving a linear system of equations and the latter through
exact streamline computation [NJ99]. Both techniques can
produce inconsistent results and numerical errors which in
fact is one of the primary motivation for constructing quan-
tized edge maps. The algorithm described above, neverthe-
less, guarantees consistency by explicitly storing any nu-
merical decision in form of the region decomposition. Any
streamline that is traced divides the triangle into subregions
and no subsequent streamline can leave its subregion. This
naturally prevents any streamline crossings guaranteeing a
consistent representation. Note this approach does not pre-
vent numerical errors but instead forces any numerical deci-
sion to defer to all previous decisions.

4.3. Approximation Error

Quantized edge maps incur two types of approximation
error; caused by (a) the quantization, and (b) the linear map-
ping between intervals. The quantization error is controlled
by the bin size and determines how many unique streamlines
are used to represent a flow. The geometric location of all
landmarks (critical points, transition points, images points,
etc.) can be off by at most half the bin size. In practice,
we use 232 bins, which makes the precision of our repre-
sentation higher than possible with a 32-bit floating repre-
sentation. Also, our bins are uniformly distributed, unlike
the IEEE floating point standard. Thus, when compared to
vertex-sampled and interpolated flows, the quantization error
is negligible especially considering the gained consistency.

The mapping error on the other hand cannot be neglected.
Similar to [BJB∗12] we consider the mapping error at a
given source p in terms of distance between its mapped
destination ξ+(p) and its ground truth destination relative
to the edge length. Unfortunately, there exists no closed
form solution for this error but experimentally (evaluated us-
ing [NJ99]) it appears to be smooth and well-behaved. Thus,
we can evaluate the error for each link using a dense sample.
We can refine the maps to reduce the mapping error in the
same manner as [BJB∗12]. Specifically, we select links with
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a high error and iteratively split them by the streamline at the
sampled point with maximal error. Assuming fewer than 212

intervals per triangle (we use 12 bits to index into the interval
array), each split requires only 2(32+ 16) additional bits of
storage (the overhead for storing two new intervals). While
refinement requires careful sampling, after map refinement
the extra intervals only have a small effect on runtime for
map queries. Figure 5(c) shows the observed convergence in
terms of the maximal and average error for a given number
of links. We see this error is well behaved in both a maxi-
mal and average sense, with only a small initial dip as flow
is refined (mostly near saddles) initially. Figure 5 shows ex-
amples of the effect of refinement on the stable and unstable
manifolds of an ocean current flow.

5. Quantized Critical Points

In PL vector fields, critical points are typically detected by
numerically solving for points with ~V (x) =~0 and classified
using the eigenvalues of the Jacobian matrix of ~V [HH89].
However, this classification is limited to non-degenerate,
first-order critical points and moreover finding exact zeros
is numerically unstable. An alternate classification is to use
the Poincaré index [EW10, TSH01]. Given a simple closed
curve γ with ~V (p) 6=~0, for all p ∈ γ, the Poincaré index indγ

of~V with respect to γ is defined as the number of vector rota-
tions of the field as it travels along γ: indγ =

1
2π

∮
γ dθ, where

θ = arctan(~Vy/~Vx) is the angle coordinate of the vector field
~V (x) = (~Vx,~Vy). The Poincaré index reflects the aggregate
structure of ~V on the interior of γ. In particular, if γ encloses
no critical points then indγ = 0 and if there only exists a sin-
gle critical point indγ is called the index of the critical point.
Finally, given a set of critical points ci with a simple enclos-
ing curve γ then indγ = ∑i index(ci). The Poincaré index can
distinguish higher order critical points such as k-saddles with
indγ =−k or k-poles with indγ =+k when they are isolated
in a neighborhood bounded by γ.

Nevertheless, computing the Poincaré index in practice is
non-trivial as it becomes difficult to ensure that γ does not
contain a critical point. Instead, using quantized flow indγ

can be computed by a simple count of transition points. In
particular, one can imagine transforming ~V in an epsilon
neighborhood of γ such that ~V is orthogonal to dγ/dt and
switches infinitely fast from outflow to inflow at transition
points. This concentrates the rotation of~V at the vertices and
transition points and does not affect indγ. This can be seen
as the equivalent of using exterior angles as discrete curva-
ture measure for polygonal curves [GS08] where all curva-
ture is concentrated at vertices. In particular, for a counter-
clockwise traversal around a triangle T , each transition point
contributions a rotation of π (positive for ITPs and negative
for ETPs), while each vertex contributes α, its exterior angle
to indγ (which sum to 2π for all three vertices). When there
is an ETP on a vertex, we can separate the contribution of
the transition point from that of the exterior angle:

(a) (b) (c)

Figure 6: Classifications of forward stable closed orbit shown as

grey bins. Forward maps/streamlines are indicated by solid, and

backward by dashed arrows. (a) On the right of the closed orbit

streamlines can only converge leading to attracting behavior. (b) If

no forward streamlines approach from the left, the closed orbit is re-

pelling from the left. (c) If a single forward streamline merges with

the closed orbit it is attracting; all backward lines only touch it.

ind∂T =
1

2π

(

∑
‖I‖

π+ ∑
‖E‖

−π+2π

)

= (‖I‖−‖E‖)/2+1

where I is the set of ITPs and E is the set of ETPs. Note that
this formula conveniently ignores potential critical points on
both edges and vertices. As discussed above, the classifica-
tion into ETPs and ITPs is made based on the local map.
As a result, critical points on the boundary of a triangle will
be treated as conventional transition points which effectively
computes the Poincaré index of the interior of the triangle.
Computing the Poincaré index for all triangles detects and
classifies all critical points on the interior of triangles.

For critical points on edges one computes indγ or the
boundary of the quadrilateral formed by the adjacent trian-
gles and subtracts the index of both triangle interiors. This is
possible since transition points at quadrilateral corners can
still be easily classified into external and internal transition
points based on the local maps. Note that while the algo-
rithm of Section 4.2 avoids creating critical points on edges
other approaches may not and the representation naturally
supports edge criticalities. Finally, the Poincaré index of a
vertex is computed using the boundaries of its star and sub-
tracting the triangle and edge indices. Overall, this strategy
provides a generic, combinatorial detection and classifica-
tion of critical points including the often problematic cases
of critical points near vertices and edges.

6. Quantized Closed Orbits

An equally important aspect of vector field analysis fo-
cuses on other invariant structures than just critical points. A
general vector field can contain closed orbits which generi-
cally can be attracting, repelling, or both. Closed orbits are
particularly difficult to detect with numerical techniques. In-
stead, a quantized flow is at its core described by a very
large graph and thus closed orbits exist explicitly as circu-
lar quantized streamlines. Since the forward and backward
maps differ, there exist three types of closed orbits, those
stable in ξ+ and those stable in ξ− and those stable in both
directions. These can easily be classified into attracting or
repelling by analyzing the mappings around the closed or-
bit. Furthermore, due to some subtleties in the definition of
the ξ±s there only exist six different classifications.
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(a) (b)

Figure 7: Exact closed orbit detection. The bin level connectivity

(a) defines the initial link graph (b). Extracting MSCCs removes the

faded links, and the bin level pruning removes the circled bins.

Consider the forward-stable closed orbit C shown in Fig-
ure 6. Since C is defined by ξ+ (shown as solid arrows) there
cannot exist a streamline diverging from C towards its right
(wrt. to the flow direction). Thus, on its right C can either
be attracting (Figure 6(a)), if there exists at least one other
streamline converging to it or neutral (neither attracting nor
repelling). On its left, C can be neutral if no other streamline
approaches, attracting if there exists one or more forward
streamlines approaching C (Figure 6(c)), or repelling other-
wise (Figure 6(b)). The reason for this classification is that if
there exists one or more forward streamlines that approach
C from the left, then all backward streamlines that share bins
with C will ultimately leave C. However, since we consider
all streamlines to be distinct entities, which may become in-
finitely close but never touch, such backward streamlines are
never part of C but simply approach and leave its vicinity.
As a result a forward-stable closed orbit can be attracting,
repelling, or neutral on its left but only attracting or neutral
on its right. Symmetrically, a backward closed orbit can be
attracting, repelling or neutral on its left but only repelling or
neutral on its right. One consequence of these properties is
that no quantized closed orbit can switch between attracting
and repelling and thus cannot form a saddle-like region in
the sense of Conley theory [CMLZ08].

6.1. Exact Closed Orbit Detection

To detect all closed orbits in a data set we use a two-stage
process exploiting the fact that a quantized flow represents
a multi-resolution graph. In the first stage we create the link

graph (Figure 7(b)) which contains a node for every link and
arcs between links that share at least one bin. The link graph
is a conservative description of the flow in the sense that two
links sharing a streamline are connected in the link graph
but not all connected links share a streamline (Figure 7(a)).
Subsequently, we extract all maximally strongly connected
components (MSCCs) from this graph using the algorithm
of Barnat and Moravec [BM06]. Since usually most triangles
are non-critical they contain at most four links and thus the
initial link graph typically has around four links per triangle
on average. However, since all critical points have already
been identified one can avoid creating any nodes whose flow
is entirely connected to sinks or sources. This drastically re-
duces the size of the initial link graph and also splits it into
independent components which can be processed separately.

After the first stage each MSCC represents a set of bins

Figure 8: The classification of closed orbits. Flow is mostly domi-

nated by both-side attracting (red) and both-side repelling (green)

closed orbits. Blue closed orbits are neutral on both sides and hence

are both forward and backward-stable. Other closed orbit types ex-

ist but are too small to be seen.

forming a region that may contain closed orbits. To identify
individual closed orbits we prune the graph by geometrically
shrinking its nodes. The region is shrunken by removing the
bins that either enter or leave the region of interest. Once no
more bins can be pruned, the boundary of the MSCC forms
a bin level closed orbit. Next, all the bins in the closed orbit
are removed, exposing new bins to the pruning. This process
continues until all regions are empty. A closed orbit stable
in one direction may not be stable in the other. As a result,
pruning bins according to ξ+ may remove parts of a closed
orbit in ξ− and vice versa. Thus, the pruning is performed
twice, once to identify all forward and once for all backward
closed orbits. Figure 8 shows all closed orbits of an ocean
flow around Italy with the color indicating the classification.

6.2. Approximate Closed Orbit Detection

The pruning algorithm is guaranteed to find all closed or-
bits as a sequence of bins which can subsequently be classi-
fied. However, in practice there can exist regions with ex-
tremely low divergence, and in many applications vector
fields are theoretically divergence-free. Typically, these are
not represented exactly and the resulting approximated vec-
tor field has near-zero divergence. In such cases a quantized
flow may represent billions of closed orbits. Extracting these
individually is neither practical nor desirable. Instead, we ap-
proximate potential closed orbits up to a user threshold.

To approximate closed orbits we split MSCCs by trac-
ing quantized streamlines. Specifically, we select the MSCC
node with the largest width of bins and trace a streamline
for its center bin both forward and backward. For all nodes
that are part of this streamline we duplicate the correspond-
ing bin, split the node into two disconnected nodes, and up-
date the arcs of either node. The streamline can either: (a)
form a closed orbit; (b) leave the MSCC; or (c) connect to
a source and/or sink; all of which significantly change the
connectivity of the graph. To avoid tracing such a streamline
for too long we specify a user determined maximal length
after which the tracing is terminated. Note that even a par-
tial streamline splits graph nodes and thus provides new in-
formation. Once the graph connectivity has been updated
we again look for MSCCs. We iterate this process until the
cross-section of all remaining regions falls below a threshold
of minimal number of bins as shown in Figure 10. These re-
gions become the current approximation of potential closed
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Figure 9: Comparison of closed orbit detection with Morse sets (left, Chen et al. [CDS∗12]) and refined PC Morse sets (middle, Szymczak and

Zhang [SZ12]). Both Morse techniques compute cyclic regions in the blue boxed region, but our approach (right) identifies none, as the bottom

left inset indicates a streamline spans the region.

Figure 10: Graph-splitting progressively convergence to closed or-

bits. Left-to-right: a gradual reduction in the size of regions.

orbits and their aggregated flow behavior can be determined
by examining the maps along their boundary.

6.3. Comparison

Figure 9 presents a comparison of our closed orbit detec-
tion technique with that of Chen et al. [CDS∗12] and Szym-
czak and Zhang [SZ12]. We use a small tile around Ice-
land containing 23655 triangles. This figure highlights dif-
ferences between our technique and the other two, in part
because of the instabilities and very small scale orbits that
are contained within. The triangle-based approach of Chen
et al. identifies 160 Morse sets. Szymczak and Zhang’s PC
approach detects 297 Morse sets, of which 113 are trivial. In
this example, they have refined their transition graph with 11
iterations of refinement, subdividing far beyond the Morse
sets seen by Chen et al. Our approach detects 122 closed
orbits and 166 critical points (45 sinks, 38 sources, and 83
saddles) after refining to a threshold of 0.023%.

The limit sets that each technique produces are qualita-
tively quite similar, as depicted for the larger orbits. This
example shows that numerical instabilities are handled dif-
ferently by each approach. Chen et al. prefer a coarser ap-
proximation, covering whole triangles with regions which
behave as Morse sets. Szymczak and Zhang find a finer scale
approximation by refining the transition graph represented
by their PC flow. One difference with our technique is ex-
plained in the blue box of Figure 9. Our refinement, instead
of equally splitting links as Szymczak and Zhang, splits
links based on an error measure which indicates geometric
closely to the original PL flow. It turns out that in this region,
we find no closed orbits, because the PL flow prescribes a
streamline (computed using [NJ99]) that crosses over the
closed orbit regions detected by the other two techniques.
This leads to an interesting contrast between the three dis-
crete approaches. All three approaches make some sacrifice
when computing the input PL data to a combinatorial repre-

(a) (b)

Figure 11: (a) Stable and unstable manifolds for an ocean wind

dataset, where a separatrix converges to a closed orbit. (b) Separa-

trices and closed orbits on the nearly divergence free dataset.

sentation. However, our approach strives to capture as much
geometric information as possible by encoding an approxi-
mation of the streamlines prescribed by the input PL field.

7. Topological Decomposition

Each bin in a quantized flow is either part of a closed or-
bit or connects a source with a sink (either of which could
be a closed orbit or boundary point). In many applications it
is important to understand the region of influence of a par-
ticular source/sink. In particular, we can define the unsta-
ble/stable manifold of a source/sink as the region in which
all streamlines start/end at the corresponding critical point.
The sets of stable/unstable manifolds partition the domain
and their intersection forms the topological skeleton.

Computing stable/unstable manifolds in a quantized flow
is straightforward. Starting, for example, at a pointwise
source in the interior of a triangle, we add all outflow bins on
the triangle boundary into a moving front. We then propagate
this front by determining connected sets of bins that are part
of forward streamlines originating at the current front and
whose backward streamlines will end at the original source.
Note that the front is grown by advecting entire intervals of
bins rather than individual bins and thus avoids performance
issues due to the large number of bins. Figure 11(a) shows
exemplary stable and unstable manifolds for two attracting
spirals (red balls) and four repelling spirals (green balls). To
unclutter the visualization we do not show the manifolds cor-
responding to boundary inflow or outflow.

A key piece of the topological skeleton are separatrices—
streamlines separating stable/unstable manifolds. One
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Dataset (Figure) # Tri. # (S+; S−; S∗)
Intervals Maps # Closed Orbits (Time)
per tri. Memory Gen. time Approx. Exact

Iceland currents (9) 23,655 45; 38; 83 4.73 0.9 0:05 74 (0:02) 96 (0:02)
Italy currents (8) 56,071 128; 111; 236 4.79 2.18 0:10 217 (0:14) 434 (0:17)
Cuba currents (5) 62,882 56; 63; 117 4.47 2.32 0:10 149 (0:13) 399 (0:15)
Ocean winds (11(a)) 328,328 4; 2; 4 4.05 11.37 0:20 16 (0:14) 35 (0:12)
North Atlantic (1) 580,084 391; 386; 772 4.46 21.4 0:45 983 (1:24) 2000 (1:48)
HCCI (10, 11(b)) 816,642 5; 9; 14 4.05 28.3 01:35 376 (05:38) 5018 (78:12)

Table 1: Performance details per dataset: # (S+; S−; S∗) indicates the number of sources, sinks, and saddles. Memory and time are given in

MB and Min:Sec, respectively. The approximate orbits converge to roughly 1 million bins (2e-4 of an edge).

method to compute them is to extract them from the segmen-
tation. However, often the separatrices are visualized without
the stable/unstable manifolds, and it can be easier (and more
efficient) to extract them directly. Since all bins are classified
according to their corresponding stable/unstable manifold it
is clear that separatrices are represented by bin boundaries,
specifically, by the leftmost bin in the sepx point. Starting
at each saddle we trace the streamline (either forward or
backward) corresponding to the bin just left (with respect to
the tracing direction) of the separatrix. By construction the
maps defining streamlines will always pick the rightmost bin
and thus the right side boundary of this streamline defines
the separatrix. Separatrices and closed orbits together form
the topological skeleton of a vector field, as shown in Fig-
ure 11(b). We found 1547 closed orbits (yellow) around 14
critical points (red and green). Of the separatrices (black)
from 14 saddles, 9 converge to closed orbits.

8. Computational Details

Table 1 shows a list of data sets used, their size, number
of topological features, as well as the time taken for con-
version, and closed orbit detection, as well as the memory
footprint for representing quantized flows. Given the exceed-
ingly large number of streamlines that are explicitly encoded
and the amount of detail preserved, e.g. in Figure 1, the
memory footprint remains surprisingly competitive. While
our average of about 24-28 bytes per triangle is certainly
larger than a grid with two floating point values per vertex
a typical half-edge data structure may easily store a similar
amount of data just to maintain the connectivity informa-
tion. The conversion times are far from interactive in our
prototype. However, this one-time cost could easily be par-
allelized since each triangle can be processed independently.
In many cases computing streamlines is actually faster than
traditional integration since each triangle requires only a ras-
terization step versus likely many Runge-Kutta integrations.

Unsurprisingly, the time for an exact closed orbit detec-
tion is highly data dependent. In compressible flows with
non-trivial divergence detecting all individual closed orbits
is reasonably fast. For data sets with extremely low diver-
gence and/or a large number of closed orbits the computa-
tional cost increases significantly. Theoretically, each edge
could represent as many as 232 crossings of the same stream-
line all of which must be traversed sequentially. However,
the approximate closed orbit detection is fast so in practice
we recommend a combination of both techniques.

9. Discussion

Quantized flows represent an important step towards a
new theory of vector fields by combining discrete algorithms
with the approximation power of interpolated fields. This
representation enables graph-based algorithms which extract
typical flow structures consistently and with geometric fi-
delity. Consequently, they have the potential to form the ba-
sis of a new set of analysis techniques that repeat the recent
success of discrete scalar field topology.

While we have focused on PL vector fields and triangu-
lated surfaces, one of the advantages of our new representa-
tion is the fact that is easily extends to different mesh types
and interpolation schemes. By reserving more bits to en-
code the edge number on an interval we believe the exist-
ing data structure can encode flow on any polygonal mesh.
Furthermore, the flow is queried in just two clearly defined
ways: to find zero-crossings and to find exit points of stream-
lines. Thus, the input flow representation could be a black
box solver making it amenable to, for example, higher or-
der interpolation schemes. The main adjustment necessary
would be a more general conversion algorithm as some of
the convenient assumptions, e.g. the limited number of tran-
sition points per edge, would no longer hold. In this man-
ner, quantized flow forms a unifying representation able to
separate the flow encoding used by a simulation from the
analysis within a strict and well-known approximation error.
A complete understanding of the theoretical nature of these
approximation errors remains future work. Finally, since the
edge map representation can encode uncertainty information
as well as time-dependent vector fields [BJB∗12], both con-
cepts can be extend to the quantized version.

Acknowledgements This work is supported in part by
NSF awards IIS-1045032, OCI-0904631, OCI-0906379
and CCF-0702817, and by KAUST Award KUS-C1-
016-04. This work was performed under the auspices
of the U.S. DOE by the Univ. of Utah under con-
tracts DE-SC0001922, DE-AC52-07NA27344, and DE-
FC02-06ER25781, and LLNL under contract DE-AC52-
07NA27344. We thank Guoning Chen, Eugene Zhang, and
Andrzej Szymczak for helping us generate Fig. 9. We are
grateful for data from Jackie Chen (Figs. 10 and 11(b)), Han-
Wei Shen (Fig. 11(a)), and Mathew Maltrud from the Cli-
mate, Ocean and Sea Ice Modelling program at LANL and
the BER Office of Science UV-CDAT team (Figs. 1, 5, 8, 9).
LLNL-CONF-548652.

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.



J. A. Levine, S. Jadhav, H. Bhatia, V. Pascucci, & P.-T. Bremer / A Quantized Boundary Representation of 2D Flows

References

[BJB∗12] BHATIA H., JADHAV S., BREMER P.-T., CHEN G.,
LEVINE J. A., NONATO L. G., PASCUCCI V.: Flow visualiza-
tion with quantified spatial and temporal errors using edge maps.
IEEE Trans. Vis. Comp. Grap. (2012). To appear. 2, 3, 4, 5, 9

[BM06] BARNAT J., MORAVEC P.: Parallel algorithms for find-
ing SCCs in implicitly given graphs. In FMICS/PDMC (2006),
pp. 316–330. 7

[Bre65] BRESENHAM J.: Algorithm for computer control of a
digital plotter. IBM Systems Journal 4, 1 (1965), 25–30. 4

[CDS∗12] CHEN G., DENG Q., SZYMCZAK A., LARAMEE

R. S., ZHANG E.: Morse set classification and hierarchical re-
finement using Conley index. IEEE Trans. Vis. Comp. Grap.
(2012). To Appear. 3, 8

[CMLZ08] CHEN G., MISCHAIKOW K., LARAMEE R. S.,
ZHANG E.: Efficient Morse decompositions of vector fields.
IEEE Trans. Vis. Comp. Grap. 14, 4 (2008), 848–862. 2, 3, 7

[EW10] EFFENBERGER F., WEISKOPF D.: Finding and classi-
fying critical points of 2d vector fields: a cell-oriented approach
using group theory. Computing and Visualization in Science 13
(2010), 377–396. 6

[For98] FORMAN R.: Combinatorial vector fields and dynamical
systems. Math. Z. 228, 4 (1998), 629–681. 2

[GLL91] GLOBUS A., LEVIT C., LASINSKI T.: A tool for visu-
alizing the topology of three-dimensional vector fields. In IEEE
Visualization (1991), pp. 33–41. 1, 2

[GNP∗06] GYULASSY A., NATARAJAN V., PASCUCCI V., BRE-
MER P.-T., HAMANN B.: A topological approach to simplifi-
cation of three-dimensional scalar functions. IEEE Trans. Vis.
Comp. Grap. 12, 4 (2006), 474–484. 2

[GS08] GRINSPUN E., SECORD A.: Introduction to discrete dif-
ferential geometry: the geometry of plane curves. In ACM SIG-
GRAPH ASIA 2008 courses (2008), ACM, pp. 9:1–9:4. 6

[GTS04] GARTH C., TRICOCHE X., SCHEUERMANN G.: Track-
ing of vector field singularities in unstructured 3d time-dependent
datasets. In IEEE Visualization (2004), pp. 329–336. 2

[Hal01] HALLER G.: Lagrangian coherent structures and the
rate of strain in two-dimensional turbulence. Phys. Fluids A 13
(2001), 3365–3385. 1

[HH89] HELMAN J., HESSELINK L.: Representation and display
of vector field topology in fluid flow data sets. IEEE Computer
22, 8 (1989), 27–36. 1, 2, 6

[HRAW07] HELGELAND A., REIF B., ANDREASSEN Ø., WAS-
BERG C.: Visualization of vorticity and vortices in wall-bounded
turbulent flows. IEEE Trans. Vis. Comp. Grap. 13, 5 (2007),
1055–1067. 1

[JBB∗12] JADHAV S., BHATIA H., BREMER P.-T., LEVINE

J. A., NONATO L. G., PASCUCCI V.: Consistent approxima-
tion of local flow behavior for 2D vector fields using edge maps.
In Topological Methods in Data Analysis and Visualization II
(2012), Peikert R., Hauser H., Carr H., Fuchs R., (Eds.), Springer,
pp. 141–160. 2, 3

[LBM∗06] LANEY D., BREMER P. T., MASCARENHAS A.,
MILLER P., PASCUCCI V.: Understanding the structure of
the turbulent mixing layer in hydrodynamic instabilities. IEEE
Trans. Vis. Comp. Grap. 12, 5 (2006), 1053–1060. 2

[LI07] LIU Z., II R. J. M.: Robust loop detection for interactively
placing evenly spaced streamlines. Computing in Science and
Engineering 9, 4 (2007), 86–91. 2

[NJ99] NIELSON G. M., JUNG I.-H.: Tools for computing tan-
gent curves for linearly varying vector fields over tetrahedral do-
mains. IEEE Trans. Vis. Comp. Grap. 5, 4 (1999), 360–372. 5,
8

[RLH11] REININGHAUS J., LÖWEN C., HOTZ I.: Fast combina-
torial vector field topology. IEEE Trans. Vis. Comput. Graph. 17,
10 (2011), 1433–1443. 2

[SP09] SADLO F., PEIKERT R.: Visualizing Lagrangian coherent
structures and comparison to vector field topology. In Topology-
Based Methods in Visualization II (2009), Hege H.-C., Polthier
K., Scheuermann G., (Eds.), Springer, pp. 15–30. 1

[SPP04] SADLO F., PEIKERT R., PARKINSON E.: Vorticity based
flow analysis and visualization for pelton turbine design opti-
mization. In IEEE Visualization (2004), pp. 179–186. 1

[SZ12] SZYMCZAK A., ZHANG E.: Robust Morse decomposi-
tions of piecewise constant vector fields. IEEE Trans. Vis. Comp.
Grap. (2012). To Appear. 3, 8

[Szy11] SZYMCZAK A.: Stable Morse decompositions for piece-
wise constant vector fields on surfaces. Comp. Grap. Forum 30,
3 (2011), 851–860. 3

[TSH01] TRICOCHE X., SCHEUERMANN G., HAGEN H.: Con-
tinuous topology simplification of planar vector fields. In Proc. of
IEEE Visualization ’01 (2001), pp. 159–166. 2, 6

[TWHS03] THEISEL H., WEINKAUF T., HEGE H.-C., SEIDEL

H.-P.: Saddle connectors - an approach to visualizing the topo-
logical skeleton of complex 3D vector fields. In Proc. of IEEE
Visualization ’03 (2003), pp. 225–232. 2

[TWHS04] THEISEL H., WEINKAUF T., HEGE H.-C., SEIDEL

H.-P.: Grid-independent detection of closed stream lines in 2D
vector fields. In Proceedings of the Vision, Modeling, and Visu-
alization Conference 2004 (VMV) (2004), pp. 421–428. 2

[TWHS05] THEISEL H., WEINKAUF T., HEGE H.-C., SEIDEL

H.-P.: Topological methods for 2D time-dependent vector fields
based on stream lines and path lines. IEEE Trans. Vis. Comp.
Grap. 11, 4 (2005), 383–394. 2

[WS01] WISCHGOLL T., SCHEUERMANN G.: Detection and vi-
sualization of closed streamlines in planar flows. IEEE Trans.
Vis. Comp. Grap. 7, 2 (2001), 165–172. 2

[WS02] WISCHGOLL T., SCHEUERMANN G.: Locating closed
streamlines in 3D vector fields. In Symposium on Data Visuali-
sation (2002), VISSYM ’02, Eurographics, pp. 227–232. 2

c© 2012 The Author(s)
c© 2012 The Eurographics Association and Blackwell Publishing Ltd.


