
Visualizing Particle-Based Simulation Data on the Desktop

Christiaan P. Gribble
School of Computing
University of Utah

James E. Guilkey
Department of Mechanical

Engineering
University of Utah

Abraham J. Stephens
School of Computing
University of Utah

Steven G. Parker
School of Computing
University of Utah

Figure 1: Particle-based simulation. Using particle methods, scientists can model complex physical phenomena and solve time-dependent
problems of various scales. Illustrated here are the results of several such simulations, including (from left to right): an aluminum sphere
impacting the end of an aluminum cylinder, a steel projectile penetrating a iron block, crack propagation in a solid block, and a container
of high-energy explosives rupturing. Typical simulations contain millions of particles across many time steps, and our system visualizes large,
time-varying particle datasets like these at interactive rates on desktop systems equipped with commodity graphics hardware.

ABSTRACT

Particle-based simulation methods are used to model a wide range
of complex phenomena and to solve time-dependent problems of
various scales. Effective visualization of particle-based simula-
tion data requires communicating subtle changes in the three-
dimensional structure, spatial organization, and qualitative trends
within a simulation as it evolves, as well as allowing easier naviga-
tion and exploration of the data through interactivity. We describe
an approach to rendering large, time-varying particle datasets using
commodity graphics hardware on desktop systems. We advance the
current state-of-the-art by bringing visualization of particle-based
simulation data to the desktop. Our approach performs competi-
tively with current interactive ray tracing systems and runs on hard-
ware that is a fraction of the cost, making particle visualization and
data exploration more accessible.

CR Categories: I.3.4 [Computer Graphics]: Graphics
Utilities—Application packages I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing,
and texture

Keywords: particle-based simulation, particle visualization, inter-
active rendering, occlusion algorithms

1 INTRODUCTION

Particle methods are commonly used to simulate complex phe-
nomena in many scientific domains, including astronomy, biol-
ogy, chemistry, and physics. Using techniques such as particle-
in-cell [21], molecular dynamics [2, 31], smoothed particle hydro-
dynamics [14, 29, 30], element-free Galerkin [6], and discrete el-
ement methods [13, 35], computational scientists model such phe-
nomena as a system of discrete particles that obey certain laws and

possess certain properties. These methods are particularly attrac-
tive because they can be used to solve time-dependent problems on
scales from the atomic to the cosmological. Figure 1 illustrates the
results of several particle-based simulations that model a variety of
physical systems.

The material point method (MPM) [32, 33] is a particular
particle-in-cell simulation method. MPM is well-suited to prob-
lems with high deformations and complex geometries, and offers
advantages over grid based methods for a certain class of prob-
lems [4]. Like other quasi-meshless techniques, MPM represents
solid objects using collections of Lagrangian particles, or material
points, each of which represents a part of the domain. Each particle
has associated with it the properties of the material it represents, as
well as its physical state, including position, mass, velocity, tem-
perature, stress, and any other quantities of interest. During the
simulation, the properties of each particle are projected to a regular
structured grid, where the equations of motion are solved using ei-
ther explicit [32] or implicit [19] time integration. The results from
each time step are interpolated back to the particles, updating their
physical state. Figure 2 illustrates the basic elements of a simple
MPM simulation.

Investigators use particle visualization to assist efforts in data
analysis and feature detection, as well as in debugging ill-behaved
solutions. One approach to visualization of data from particle-based
simulations interpolates particle values to a three-dimensional grid,
possibly the same grid used during the computation, as in the case
of MPM. The transformed data is then visualized using standard
methods such as isosurface rendering [28] and direct volume ren-
dering [25].

Grid-based representations are suitable for some, but not all, vi-
sualization tasks. The limited resolution of the grid itself can be
problematic: fine structural details within the data may be lost.
To alleviate this issue, the grid can be refined, either uniformly or
adaptively. Scientists are often interested in simultaneously exam-
ining both the large- and small-scale structure within these datasets,
however, so grid-based techniques may not be appropriate. Ad-
ditionally, interpolation may hide features or problems present in
the original particle data. For example, small particles that have
extremely high temperatures or velocities may be invalid, and the

Figure 2: The material point method. Collections of Lagrangian par-
ticles, or material points, are used to represent solid objects. Particle
state is projected to a grid, where the computations are performed.
The results of each calculation are then interpolated back to the
particles, updating their physical state.

influence of such particles can be masked by interpolation to the
grid. Moreover, interpolation and isosurface extraction can be a
time-consuming task, particularly for large datasets.

Particles can also be represented directly by simple, iconic
shapes called glyphs. For many applications, a sphere or an
ellipsoid is a natural representation of an individual particle.
Glyph-based visualizations are able to preserve the fine details
within the simulation data while maintaining the large-scale three-
dimensional structure of the object the particles represent. We have
found that glyph-based representations are particularly useful for
the data analysis and feature detection tasks scientists often per-
form.

Frequently, millions of particles are required to capture the be-
havior of a system accurately. Such massive simulations lead to
very large, very complex datasets, making interactive visualization
a difficult task. Moreover, the need to simultaneously visualize both
the large- and small-scale features of the data further exacerbate
these issues. An effective particle visualization method will com-
municate subtle changes in the three-dimensional structure, spa-
tial organization, and qualitative trends within a simulation as it
evolves, as well as enable easier navigation and exploration of the
data through interactivity.

Recently, Bigler et al. [7] described a system that represents the
current state-of-the-art in particle-based data visualization. Their
system leverages an interactive ray tracer running on large multi-
processor shared-memory platforms to visualize tens to hundreds
of time steps, each with millions of particles, at interactive rates.
While this approach satisfies the requirements of particle visualiza-
tion, the hardware costs imposed by such a system are often pro-
hibitive and impede accessibility. We address this issue and present
an approach to rendering large, time-varying particle datasets us-
ing commodity graphics hardware on desktop systems. Our system
satisfies all of the requirements of effective particle-based data vi-
sualization and is more accessible than previous systems.

2 RELATED WORK

Our approach to particle visualization leverages results from the
computer graphics, scientific visualization, and perception litera-

ture in order to achieve a system featuring data exploration capabil-
ities and performance competitive with systems based on interactive
ray tracing.

2.1 Sphere Rendering

In early work by Krogh et al. [24], massively parallel processors
were used to render large particle datasets in parallel. This work
recognized the need to simultaneously examine both macro- and
microscopic features within the data, and the system gave inves-
tigators the ability to do so with large datasets. More recently,
Liang et al. [27] also take a parallel approach to particle visual-
ization. In particular, a parallel rendering cluster is used to visu-
alize datasets containing as many as 2563 particles at interactive
frame rates. Using only seven rendering nodes, this system achieves
9 frames per second when visualizing 2563 particles. The system
also handles larger datasets (5123 particles), but cannot do so inter-
actively, achieving only about 1 frame per second.

Zemcik et al. [38] describe a hardware design tailored for ren-
dering single spheres at very high speeds. They estimate that their
design is capable of rendering up to 100 million spheres per second,
which would enable large particle datasets to be rendered in real-
time. Gumhold [20] also tackles the problem of rendering spheres
and ellipsoids in hardware. This work presents a simple solution
to the problem of ray-ellipsoid intersection using the vertex and
fragment processing capabilities of commodity graphics hardware.
Additionally, this method can be combined with software-based ac-
celeration techniques because the fragment processing steps occur
toward the end of the rendering pipeline. We harness this function-
ality to visualize large, time-varying particle datasets at interactive
rates. Other visualization systems, for example, TexMol [3], also
employ programmable graphics hardware to render a variety of ge-
ometric glyphs common to scientific visualization tasks.

2.2 Visibility Culling

Visibility culling algorithms attempt to reduce the number of prim-
itives sent to the graphics hardware, saving the cost associated with
rendering objects that do not contribute to the final image. View-
frustum culling (VFC) in one such technique that quickly culls ob-
jects outside the view volume. Unfortunately, VFC does not elim-
inate objects that are occluded by other objects and so does not
prevent overdraw. This problem, in which an area in image-space
is covered than once, wastes computational resources in both the
vertex and fragment processing stages found in current graphics
hardware.

Occlusion culling algorithms attempt to address the overdraw
problem and can be classified either asfrom-region (offline) or
from-point (online) algorithms. From-region occlusion culling,
which include the algorithms proposed by Airey et al. [1], Teller
and Sequin [34], and Leyvand et al. [26], compute a potentially
visible set (PVS) of objects in a preprocessing phase. Typically, a
fixed subdivision of the scene is used, and the PVS for a given view-
point can be determined quickly during runtime. In contrast, on-
line occlusion culling techniques, which include those described by
Greene et al. [15], Zhang et al. [39], Bittner et al.[9], and Klosowski
and Silva [23], apply a visibility computation for each viewpoint
encountered during rendering.

Many from-point algorithms employ the capabilities of graph-
ics hardware during visibility computation. For example,
Zhang et al. [39] propose hierarchical occlusion maps that make use
of hardware texturing, while Wonka et al. employ occluder shadows
for from-point visibility [36] and online from-region visibility [37].
Other algorithms exploit hardware occlusion queries [5]. For ex-
ample, Hillesland et al. [22] employ hardware occlusion queries
and a uniform, possibly nested, grid to determine visible geometry.

This method exploits neither spatial nor temporal coherence dur-
ing rendering, and is restricted to regular spatial subdivision data
structures. Coherent hierarchical culling (CHC) [10] overcomes
both of these problems and provides an adaptation of earlier im-
provements [8] that is tailored for hardware occlusion queries. We
explore the performance characteristics of several occlusion culling
techniques, including CHC, in the context of particle visualization.

2.3 Enhancing Particle Visualization

A recent psychophysical study by Gribble and Parker [16] demon-
strates that illumination effects from diffuse interreflection posi-
tively and significantly impact a viewer’s ability to correctly evalu-
ate the three-dimensional structure and spatial organization within
particle datasets. These results motivate the use of advanced
shading models in current systems based on interactive ray trac-
ing [7, 16]. In these systems, a preprocessing phase samples the
illumination across each particle using a Monte Carlo path tracer
and stores the results in per-particle illumination maps, called pre-
computed luminance textures (PLTs), which are then mapped to
the particles during interactive visualization. The memory require-
ments for storing PLTs are often prohibitive and limit the ability
of investigators to explore large, time-varying datasets [7]. Com-
pressing the PLTs using vector quantization or principal compo-
nents analysis address this issue [16]. This visualization process
enables interactive rendering of large particle datasets with effects
from advanced shading models. In addition, Bigler et al. [7] use
image-based silhouette edges to emphasize a set of view-dependent
boundaries, further highlighting the three-dimensional structure of
the particles. We implement both of these advanced particle vi-
sualization methods in graphics hardware via multi-pass fragment
processing.

3 SYSTEM I MPLEMENTATION

Our system satisfies the requirements of effective particle visualiza-
tion and offers advanced data exploration capabilities and interac-
tive performance on desktop systems. We now discuss the critical
components of our approach, which include:

• rendering high-quality particle glyphs,

• achieving interactive performance with commodity graphics
hardware,

• handling time-varying data while maintaining interactivity,
and

• supporting data exploration and enhanced visualization tech-
niques.

These components, taken in combination, form the basis of our in-
teractive particle visualization system.

3.1 Rendering High-Quality Particle Glyphs

The need to simultaneously visualize both large- and small-scale
structures within the data requires that each particle be rendered us-
ing a high-quality representation. One approach would simply ren-
der a highly tessellated, view-aligned hemisphere for each particle.
However, because each time step contains millions of particles, the
required geometry would quickly overwhelm the system and result
in poor performance.

To alleviate this issue while maintaining particle quality, we em-
ploy view-aligned billboards as the base primitive. Each billboard
is rendered efficiently using the point sprite rendering capabilities
of modern graphics hardware. Individual point sprites are specified

Figure 3: High-quality particle rendering with point sprites. View-
aligned billboards, or point sprites, serve as the base primitive. An in-
dividual particle is specified by a vertex position and other per-vertex
attributes that control the particle’s representation (left). Rendering
high-quality particle glyphs in an efficient manner enables simultane-
ous visualization of both large- and small-scale features within the
data (right).

by a vertex corresponding to the particle’s position. Per-vertex at-
tributes control other aspects of the particle’s representation, includ-
ing its radius and the scalar value used for color mapping. Vertex
and fragment programs manipulate this data to render a high-quality
representation of each particle in an efficient manner.

The vertex program performs three simple operations on each
particle. First, it passes the particle’s radius and associated scalar
value to the fragment program without modification. (These values
are used for the per-fragment lighting and depth correction opera-
tions in the fragment program, described below.) Second, the vertex
program applies the current modelview and projection matrices to
the vertex to determine the particle’s final position in the viewing
coordinate space. Third, it computes a point on the particle’s sur-
face by offsetting the vertex by the particle’s radius and applying
the projection matrix to the resulting point. The perspective-correct
point size is simply the difference between the surface point and the
vertex position in the viewing coordinate space.

The fragment shader is more complex due to the per-fragment
lighting and depth correction operations necessary for rendering
high-quality spheres. First, the fragment’s normal is determined
by indexing a two-dimensional quantized normal map. The alpha
channel of this map indicates whether the texel is within the bound-
ary of the sphere; if it is not, the current fragment is culled and
processing terminates. Otherwise, the value is dequantized to pro-
duce the fragment’s surface normal. Second, per-fragment lighting
is computed by summing the diffuse and specular components of a
Phong-style shading model. The surface color, which is determined
by indexing a one-dimensional texture using the scalar value associ-
ated with the particle, is multiplied by the incident light at the point
to produce the final fragment color. Third, the fragment’s depth is
corrected by applying the projection matrix to the z-component of
the particle position in modelview coordinates, offset by the radius.

The results of this process are illustrated in Figure 3. As can
be seen, point sprites provide a way to render high-quality particle
glyphs in an efficient manner.

3.2 Achieving Interactive Performance

The per-fragment lighting and depth correction steps occur toward
the end of the rendering pipeline, so the particle rendering process
described above can be combined with software-based acceleration
techniques to reduce the rendering workload in each frame. We
employ three visibility culling algorithms to accelerate particle ren-
dering.

A first approximation to the set of potentially visible particles
can be obtained by simple view-frustum culling (VFC). With this
technique, particles outside the view volume are quickly culled,
saving the cost associated with rendering particles that are not vis-

ible. While each of the particles can be tested against the view
volume individually, it is more efficient to cull large groups of par-
ticles by testing a bounding primitive encapsulating each group. In
our implementation, each bounding primitive corresponds to a node
in a spatial subdivision structure such as an octree or bounding vol-
ume hierarchy.

VFC can be combined with other, more sophisticated culling
techniques that utilize hardware-based occlusion queries. Hier-
archical stop-and-wait occlusion culling (HSW) is one such al-
gorithm. In this method, the spatial subdivision structure is tra-
versed, depth-first, and an occlusion query is issued for nodes
whose bounding boxes either intersect or are contained within the
view frustum. The CPU waits for the result of the query before pro-
ceeding. When the result is available, the number of pixels covered
by the proxy geometry is used to determine the node’s visibility. If
the node is not visible, its subtree is culled (interior node) or the
associated particles are not rendered (leaf node) and traversal con-
tinues. Otherwise, the node is visible, and the algorithm continues
either by traversing the node’s children in a front-to-back order (in-
terior node) or by rendering the associated particles (leaf node).

Hardware occlusion queries typically have a high latency, which
leads to a load balancing problem between the CPU and the GPU.
Coherent hierarchical culling (CHC) [10] is designed to address this
issue. CHC exploits temporal coherence in a node’s visibility clas-
sification when rendering arbitrary occluders by reusing the results
of occlusion queries issued in the previous frame. Visibility infor-
mation is maintained with each node in a spatial subdivision struc-
ture. This simple solution also reduces query overhead: previously
visible interior nodes are processed without issuing an occlusion
query because the visibility status of such nodes can easily be de-
termined from their children. Queries are issued only for previously
visible leaf nodes and for the largest possible occluded nodes in the
hierarchy.

In addition to these occlusion culling algorithms, we exploit a
particular use case of particle visualization to further accelerate
rendering performance under certain conditions. Investigators are
often interested in isolating particular subsets of the particles that
possess physical properties falling within some range of interest.
We exploit this constraint during traversal of the spatial subdivision
structure. If the range of values contained within a node does not
overlap the currently valid range, the node is skipped and its subtree
is culled.

3.3 Handling Time-varying Data

We render time-varying data by treating each time step individually:
A separate spatial subdivision structure is constructed for each time
step as the corresponding data is loaded. The size of the structure is
typically very small compared to size of the data itself, so the over-
head of maintaining a separate structure for each time step is quite
low. The data is animated temporally by simply cycling through
each time step in successive frames.

The time-varying nature of particle-based simulation data
presents some interesting challenges to maintaining interactive per-
formance. Each time step typically contains millions of particles,
and there are often tens or hundreds of time steps, so the sheer
number of particles can be problematic.The naive use of the ac-
celeration techniques described above often mitigates this is-
sue quite effectively. However, using a naive approach to CHC
in which separate visibility information is maintained for each
node and each time step results in a loss of frame-to-frame co-
herence because many frames may have been rendered before
a given time step is visible again during periods of temporal
animation. To overcome this issue, we introduce a simple mod-
ification to the basic CHC algorithm that assumes a one-to-one
correspondence between nodes of the spatial subdivision struc-

(a) Color mapping

(b) Particle isolation

(c) Dynamic lighting

Figure 4: Interactive data exploration and analysis. These capabilities
allow investigators to interrogate the data based on the physical state
of each particle and contribute to an investigator’s understanding of
the structure, organization, and qualitative trends within the data.

tures in each time step and stores only one set of visibility infor-
mation across all time steps.The visibility information for a given
node is always used, even if that information was determined using
the result of an occlusion query issued for the corresponding node
in the previous time step. This approach (which we call CHC-TV,
for time-varying data) often results in better coherence when the
data is animated because changes in the actual particle positions
tend to occur slowly between time steps.

3.4 Supporting Data Exploration and Enhanced Visualization

As the preceding discussion indicates, visualizing large, time-
varying particle datasets presents many challenges to achieving
interactive performance, but the complexity inherent in the data
presents many data analysis and exploration challenges.

Basic data exploration and analysis tools such as color map-
ping and particle isolation, discussed above, allow investigators
to interrogate the data based on the physical state associated
with each particle. Figure 4 illustrates some of these features,
including color mapping, particle isolation, and dynamic light-
ing. Each of these features can be controlled interactively at
run time and contribute to the understanding of the structure,
organization, and qualitative trends within the data.

Research has shown that particle visualization can be also en-
hanced by advanced shading models such as ambient occlusion and
physically based diffuse interreflection [16], as well as by image-
based silhouette edges [7]. Our system supports each of these visu-
alization modes via multi-pass fragment processing. In particular,
precomputed luminance textures that have been compressed using

(a) Compressed precomputed luminance textures (b) Image-based silhouettes

Figure 5: Enhancing particle visualization. Advanced shading models such as ambient occlusion and physically based diffuse interreflection lead
to enhanced perception of particle datasets (a). Additionally, silhouette edges can be used to accentuate a set of view-dependent boundaries.
A user-defined threshold controls the edges that are displayed, enabling investigators to explore different particle groupings (b).

Dataset Time steps Total particles Total data size
[millions] [MB]

Bullet 3 8.4 143.5
Crack 1 34.9 666.9
Cylinder 2 0.8 26.1
Fireball 21 18.9 304.9
Foam 1 7.2 136.5
Thunder 55 154.0 4.7 (GB)
Torso 10 178.0 5.3 (GB)

Table 1: MPM datasets. The results of particle simulations from a
range of physical problems are featured throughout this work. Using
our approach, investigators can explore large, time-varying particle
datasets like these on their desktop systems.

principal component analysis (PCA) can be reconstructed by the
graphics hardware and mapped to the particles during interactive
rendering. Similarly, image-based silhouettes can be computed by
the graphics hardware and applied to the visualizations at interac-
tive rates. In a two-pass algorithm, the graphics hardware first ren-
ders the geometry to a depth buffer, and then determines the edges
by applying a Laplacian kernel to the results. These advanced visu-
alization features are illustrated in Figure 5.

4 RESULTS

We explore the utility and performance of our system using a vari-
ety of MPM simulation datasets. We emphasize, however, that our
approach is applicable to the results of other particle-based methods
such as particle-in-cell, molecular dynamics, smoothed particle hy-
drodynamics, element-free Galerkin, and discrete element methods.
Table 1 lists the properties of the example datasets, and Figures 4
and 5 illustrate the data exploration and advanced visualization fea-
tures of our system using these datasets.

4.1 Promoting Insight into Particle-Based Simulations

Visualization of simulation data by an investigator typically serves
one of three purposes, data analysis, code development and gener-
ation of presentation or publication quality images. The ability to
interact with high quality renderings of large scale particle datasets
serves each of these purposes. For example, simulations using the
foam geometries (as shown in Figure 4c) involve compressing the
samples with the rigid plate at the top of the model. Compression is
carried out to rouhgly the level of “full densification”, or the point at

which the compressed material occupies a volume equal to the ini-
tial volume of the constituent material. Throughout the simulation,
one can gather as output not only the various states of deformation
of the foam, but also the reaction force at the surfaces bounding the
domain. By using interactive visualization tools, it is possible to
correlate specific events in the simulation with the reaction force at
the boundaries. An example of such an event is the collision of one
foam strut either with another strut or with the domain boundary.
By determining visually exactly when these events occur, it is pos-
sible to recognize what relationship they have with the features on
the force-displacement curve.

While code development ideally refers to adding new capabili-
ties, debugging ill-behaved solutions is another obvious, but impor-
tant, consequence of highly accessible particle visualization tools.
Another important application of the MPM code involves studying
the effect of mechanical loading on angiogenesis, the growth of mi-
cro blood vessels in a collagen matrix. There, initial geometry is
constructed by transforming three-dimensional images of vessels
grown in-vitro into a particle representation. Images of samples
that have been selectively stained with a fluorescent tag are col-
lected using scanning-confocal microscopy. These images are then
thresholded according to intensity, and for each bright voxel, a par-
ticle with properties of vessel is created, and for voxels below the
threshold value, a particle with properties of collagen is created.
Mechanical loading is simulated by prescribing the displacment of
a rigid plate at the top of the sample. Ultimately, the goal is to
correlate sprouting locations in a specific sample with the stress
patterns predicted by simulation. Early in this investigation, it was
recognized that the computed reaction force holding the sample in
place during loading was behaving in an unusual and unpredictable
manner. Only upon viewing the particle data directly (13.6 million
particles in this case) was it evident that as particles moved through
the computational grid, some were subject to very different levels
of strain when they should have been nearly uniform. Recognition
of this behavior led to modification of the algorithm, as described
by Guilkey et al. [18]. When this same data was interpolated to
the computational grid and volume rendered, these issues were not
evident because interpolation had smoothed the non-uniformities.

Our approach to visualization of data from particle-based sim-
ulations brings powerful data analysis and debugging tools to the
investigator’s desktop, enabling interaction with millions of parti-
cles across the entire simulation. Moreover, because scientists can
interact with the whole dataset, a clear understanding of the parti-
cles’ physical state, as well as their spatial relationship to the full
computational domain, can be achieved. These characteristics also
make generation of high quality movies and still images, for pre-
sentation and publication, fast and straightforward. In particular,

the speed allows a user to quickly find the optimal view for which
all frames of a movie will convey the most information.

4.2 Characterizing Interactive Performance

Interactivity is a key component of the particle visualization pro-
cess. As discussed in Section 3, the vertex and fragment process-
ing capabilities of commodity graphics hardware, combined with
software-based acceleration techniques, enable interactive visual-
ization of large, time-varying datasets.

We examine the performance of our system under each of the
three occlusion culling algorithms described in Section 3. We also
compare performance against to additional algorithms: (1) an “ex-
act” algorithm that renders the exact visible set in each frame, as
determined by a preprocessing phase; and (2) an “ideal” algorithm
that renders only the particles within visible nodes, as determined
by HSW occlusion culling, without performing any visibility tests.
The the exact algorithm provides an upper-limit for a given inter-
active session on a given platform (no rendering algorithm run-
ning on the same hardware can produce the correct results any
faster), which ideal algorithm provides an upper-limit on perfor-
mance with respect to the given spatial subdivision structure (no
occlusion culling algorithm using the same structure can be faster).

For the tests, we utilize a dual Opteron system with 8 GB of
physical memory and an Nvidia 7800 GT graphics card. Using pre-
recorded interactive sessions, images were rendered at 1024x768
pixels using an octree (maximum depth restricted to 4). Table 2
shows the results for two datasets, Fireball and Thunder, and each
algorithm, averaged over the session. Figure 6 details the behavior
of the Thunder dataset graphically.

CHC/CHC-TV typically achieve the best performance, despite
rendering more particles per frame than HSW. This result is a direct
consequence of the algorithm’s ability to hide the high latency of
hardware-based occlusion queries by rendering previously visible
geometry while waiting on outstanding query results. Moreover,
CHC-TV maintains coherence during periods of temporal anima-
tion, and as as result, provides better average performance over the
naive implementation of CHC for time-varying data.

5 CONCLUSIONS AND FUTURE WORK

Effective visualization of particle-based simulation data presents
many interesting and difficult challenges, both from an applica-
tions science and scientific visualization point of view. We have
described an approach to rendering large, time-varying particle
datasets using commodity graphics hardware on desktop systems
at interactive rates. We have demonstrated the effectiveness of our
approach using the results of several MPM simulations, but our ap-
proach is applicable to the results of other particle-based simulation
methods as well.

In addition, we have characterized the performance of three oc-
clusion culling algorithms in the context of particle visualization.
This exploration led to a simple modification of the coherent hi-
erarchical culling algorithm that often provides better performance
when rendering time-varying data.

Our approach performs competitively with current interactive
ray tracing systems while providing the same capabilities for the
data analysis, feature detection, and code development tasks that in-
vestigators perform. Moreover, our system runs on hardware that is
a fraction of the cost of large multi-processor shared-memory plat-
forms, making particle visualization and data exploration more ac-
cessible. Our system advances the current state-of-the-art by bring-
ing visualization of large, time-varying particle datasets to the desk-
top.

There remain several open areas of interest. For example, the re-
sults of rendering the exact visible set indicate that improving per-

formance may be possible by obtaining a better approximation to
the visible set in each frame than current techniques provide. One
possibility is to explore more aggressive occlusion culling tech-
niques that exploit assumptions about the structure of the under-
lying data. In addition, performance is influenced by the charac-
teristics of the spatial subdivision structure used during traversal,
and some structures perform better than others under certain condi-
tions. Adaptively choosing the structure used in a given frame using
performance-based heuristics may be one way to tailor interactive
performance to the demands of an interactive session at runtime.
Exploring the trade-offs among additional spatial subdivision struc-
tures may reveal more insights useful to such an approach. Finally,
multi-modal visualization of particle and volumetric data, such as a
container (particle-based simulation) in a pool fire (computational
fluid dynamics simulation), would be useful on desktop platforms.
Commodity graphics hardware has long been used for volume ren-
dering, so combining this visualization modality with the particle
visualization methods we have described would be valuable.

ACKNOWLEDGMENTS

We thank Biswajit Banerjee of the University of Utah for providing
the Bullet and Cylinder datasets (Figures 1, 3, 4, and 5). We are
indebted to Jerry Seidler and Erin Miller, both of the University of
Washington, and to Scott Bardenhagen, of Los Alamos National
Laboratory, for the Foam dataset (Figure 4). Finally, we thank the
Scientific Computing and Imaging Institute’s Render Group for the
useful feedback on early drafts of this paper. This work was funded
by the DOE ASC program.

REFERENCES

[1] J. M. Airey, J. H. Rohlf, and Jr. F. P. Brooks. Towards image realism
with interactive update rates in complex virtual building environments.
In Symposium on Interactive 3D Graphics, pages 41–50, 1990.

[2] B. J. Alder and T. E. Wainwright. Studies in molecular dynamics. i.
genearl method.The Journal of Chemical Physics, 31(2):459–466,
August 1959.

[3] C. Bajaj, P. Djeu, V. Siddavanahalli, and A. Thane. Texmol: Inter-
active visual exploration of large flexible multi-component molecular
complexes. InProceedings of IEEE Visualization 2004, pages 243–
250, 2004.

[4] S. G. Bardenhagen, J. U. Brackbill, and D. Sulsky. The material-point
mehod for granular mechanics.Comput. Methods Appl. Mech. Engrg.,
187:529–541, 2000.

[5] D. Bartz, M. Meissner, and T. Huttner. Extending graphics hardware
for occlusion queries in opengl. InProceedings fo the 1998 Workshop
on Graphics Hardware, pages 97–104, 1998.

[6] T. Belytschko, Y. Y. Lu, and L. Gu. Element-free galerkin meth-
ods. International Journal for Numerical Methods in Engineering,
37(2):229–256, 1994.

[7] J. Bigler, J. Guilkey, C. Gribble, S. Parker, and C. Hansen. A case
study: Visualizing material point method data. InProceedings of
the Eurographics/IEEE Symposium on Visualization, To appear, May
2006.

[8] J. Bittner and V. Havran. Exploiting coherence in hierarchical visi-
bility algorithms. Journal of Visualization and Computer Animation,
12:277–286, 2001.

[9] J. Bittner, V. Havran, and P. Slavik. Hierarchical visibility culling with
occlusion trees. InProceedings of Computer Graphics International
’98, pages 207–219, 1998.

[10] J. Bittner, M. Wimmer, H. Piringer, and W. Purgathofer. Coherent
hierarchical culling: Hardware occlusion queries made useful.Com-
puter Graphics Forum (Proc. of Eurographics 2004), 23(3):615–624,
September 2004.

[11] S. Coorg and S. Teller. Temporally coherent conservative visibility.
In Proceedings of the Twelfth Annual ACM Symposium on Computa-
tional Geometry, pages 78–87, 1996.

[12] S. Coorg and S. Teller. Real-time occlusion culling for models with
large occluders. InProceedings of the Symposium on Interactive 3D
Graphics, pages 231–238, 1997.

[13] P. A. Cundall. A computer model for simulating progressive large
scale movements in block rock systems. InSymp. Intl. Society of Rock
Mechanics, 1971.

[14] R. A. Gingold and J. J. Monaghan. Smoothed particle hydronamics—
theory and application to non-spherical stars.Royal Astronomical So-
ciety, Monthly Notices, 181:375–389, November 1977.

[15] N. Greene, M. Kass, and G. Miller. Hierarchical z-buffer visibility. In
Proceedings of Siggraph ’93, pages 231–238, 1993.

[16] C. Gribble and S. Parker. Enhancing interactive particle visualization
with advanced shading models. InProceedings of the Third Sympo-
sium on Applied Perception in Graphics and Visualization, Submitted
for publication, 2006.

[17] J. Guilkey and J. Weiss. An implicit time integration strategy for use
with the material point method. InProceedings from the First MIT
Conference on Computational Fluid and Solid Mechanics, June 2001.

[18] J. E. Guilkey, J. A. Hoying, and J. A. Weiss. Computational modeling
of multicellular constructs with the material point method.Journal of
Biomechanics, To appear, 2006.

[19] J. E. Guilkey and J. A. Weiss. Implicit time integration for the mate-
rial point method: Quantitative and algorithmic comparisons with the
finite element method.Int. J. Num. Meth. Eng., 57:1323–1338, 2003.

[20] S. Gumhold. Splatting illuminated ellipsoids with depth correction. In
Proceedings of 8th International Fall Workshop on Vision, Modelling
and Visualization 2003, pages 245–252, November 2003.

[21] F. H. Harlow. The particle-in-cell method for fluid dynamics.Methods
for Computational Physics, 3:319–343, 1964.

[22] K. Hillesland, B. Salomon, A. Lastra, and D. Manocha. Fast and sim-
ple occlusion culling using hardware-based depth queries, September
2002.

[23] J. T. Klosowski and C. T. Silva. The prioritized-layered projection al-
gorithm for visible set estimation.IEEE Transactions on Visualization
and Computer Graphics, 6(2):108–123, 2000.

[24] M. Krogh, J. Painter, and C. Hansen. Parallel sphere rendering.Par-
allel Computing, 23(7):961–974, 1997.

[25] M. Levoy. Display of surfaces from volume data.IEEE Computer
Graphics and Applications, 8(3):29–37, 1988.

[26] T. Leyvand, O. Sorkine, and D. Cohen-Or. Ray space factorization for
from-region visibility. ACM Transactions on Graphics, 22(3):595–
604, 2003.

[27] K. Liang, P. Monger, and H. Couchman. Interactive parallel visuliza-
tion of large particle datasets. InEurographics Symposium on Parallel
Graphics and Visualization, pages 111–118, 2004.

[28] W. E. Lorensen and H. E. Cline. Marching cubes: a high resolution 3d
surface construction algorithm. InInternational Conference on Com-
puter Graphics and Interactive Techniques, pages 163–169, 1987.

[29] L. B. Lucy. A numerical approach to the testing of the fission hypoth-
esis.Astronomical Journal, 82:1013–1024, December 1977.

[30] J. J. Monaghan. Smoothed particle hydronamics.Annual review of
astronomy and astrophysics, 30:543–574, 1992.

[31] D. C. Rapaport.The Art of Molecular Dynamics Simulation. Cam-
bridge University Press, 2004.

[32] D. Sulsky, S. Zhou, and H. L. Schreyer. A particle method for his-
tory dependent materials.Computer Methods in Applied Mechanical
Engineering, 118:179–196, 1994.

[33] D. Sulsky, S. Zhou, and H. L. Schreyer. Application of a particle-in-
cell method to solid mechanics.Computer Physics Communications,
87:236–252, 1995.

[34] S. J. Teller and C. H. Sequin. Visibility preprocessing for interactive
walkthroughs. InProceedings of Siggraph ’91, pages 61–69, 1991.

[35] J. R. Williams, G. Hocking, and G. G. W. Mustoe. The theoretical
basis of the discrete element method. InNumerical Methods of Engi-
neering, Theory and Applications, January 1985.

[36] P. Wonka, M. Wimmer, and D. Schmalstieg. Visibility preprocess-
ing with occluder fusion for urban walkthroughs. InProceedings of
Eurographics Workshop on Rendering, pages 71–82, 2000.

[37] P. Wonka, M. Wimmer, and F. X. Sillion. Instant visibility. InPro-
ceedings of Eurographics ’01, pages 411–421, 2001.

[38] P. Zemcik, P. Tisnovsky, and A. Herout. Particle rendering pipeline.
In Proceedings of the 19th Spring Conference on Computer Graphics,
pages 165–170, 2003.

[39] H. Zhang, D. Manocha, T. Hudson, and III K. E. Hoff. Visiblity
culling using hierarchical occlusion maps. InProceedings of Siggraph
’97, pages 77–88, 1997.

Dataset Method Occlusion Queries Wait time Particles Rendered Frame time Speedup
[ms] [ms]

Fireball VFC — — 643296 73.76 1.00
HSW 1541 46.07 218321 79.22 0.93
CHC 1423 7.40 250246 52.82 1.40

CHC-TV 1392 6.11 244200 53.89 1.36
Ideal — — 210453 26.03 2.83
Exact — — 27812 4.70 15.69

Thunder VFC — — 2689380 264.48 1.00
HSW 1471 52.08 357709 102.69 2.58
CHC 1488 5.29 394507 68.99 3.83

CHC-TV 1349 4.02 382918 69.06 3.83
Ideal — — 358447 33.86 7.82
Exact — — 42114 5.21 50.76

Table 2: Comparing occlusion culling algorithms. Several pertinent characteristics of each algorithm have been averaged over the given
interactive session. In general, CHC/CHC-TV provide the best performance of the online occlusion culling algorithms, despite rendering more
particles than HSW. Better performance results from the algorithm’s ability to hide the high-latency of occlusion queries behind useful work.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200 250 300 350 400 450 500

To
ta

l f
ra

m
e

tim
e

Frame number

VFC
HSW
CHC

CHC-TV
Ideal

Exact

Frame 0 Frame 119 Frame 237 Frame 355 Frame 474

Figure 6: Characterizing interactive performance. This graph shows the results of rendering the Thunder dataset (55 time steps, 154 million
particles) over a prerecorded interactive session. Our systems achieves roughly 10 frames per second on an Nvidia 7800 GT graphics card and
offers a highly interactive environment for navigating and exploring large, time-varying particle-based simulation datasets.

