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Abstract

An approach to solving tightly coupled, large deformation, fluid structure interac-
tion problems is presented. The approach uses a theoretical model for the averaged
behavior of multiple materials, called the “multifield model”. Solutions to the mul-
tifield model equations are obtained using a scheme that combines a Lagrangian
technique called the “Material Point Method” with a multifield Eulerian method.
In this scheme, the thermodynamic state of each field is integrated forward in time
using one of two frames of reference. Embedded structures are integrated in the
Lagrangian frame, fluids are integrated in the Eulerian frame. The MPM divides
a solid structure into a collection of finite masses and uses a computational grid
to affect the update of their states in the Lagrangian frame. A common reference
frame is required for evaluation of the interactions associated with exchange of
mass, momentum, and energy among fields; for these interactions, the Eulerian
frame is chosen. The theoretical model is outlined briefly and the numerical scheme
is described in detail. Findings from a numerical order of accuracy study are pre-
sented. Results from simulations of three different scenarios are compared with
corresponding known solutions to validate the approach. Finally a demonstration
calculation is presented to illustrate some of the unique capabilities of the approach.

1 Introduction

The work presented here describes a theoretical and numerical approach for
“full physics” dynamic simulations of fluid structure interactions involving
large deformations and material transformations (like phase change). By “full
physics” we refer to problems involving strong interactions between the fluid
field and solid field temperatures and velocities, with a full Navier Stokes
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representation of fluid materials and the transient, nonlinear response of solid
materials. These interactions may include chemical or physical transformation
between the solid and fluid fields.

There are two classes of theoretical models in common use for full physics
FSI problems: one considers separated materials, and the other considers
their behavior on average. The former is separated in the sense that each
material is permitted to occupy some part of space, to the total exclusion
of any other material. Interactions among materials can take place only at
boundaries between materials, across which there is no flow. In the averaged
model, any material can occupy a point in space with some finite probabilty;
hence interactions among materials can take place anywhere. For brevity, we
shall call the first model the “separated” model, and the second will be called
the “averaged” model.

Numerical solutions to the separated model have been obtained in various
approximations, the first of which is often called uncoupled. In this, the load
on a structure is estimated from a fluid simulation (or data) and is applied
as a boundary condition in a computer simulation of the structural response
to the load. This is uncoupled because the response does not (appropriately)
change the load. In the next approximation, the velocity of the structural
response is permitted to feed back to the fluid simulation, which changes
the load. In either approximation the fluid and the structure are retained
in separate spatial domains, which are mated at a common boundary where
the load/velocity data are shared. Details of the mating process vary among
implementations [?]. Regardless of the details, each of these approximations J2
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requires exactly one set of state variables in each of their separate domains.

Numerical solutions to the averaged model require one set of state variables for
each of the materials everywhere in the domain. The averaged model effectively
forces the variation in state (which includes the material mass per unit of total
volume) to be continuous. Hence a precise interface between materials is not
defined, rather, the effect of an unresolved interface is computed on average.

The relative merits of the two models is frequently judged by the robustness
of their very different numerical solutions, rather than their accuracy or
their ability to address a wide range of physical scenarios. In the separated
model, accurate solutions for the structure can be obtained using commercially
available simulation tools based on finite element methods. A simple code
coupling routine performs the boundary mating with Arbitrary Lagrangian
Eulerian (ALE) codes for the fluid part of the domain. Examples of such
approaches are widespread, (see [?,?,?,?,?]). Among the handicaps of this
type of approach is that a large distortion of the solid domain can lead
to catastrophic mesh tangling. Physical transformations, e.g., phase change,
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between separated materials is generally beyond the capabilities of this type
of approach.

Solutions to the averaged model on an Eulerian grid permit arbitrary
distortion, but can suffer from numerical errors that are catastrophic for the
solid material. This is because the solid material’s time dependent stress tensor
must be transported through the Eulerian grid, and small numerical errors in
the transport can lead to highly nonphysical stresses (such as crossing a failure
surface artifically). Among the numerical schemes used with the averaged
model are those where surface tracking is used to distinguish the interface
between materials, but within a multifield description. This widely used
approach for mixed material problems often uses the multi-material equations
derived from mixture theory ideas originating in the 1960’s, as, for example,
described by Soo.[?]. The simulation approach described by McGlaun and
Thompson[?] fits into this classification as do the, multi-material interaction
simulations of the microstructure of heterogeneous materials described by
Benson[?,?]. Typically, surface tracking is used along with a single velocity
approximation to minimize material transport errors, but this does not
mitigate the undesirable artifacts of stress transport.

The approach described in this paper uses the averaged model, and addresses
the issue of stress transport by integrating the state of the solid field in a frame
of reference that follows the center of mass motion of the solid field. In this
“material” frame, the transport of the stress is error free. Furthermore, the
Material Point Method permits the solid field to undergo arbitrary distortion.
Because the fluid state is integrated on the Eulerian frame it too can undergo
arbitrary distortion. If the rate of momentum exchange is infinitely fast, the
single velocity limit is obtained, and the interface region between material
fields can be limited to at most a few grid cells. Hence in the differential
limit, the separated model is recovered. This means that with sufficient grid
resolution, the accuracy of the separated model and the robustness of the
averaged model can be obtained simultaneously.

The paper is organized as follows: In Sec. 2, a brief development of the
multifield model that forms the foundation of the approach is presented. In
Sec. 3 Eulerian and Lagrangian aspects of the solution scheme are described
individually. A unique aspect of the approach is the ability to describe the
chosen materials in either an Eulerian or Lagrangian frame. In the Lagrangian
frame, we use a version of the scheme known as the Material Point Method
which is reviewed in Sec. 3.2. The manner in which interactions among fields
is accomplished is illustrated in Sec. 3.3. Results from several validation
calculations are presented in Sec. 4, followed by a “full physics” demonstration
calculation in Sec. 5. Finally, conclusions are made in Sec. 6 including a
discussion of some of the strengths and weaknesses of the FSI approach
presented here.
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2 The Multifield Model

The model equations used in this work are given here. Section 2.1 develops
the model equations for the rate of change of mass, linear momentum, and
total energy of the interacting materials considered. Section 2.2 shows how
the differing frames of reference are reconciled in the FSI approach used here.
Section 2.3 discusses one peculiarity of the approach that arises from the
practice of using different frames of reference for the fluid and solid materials.

2.1 Model equations

The genesis of the Multifield model is given briefly here, a more thorough
version can be found in [?]. The Multifield model is just an ensemble average
of the exact conservation equations for a collection of materials, any one of
which can reside at a point in space time (xo, t). To be general, suppose there
are N materials. The state at (xo, t) is given by the density, velocity, total
energy, stress, and material type indicator [ρo,uo, Eo, σo, αr], r = 1, 2, ..., N .
The subscript “o” refers to the value of the quantity at a point in space. For
each of the N materials, αr is Saffman’s H function[?], defined everywhere in
space: it is equal to one if r-material is found at (xo, t), and is zero otherwise.
The H function is just a ledger containing the observer’s record of what
material happened to be at (xo, t) in any one of the infinite members of the
ensemble. The exact evolution equations in conservative differential form with
gravitational acceleration g are

∂ρo

∂t
=−∇ · ρouo (1)

∂ρouo

∂t
=−∇ · ρououo + ∇ · σo + ρog (2)

∂ρoEo

∂t
=−∇ · ρoEouo + ∇ · σo · uo − ∇ · qo + ρouo · g (3)

These equations are closed by appropriate constitutive models for the stress
(or stress rate), equations of state, and the heat flux vector qo due to thermal
conduction. An exact equation for the evolution of αr is not available, except
when the materials never change identity (that is, no transformations in
material type occur, in which case αr is invariant). For the purposes here
we just need to be clear that

∂αr

∂t
+ uo · ∇αr ≡

Doαr

Dt
, (4)
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where we use the subscript o on the material derivative to signify that the
material trajectory is uo. The equivalence sign is used to emphasize that this
is just a definition, not a closure relation. Equation 4 is used as a placeholder
for what represents the change in material type due to physical processes
(mass exchange between fields).

Let angle brackets signify the ensemble average, which is like an arithmetic
average over the ensemble; this is formally an integral over a weighted
probability function. The real quantities of interest are the ensemble averaged
ones, defined with the help of Saffman’s H function. The data at (xo, t) are
discontinuous (called weak solutions); application of the ensemble averaging
operator creates continuous ones at general locations in space time (x, t). The
continuous (averaged) variables are refered to as “field” variables. They are

ρr ≡ 〈αrρo〉 : mean r-field total mass density

ρrur ≡ 〈αrρouo〉 : mean r-field total momentum density

ρrEr ≡ 〈αrρoEo〉 : mean r-field total energy density

θrσr ≡ 〈αrσo〉 : mean r-field stress

θr ≡ 〈αr〉 : averaged r-field H function

Evolution equations for the field variables are formally obtained by taking the
partial time derivative of the definition, and rearranging with the help of the
exact equations. For the mass conservation equation, the result is

∂ρr

∂t
+ ∇ · ρrur =

〈

ρo
Doαr

Dt

〉

which can be integrated over an arbitrary volume of space V

∫

V

(

∂ρr

∂t
+ ∇ · ρrur

)

dV =
∫

V

〈

ρo
Doαr

Dt

〉

dV . (5)

The left side is the total rate at which r-mass changes in a volume moving
with the r-field mean velocity; it is equal to the r-field material derivative of
the r-mass DrMr/Dt (where the subscript r on the material derivative means
that the transport velocity is ur). Accordingly, the right side is the total rate
at which r-mass is created or destroyed in V due to conversion to/from other
material types, while moving along the instantaneous trajectory uo. Because
any field can contribute/receive mass to/from the r-field, we can express this
by a sum over all materials. Let Γrs be the rate at which r-mass is converted
to/from s-mass, averaged in V . Then we can write

5



DrMr

Dt
=
∫

V

〈

ρo
Doαr

Dt

〉

dV = V
∑

N

s=1Γrs = V Γr (6)

which signifies the net rate at which r-material is generated (or depleted) in
an arbitrary volume, as a result of conversion to/from all other fields. This is
the total mass exchange rate, per unit of volume. These steps define a volume
average of the ensemble average of the differential equation for the mass.

Using the foregoing notation, we have the (volume & ensemble) averaged
equations

1

V

DrMr

Dt
= Γr (7)

1

V

Dr (Mrur)

Dt
= − ∇ · 〈ρoαru

′
ru

′
r〉 + θr∇ · σ + ∇ · θr(σr − σ)

+ ρrg +
∑

N

s=1frs +
∑

N

s=1ursΓrs (8)

1

V

Dr (Mrer)

Dt
= − ρrp

Drvr

Dt
− ∇ · 〈ρoαre

′
ru

′
r〉 + θrτr : ∇ur − ∇ · θrqr

+ ρrεr +
∑

N

s=1hsr +
∑

N

s=1(e + pv)rsΓrs (9)

where the right side of each equation is the averaged rate occuring in V . Also,
the averaged r-field internal energy comes from Er = er + 1

2u
2
r ; in which er

typically includes all internal modes (translational + vibrational + rotational
+ chemical).

Equations 7 - 9 are the averaged model equations for mass, momentum, and
internal energy of r-material. The nonsubscripted σ is the mean mixture stress,
taken here to be isotropic, so that σ = −pI in terms of the hydrodynamic
pressure p. In this, the deviatoric part of the material stress is given by
τr = σr −

1
3
ITr(σr).

In Eq. 8 the quantity −〈ρoαru
′
ru

′
r〉 is the r-material fluctuational momentum

flux, otherwise known as the multifield Reynolds Stress. Similarly, in Eq. 9
−〈ρoαre

′
ru

′
r〉 is the r-material fluctuational flux of internal energy, while ρrεr

is the r-material fluctuational dissipation rate. Each of these multiphase
turbulence terms, which must be modeled, was neglected in the current work,
they are included above for completeness.

In Eq. 8 the term
∑N

s=1 frs signifies a model for the momentum exchange among
materials. This term results from the deviation of the r-field stress from the
mean stress, averaged. This is typically modeled as a function of the relative
velocity between materials at a point. (For a two material problem this term
might look like f12 = K12θ1θ2(u1−u2) where the coefficient K12 determines the
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rate at which momentum is transferred between materials). Likewise, in Eq. 9,
∑N

s=1 hsr represents an exchange of heat energy among materials and for a two
material problem typically takes the form h12 = H12θ1θ2(T2 − T1) where Tr is
the r-material temperature and the coefficient Hrs is analogous to a convective
heat transfer rate coefficient. The heat flux is given by qr = −ρrbr∇Tr where
the kinematic thermal diffusion coefficient br is an effective one that contains
both molecular and turbulent effects (when the turbulence is included).

In Eqs. 8 and 9, the velocity urs and the enthalpy (e + pv)rs are the velocity
and enthalpy carried with the material that is converted into that of the r-
field, from material that was formerly accounted for in the s-field. For practical
purposes these are simply the mean values associated with the field donating
its mass to r-field. The rate at which the conversion occurs is given by a model
for Γrs which can by any of the well known forms that satisfy the law of mass
action. For a specific example, consider a solid propellant (field-1) converted by
burning into a reaction product gas (field-2). Typically Γ12 = −C(T1, p)M1/V
where the phenomenological coefficient depends on the propellant temperature
and the system pressure. Generally, once burning commences it proceeds until
the mass is depleted.

Given appropriate constitutive models for the mass exchange rate, the force
density, heat flux, and heat exchange, Eqs. 7-9 are still unclosed (despite
ignoring the turbulence effects.) The temperature Tr, specific volume vr,
volume fraction θr, and hydrodynamic pressure p are all yet to be specified;
these quantities are related to the mass density ρr and internal energy er by
way of equations of state. The four relations for the four quantites (Tr, vr, θr, p)
are

er = er(vr, Tr) (10)

vr = vr(p, Tr) (11)

θr = ρrvr (12)

0 =1 −
∑

N

s=1ρsvs (13)

Equations 10 and 11 are, respectively, the caloric equation of state and the
thermal equation of state. Equation 12 defines the ensemble averaged H
function as the volume fraction, θ and with that definition, Eq. 13 follows. We
shall refer to Eq. 13 as the multifield equation of state. The hydrodynamic
pressure p is the one value permitting arbitrary masses of the multiple
materials to occupy the entirety of the volume V (for this reason it has been
called the “equilibration” pressure).

For the present purposes, the final closure relation needed is for the material
stress σr. In symbolic form this is
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σr =Φ[F, σr, ∇ur, ∗r] (14)

The operator Φ is the general material response law that may depend on the
deformation gradient, the stress itself, the averaged r-material rate of strain
and a list of variables indicated by the ∗r which may include history variables
such as a damage parameter, as well as the rotation of the polar axes relative
to the axes in a laboratory frame of reference.

Equations 7-14 form a set of eight equations for the state vector [Mr,ur, er, Tr, vr, θr, σr, p],
in any arbitrary volume of space V . The Eulerian Lagrangian approach for
large deformation FSI problems requires obtaining approximate solutions to
this equation system. To clarify some subtle aspects of the numerical solution
method used here, a discussion of the different frames of reference employed
is given next.

2.2 Frames of Reference

The averaged field equations displayed in the previous section specify the
Lagrangian rate of change for the state of the materials momentarily residing
in an arbitrary volume of space. The coordinates of that volume may change
with time. The key feature of the FSI approach in this paper is the choice of
reference frame on a material by material (field by field) basis. To affect this
flexibility a generalized Reynolds Transport Theorem is used [?]. Because of
its importance to this work, the theorem is developed here.

Leibnitz’s Rule, for the time derivative of the volume integral is

D

Dt

∫

V (t)

[q]dV =
∫

V (t)

[

∂q

∂t

]

dV +
∫

S(t)

[n̂ · qu]dS , (15)

where q is a quantity which varies within the volume. The integral of q over
the volume is the total of that quantity Q. (For q = 1 this is just a kinematic
expression for the rate of volume change, along the trajectory u.) In the
multifield case there are N different trajectories associated with the averaged
velocity of the N fields in the problem. Let the subscript r designate one of
those fields. Leibnitz’s Rule for any quantity associated with that field is

Dr

Dt

∫

Vr(t)

[qr]dV =
DrQr

Dt
=

∫

Vr(t)

[

∂qr

∂t

]

dV +
∫

Sr(t)

[n̂ · qrur]dS . (16)
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Now consider a second volume (that of a computational grid, say), moving
with a completely arbitrary velocity ug which may be time dependent, time
steady, or zero. The corresponding rule, operating again on qr is

Dg

Dt

∫

Vg(t)

[qr]dV =
DgQr

Dt
=

∫

Vg(t)

[

∂qr

∂t

]

dV +
∫

Sg(t)

[n̂ · qrug]dS . (17)

Let us now consider an instant in time at which the surfaces bounding the two
volumes is exactly overlapping. At that instant the integrals cover precisely
the same space, so we can subtract one from the other thereby eliminating the
term involving the partial derivative. That is,

DgQr

Dt
+

∫

Sg(t)

[n̂ · qr(ur − ug)]dS =
DrQr

Dt
. (18)

Using the divergence theorem this can be written

DgQr

Dt
+ V ∇ · qr(ur − ug) =

DrQr

Dt
, (19)

in which we implicitly assume that the gradient is constant in the volume V .
Equation 19 is the generalized Reynolds Transport Theorem. It relates the
change in a total quantity (Q) in a volume moving with velocity ug to the
rate of change along the material motion ur. The difference between the two
rates is the second term on the left, called the advection term. Equation 19 is
valid, so long as the r-Lagrangian volume and the grid volume are precisely
overlapping at the instant for which the evaluation is made.

In the FSI approach used here, ug = ur for the field representing a solid
structure and for the fluid field ug = 0. Hence we say that the solid field state
is integrated in the Lagrangian (material) frame of reference, and the fluid field
state is integrated in the Eulerian (laboratory) frame. Thus, the approach uses
mixed frames of reference. At the instant the states are to be updated in time,
the solid field state is interpolated to the center of each grid volume in the
computational domain. In this way, the gradients and state differences that
measure the change in state are evaluated in the same volume of space, as is
required by Eq. 19.

2.3 Mixed frames of reference

When mixed reference frames are used it becomes necessary to integrate the
state relations Eqs. 10-13 in the differential form. The reason for this was
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shown in detail by Kashiwa et al.[?] by considering the model equations in the
incompressible limit. This section illustrates the issue, and its resolution.

Consider the multiphase equation of state for the two field case, and multiply
by the grid volume V in which the equation is to be satisfied. Because
ρr = Mr/V this is

0 = V − Msvs(p, Ts) − Mfvf(p, Tf)

where the subscripts designate solid and fluid respectively. Now let vs =
constant, which corresponds to an isothermal incompressible material. Let
the fluid field be a perfect gas with gas constant Rf , so that vf = RfTf/p. The
solution for p is

p = MfRfTf/(V − Msvs)

which can always be found, providing that the solid field does not occupy all
of the space in V , that is, Msvs < V . If the field equations for both solid and
fluid are integrated in the Eulerian frame, this condition can be guaranteed
by a physical stress on the solid field that is compressive (sometimes called a
“configuration” stress because the specific volume of the solid is constant). If
instead the solid field is integrated in the Lagrangian frame, the mass Ms in
V is approximated by interpolation from mass points near V , in which case
the condition Msvs < V can not be guaranteed in general.

The apparent pathology is removed by using Eqs. 11-13 and the generalized
Reynolds Transport Theorem for the r-material specific volume to derive an
expression for the specific volume, or volume per unit of mass. The specific
volume can be considered to be a dynamic (averaged) variable of the state, to
be integrated in time from an initial condition. When this is done, the total
volume associated with the materials is

Vt =
∑

N

r=1Mrvr

so the volume fraction is simply θr = Mrvr/Vt (which sums to one by
definition).

The development of the rate equation of the r-material specific volume is given
in the appendix. The final result is:

Dr (Mrvr)

Dt
=V

[

vrΓr + f θ
r ∇ · u + θrβr

DrTr

Dt
− f θ

r

N
∑

s=1

θsβs
DsTs

Dt

]

. (20)

In the differential limit, the multiphase equation of state is satisfied. However,
in the discrete case, characteristic of all numerical approximations, Eq. 13 will
not be exactly satisified, so a correction must be applied. This correction
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is discussed in the next section, where the numerical solution algorithm
is described. In the limit κ → 0 all materials are incompressible, and
Eq. 51 becomes the equation for p whose numerical approximation requires
no correction. Hence in the incompressible limit the discrete approximation
is once again exact; for compressible materials, we exhibit the goodness of
the approximation by way of examples comparing exact and approximate
solutions.

3 Solution Algorithm

The foundation of the approach described here is the discretized multifield
equations for mixtures of materials as described in Sec. 2.1. These equations
are integrated in the Eulerian frame. The numerical algorithm used is
described in Sec. 3.1. The algorithm for integrating those fields that are
described in the Lagrangian frame (solids) using the Material Point Method
is described in Sec. 3.2. The algorithmic details necesssary for incorporating
the MPM within the Eulerian multifield solution to achieve a tightly coupled
“average” multifield interaction capability is provided in Sec. 3.3. This
combined algorithm provides a tightly coupled, full physics, fluid structure
interaction capability.

3.1 Eulerian multifield method

The Eulerian multifield method implemented here is a cell centered, finite
volume, multimaterial version of the ICE (for Implicit, Continuous fluid,
Eulerian) method [?] developed by Kashiwa and others at Los Alamos National
Laboratory [?]. “Cell centered” means that all elements of the state are
colocated at the grid cell center (in contrast to a staggered grid, in which
velocity components may be centered at the faces of grid cells, for example).
This colocation is particularly important in regions where a material mass is
vanishing. By using the same control volume for mass and momentum it can
be assured that as the material mass goes to zero, the mass and momentum
also go to zero at the same rate, leaving a well defined velocity. The technique
is fully compressible, allowing wide generality in the types of problems that
can be efficiently computed.

Our use of the cell centered ICE method employs time splitting: first, a
Lagrangian step updates the state due to the physics of the conservation laws
(i.e., right hand side of Eqs. 7-9); this is followed by an Eulerian step, in which
the change due to advection is evaluated. For solution in the Eulerian frame,
the method is well developed and described in [?].
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Fig. 1. Specific volume vs pressure for a gas phase material and a condensed phase
material. Light dashed line reflects an altered condensed phase equation of state to
keep all materials in positive equilibration pressure space.

In the mixed frame approach used here, a modification to the multifield
equation of state is needed. Equation 13 is unambiguous when all materials
are fluids or in cases of a multifield flow consisting of dispersed solid grains
in a carrier fluid. However in fluid structure problems the stress state of a
submerged structure may be strongly directional, and the isotropic part of
the stress has nothing to do with the hydrodynamic (equilibration) pressure
p. The equilibrium that typically exists between a fluid and a solid is at the
interface between the two materials: there the normal part of the solid stress
equals the pressure exerted by the fluid on the solid. Because the orientation
of the interface is not explicitly known at any point (it has been averaged
away, in effect) such an equilibrium cannot be computed.

The difficulty, and the modification that resolves it, can be understood
by considering a solid material in tension coexisting with a gas. For solid
materials, the equation of state is just the bulk part of the constitutive
response (that is, the isotropic part of the stress versus specific volume and
temperature). If one attempts to equate the isotropic part of the stress with
the fluid pressure, there exist regions of pressure-volume space for which Eq. 13
has no physical solutions (because the gas pressure is only positive). This can
be seen schematically in Fig. 1, which sketches equations of state for a gas
phase (solid line) and a condensed phase (heavy dashed line), at an arbitrary
temperature. Recall that the isothermal compressiblity is the negative slope
of the specific volume versus pressure. Imbedded structures considered here
are condensed phase and possess a very much smaller compressibility than
the gasses in which they are submerged, at low pressure. Nevertheless the
variation of condensed phase specific volume can be important at very high
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pressures, where the compressibilities of the gas and condensed phase materials
can become comparable (as in a detonation wave, for example). Because the
speed of shock waves in materials is determined by their equations of state,
obtaining accurate high pressure behavior is an important goal of our FSI
studies.

To compensate for the lack of directional information for the imbedded
surfaces in our problems, we evaluate the condensed phase equations of state
in two parts as follows. Above a specified postive threshold pressure, the full
equation of state is respected; below that threshold pressure (typically one
atmosphere), the condensed phase pressure follows a polynomial chosen to
be continuous and smooth at the threshold value and approaches zero as the
specific volume becomes large. The effect of this treatment is to decouple the
condensed phase specific volume from the stress when the isotropic part of
the stress falls below a threshold value. (This is akin to using a configuration
stress acting on an incompressible material.) In regions of coexistence at states
below the threshold pressure, p tends rapidly toward zero (Fig. 1 light dashed
line), and the full material stress dominates the dynamics as it should. An
example of just such a situation, with a fluid in compression and a solid in
tension is demonstrated in Sec. 4.

3.2 The Material Point Method

A new feature of the approach presented here is the ability to neatly couple a
Lagrangian description for selected materials within the overarching multifield
method. Specifically, the underlying theory is the multifield equations, solved
on an Eulerian mesh. However, materials with solid like behavior and
history dependent response laws are more conveniently treated by Lagrangian
methods. The unification of the Lagrangian method within the multifield
solution is described in Sec. 3.3.

The Lagrangian frame representation adopted here describes the state vari-
ables of the material on particles, or “material points.” The specific numerical
technique used is known as the Material Point Method (MPM). Originally
described by Sulsky, et al., [?,?], the MPM is a particle method for struc-
tural mechanics simulations. MPM is an extension to solid mechanics of FLIP
[?], which is a particle in cell (PIC) method for fluid flow simulation. The
method typically uses a regular structured grid as a computational scratchpad
for computing spatial gradients. This same grid also functions as an updated
Lagrangian grid that moves with the particles during advection and thus elim-
inates the diffusion problems associated with advection on an Eulerian grid.
At the end of a timestep, the grid is reset to the original regularly ordered
position.
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In explicit MPM, the equations of motion are cast in the form [?]:

Mg · ag =Fextg − Fintg (21)

where Mg is the mass matrix, ag is the acceleration vector, Fextg is the
external force vector (sum of the body forces and tractions), and Fintg is the
internal force vector resulting from the divergence of the material stresses.
Throughout this section, variables subscripted with a g indicate quantities
that exist on the nodes of computational grid, while variables subscripted
with a p are particle based. In this development we will only be considering
a single material. An extension describing contact between multiple materials
is given by [?].

The solution procedure begins by interpolating the particle state to the grid,
to form Mg, Fextg, and to determine a velocity on the grid vg. In practice,
a lumped mass matrix is usually used. These quantities are calculated by the
following equations, where the

∑

p
represents a summation over all particles:

Mi =
∑

p

Sipmp, vi =

∑

p
Sipmpvp

Mi

, Fexti =
∑

p

SipFextp (22)

where i refers to individual nodes of the grid. mp is the particle mass, vp is
the particle velocity, and Fextp is the external force on the particle. Sip is
the ith node’s shape function evaluated at xp, the position of the pth particle.
Traditionally, standard trilinear shape functions are employed, but recently
higher order interpolants, as described in [?], have yielded improved results.

At this point, a velocity gradient, ∇vp is computed at the particle using the
velocities interpolated to the grid:

∇vp =
∑

p

Gipvi (23)

where Gip is the gradient of the ith nodes shape function, evaluated at xp.

This is used as input to a constitutive model which is evaluated on a per
particle basis, the result of which is the Cauchy stress at each particle, σp.
With this, the internal force due to the divergence of the stress is calculated
via:

Finti =
∑

p

GipσpVp, (24)

where Vp is the particle volume.
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Equation 21 can then be solved for ag. An explicit backward Euler method is
used for the time integration:

vL
i = vi + aidt (25)

and the particle position and velocity are explicitly updated by:

vp(t + dt) =vp(t) +
∑

i

Sipaidt (26)

xp(t + dt) =xp(t) +
∑

i

Sipv
L
i dt (27)

This completes one timestep.

As described here, MPM is able to function independently as a method
for performing structural mechanics simulations, and it has many important
applications and unique capabilities in this area. Furthermore, by describing
and implementing it in an independent fashion, validation of the method itself
as well as submodels (e.g., constitutive models and contact) is simplified.
However, we emphasize that its use here is for selected material field
description within the general multifield formulation. This integration is
described next.

3.3 Integration of the Material Point Method within the Eulerian multifield

ICE Formulation

The key feature of this work is the development, demonstration, and validation
of a tightly coupled, multifield “averaged” solution approach that allows
simulations of an arbitrary number of materials undergoing a variety of
physical and chemical processes. Fundamental to the proposed approach is the
representation of a material field in either an Eulerian or Lagrangian reference
frame, integrated within a general multifield description. This allows treating
specific phases in their traditionally preferred frame of reference, Lagrangian
for solid, Eulerian for fluid. The MPM algorithm, described in the previous
section, is used to time advance those materials that are best described in a
Lagrangian reference frame. However, by choosing the background mesh used
to update the MPM materials, to be the same mesh used in the multi-material
Eulerian description, all interactions among materials can be enforced to occur
in the common framework. This results in a robust and tightly coupled solution
for interacting materials with very different response behaviors.

All materials, solid or fluid, will have a presence in the Eulerian multifield
description. This common reference frame is used for all physics that involve
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mass, momentum, or energy exchange among materials. This allows for a
tight coupling between the fluid and solid phases. The coupling occurs directly

within the terms in the multifield equations. Since a common Eulerian frame
of reference is used for interactions among materials, typical problems with
convergence and stability of solutions for separate domains communicating
only through boundary conditions are alleviated. Thus, all solid phase
materials thus have a dual representation - in both the Lagrangian (MPM)
and Eulerian framework.

The principal difference between solid and fluid materials is characterized
by their response to deformation, as represented by equations of state
and constitutive models. As such, it is primarily in advection and in the
computation of internal forces that the use of the separate reference frames
becomes important. Eulerian advection is typically subject to significant
diffusion. Therefore if the Eulerian frame is used exclusively for both solid
and fluid materials, the interface between the materials will become smeared
and nonphysical behavior may result. The use of a particle description for the
solid advection eliminates this problem. Furthermore, while straining history
does not typically play a role in the stress field in a fluid, it is important in
many engineering solid materials to describe phenomenon such as plasticity.
The particle description of the solid provides a convenient frame to evaluate
the solid material stress, and to store and carry forward in time the relevant
history variables. This role of the particle is similar to the role that Gaussian
integration points play in the finite element method. On the other hand, if
a particle description is used for fluid phases, the random behavior of fluid
motion may result in particle distributions that are at best suboptimal and
at worst insufficient to achieve a solution. This limits the utility of the MPM
for fluid calculations. However, the integration of the two, where part of the
calculation takes place in a common reference frame, allows each material
phase to enjoy it’s optimum description and achieves a tight coupling.

To illustrate how this coupling is accomplished in an algorithmic fashion the
explicit steps for advancing a fluid-solid problem from time t to time t + ∆t
are described below.

(1) Interpolate particle state to grid: A simulation timestep begins by
interpolating the particle description of the solid to the grid, so that all
materials are described in a common frame of reference. This starts with
an interpolation of particle data to grid vertices, or nodes, as described
in Eq. 22, and is followed by a subsequent interpolation from the nodes
to the cell centers. Since our work uses a uniform structured grid, each
node has equal weight in its contribution to the cell centered value.
The exception to this is near computational boundaries. For instance,
if symmetric boundary conditions are used, the weight of those nodes on
the boundary must be doubled in order to achieve the desired effect.
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(2) Compute the equilibrium pressure: While Eq. 13 and the
surrounding discussion describes the basic process, a few specifics warrant
further explanation. In particular, the manner in which each material’s
volume fraction is computed is crucial. Typically, in multi-material CFD
calculations, this would simply be the material volume divided by the
cell volume. However, because the solid and fluid materials are advected
in different manners (see below) the total volume of material in a cell
is not necessarily equal to the volume of a computational cell. Because
of this, it is important to have an accurate accounting of the volume of
material in each cell. This is done by solving the evolution equation for
each material’s specific volume given by Eq. 53 and described below in
step 11.

With the materials’ masses and specific volumes in hand, material
volume can be computed and summed to find the total material volume.
The volume fraction θr is then computed as the volume of r-material per
total material volume. With this, the solution of Eq. 13 can be carried out
at each cell using a Newton-Raphson technique[?], which results in new
values for the equilibrium pressure, peq, volume fraction, θr and specific
volume, vr.

(3) Compute face centered velocities, u∗
r , for the Eulerian advec-

tion: At this point, fluxing velocities are computed at each cell face.
The expression for this is based on a time advanced estimate for the cell
centered velocity. A full development can be found in [?] and [?] but here,
we only state the result:

u∗
r =

ρrL
urL

+ ρrR
urR

ρrL
+ ρrR

−

(

2vrL
vrR

∆t

vrL
+ vrR

)

(

peqR
− peqL

∆x

)

(28)

The first term above is a mass weighted average of the logically left and
right cell centered velocities and the second term is a pressure gradient
acceleration term. Not shown explicitly here is the necessary momentum
exchange at the face centers. This is done here in the same manner as
it is described subsequently in step 10 for the cell centered momentum
exchange.

(4) Multiphase chemistry: Compute sources of mass, momentum, energy
and specific volume as a result of phase changing chemical reactions
for each r-material, Γr, urΓr, erΓr and vrΓr. Specifics of this step are
model dependent, but in general the most important consideration
is to accurately account for the changes in state for all materials
involved, particularly the reactant material. Failure to do so can result
in unreasonable values for temperature and velocity as the mass of the
reactant material is consumed. When the reactant material is described
by particles, this is somewhat simplified as decrementing the particle
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mass automatically decreases the momentum and internal energy of that
particle by the appropriate amount. Otherwise, care must be taken to
reduce the momentum and internal energy of the reactant by amounts
proportional to the mass consumed each timestep. This mass, momentum
and internal energy is transferred to the product material’s state.

(5) Compute an estimate of the time advanced pressure, p: Based
on the volume of material being added to (or subtracted from) a cell in
a given timestep, an increment to the cell centered pressure is computed
using:

∆p =∆t

N
∑

r=1
vrΓr −

N
∑

r=1
∇ · (θu∗)r

N
∑

r=1
(θκ)r

(29)

p = peq + ∆p (30)

where κr is the r-material bulk compressibility. The first term in the
numerator of Eq. 29 represents the change in volume due to reaction,
i.e., a given amount of mass would tend to occupy more volume in the
gas phase than the solid phase, leading to an increase in pressure. The
second term in the numerator represents the net change in volume of
material in a cell due to flow into or out of the cell. The denominator is
essentially the mean compressibility of the mixture of materials within
that cell. (Note that in simulations involving phase change, improved
accuracy may be achieved by adjusting the volume fractions in Eq. 29 to
account for the accompanying change in each material’s volume.) This
increment in pressure is added to the equilibrium pressure computed in
step 2 and is the pressure used for the remainder of the current timestep.
Again, the details leading to this equation can be found in [?].

(6) Face Centered Pressure p∗: The calculation of p∗ is discussed at
length in [?]. For this work, it is computed using the updated pressure
by:

p∗ =

(

pL

ρL

+
pR

ρR

)

/

(

1

ρL

+
1

ρR

)

(31)

where the subscripts L and R refer to the logically left and right cell
centered values respectively, and ρ is the sum of all material’s densities
in that cell. This will be used subsequently for the computation of the
pressure gradient, ∇p∗.

(7) Material Stresses: For the solid, we calculate the velocity gradient at
each particle based on the grid velocity (Eq. 23) for use in a constitutive
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model to compute particle stress. Fluid stresses are computed on cell
faces based on cell centered velocities.

(8) Accumulate sources of mass, momentum and energy at cell

centers: These terms are of the form:

∆(m)r = ∆tV
N
∑

s=1,s6=r

Γs (32)

∆(mu)r =−∆tV



θr∇p∗ + ∇·θr(σr − σ) +
N
∑

s=1,s6=r

usΓs



 (33)

∆(me)r =−∆tV



f θ
r p

N
∑

s=1

∇ · (θu∗)s +
N
∑

s=1,s6=r

esΓs



 (34)

where f θ
r is a measure of the relative compressibility of the r-material

in a cell as in Eq. ??. Note that the only source of internal energy
being considered here is that due to “flow work”. This is required for the
compressible flow formulation, but other terms, such as heat conduction
are at times included.

(9) Compute Lagrangian phase quantities at cell centers: The
increments in mass, momentum and energy computed above are added
to their time t counterparts to get the Lagrangian values for these
quantities. Note that here, some Lagrangian quantities are denoted by
an L− superscript. This indicates that all physical processes have been
accounted for except for momentum and heat exchange which is described
in the following step.

(m)L
r = (m)t

r + ∆(m)r (35)

(mu)L−
r = (mu)t

r + ∆(mu)r (36)

(me)L−
r = (me)t

r + ∆(me)r (37)

(10) Momentum and heat exchange: The last step in the Lagrangian
phase is the exchange of momentum and heat between materials.

(mu)L
r =(mu)L−

r + ∆tmr

N
∑

s=1

θrθsKrs(u
L
s − uL

r ) (38)

(me)L
r =(me)L−

r + ∆tmrcvr

N
∑

s=1

θrθsRrs

(

T L
s − T L

r

)

(39)

These equations are solved in a pointwise implicit manner that allows
arbitrarily large momentum transfer to take place between materials.
Typically, in FSI solutions, very large (1015) values of K are used, which
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results in driving contacting materials to the same velocity. Intermaterial
heat exchange is usually modeled at a lower rate. Again, note that the
same operation must be done following Step 3 above when computing the
face centered velocities.

(11) Specific volume evolution: As discussed above in step 2, in order
to correctly compute the equilibrium pressure and volume fraction, it is
necessary to keep an accurate accounting of the specific volume for each
material. Here, we compute the evolution in specific volume due to the
changes in temperature and pressure, as well as phase change, during the
foregoing Lagrangian portion of the calculation, according to:

∆(mv)r =∆tV

[

vrΓr + f θ
r∇ ·

N
∑

s=1

θ∗su
∗
s + θrβrṪr − f θ

r

N
∑

s=1

θsβsṪs

]

(40)

(mv)L
r =(mv)n

r + ∆(mv)r (41)

where β is the constant pressure thermal expansivity and Ṫ = T L−T t

∆t
is

the rate of change of each material’s temperature during the Lagrangian
phase of the computation.

(12) Advect Fluids: For the fluid phase, use a suitable advection scheme,
such as that described in [?], to move fluid material between cells. This
includes the transport of mass, momentum, internal energy and specific
volume. As this last item is an intensive quantity, it is converted to
material volume for advection, and then reconstituted as specific volume
for use in the subsequent timestep’s equilibrium pressure calculation.

(13) Advect Solids: For the solid phase, interpolate the time advanced grid
velocity and the corresponding velocity increment back to the particles,
and use these to advance the particle’s position and velocity, respectively.
This constitutes advection of the solid phase material.

This completes one timestep. In the preceding, the user has a number of
options in the implementation. The approach taken here was to develop a
working MPM code and a separate working multifield ICE code. We note,
however, that the fluid structure interaction methodology should not be looked
at in the context of a “marriage” between an Eulerian CFD code and the
MPM. The underlying theory is a multifield description that has the flexibility
to incorporate different numerical descriptions for solid and fluid fields within
the overarching solution process. To have flexibility in treating a widest range
of problems, it was our desire that in the coupling of the two algorithms, each
of the original codes be able to function independently, or in concert.

Thus, for instance, in step 8 above, for the solid material we’ve chosen not to
aggregate all of the momentum sources at the cell centers. Rather, the pressure
gradient and mean pressure are computed at the cell centers, and interpolated
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back to the nodes, where the integration of the MPM equations normally take
place. The time advanced solid material momentum is then aggregated at the
cell centers for momentum exchange, and the resulting change in momentum
is propagated back to the nodes and eventually to the particles. Also, as
described here, this method is fully explicit in time. To make this implicit
with respect to the propagation of pressure waves, a Poisson equation is solved
in the calculation of ∆p, which is in turn used to iteratively update the face
centered velocities. This is described in [?].

4 Validation Tests

Because of the complex nature of most interesting fluid structure interaction
scenarios, it is difficult to construct tests for the purposes of validation which
encompass the entire range of possible behavior of the different phases. The
strategy followed here is to validate particular types of behavior, each of which
is dominated by a specific part of the coupled governing equations. Still, even
for these simple tests, most, if not all, of the terms in those equations must
be implemented properly to achieve an accurate solution. Three such tests are
presented below.

4.1 Stress Distribution in a Pressurized Cylinder

To demonstrate the ability of the approach to accurately represent the inter-
action between fluids and solids, a cylinder of finite thickness is pressurized
internally and the subsequent stress distribution in the cylinder is presented.
The configuration is shown in Fig. 2. A uniform mesh is used and the solid
cylinder is represented by material points as shown. The cylinder is made of
steel with bulk and shear modulus of 117.0 GPa and 43.8 GPa respectively.
Density is 8900 kg/m3. Inner radius, ri, is 0.5 m and outer radius, ro, is 1.0
m. Although code capabilities are fully three dimensional, this example is two
dimensional, with plane strain being the out of plane condition. As shown
in Fig. 2 a one-quarter symmetric section of the cylinder was simulated. The
fluid is defined everywhere on the mesh, although the volume fraction of the
fluid is set to zero in the region occupied by the solid. Pressurization of the
cylinder is achieved by adding internal energy to the fluid inside the cylinder
over the course of 500 timesteps. The final pressure of 19.4 MPa inside the
cylinder then remains constant and viscous damping is used in the solid phase
to achieve a quasistatic solution. Because there is very little movement of the
materials, this simulation is an especially good test of the transmission of the
pressure gradient between the gas and solid at the material interface.
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Air P=19.4 MPa

Air P=101.3 kPa

Solid

Fig. 2. Initial configuration for pressurization of an annulus. The cylinder is
described by material points on the Eulerian mesh of the multi-material solution.

The exact solutions for the radial and circumferential stresses are given by [?]
(where P is the pressure inside the container):

σradial =
Pr2

i

(r2
o − r2

i )

(

1 −
r2
o

r2

)

σθ =
Pr2

i

(r2
o − r2

i )

(

1 +
r2
o

r2

)

(42)

The predicted stress distributions, computed using a grid spacing of 0.025
m in each direction, are compared to the exact solution in Fig. 3a. The
agreement is seen to be very good. It is particularly noteworthy that in the
solution, there is no explicit representation of a surface or explicit description
of surface tractions on the material points describing the cylinder. Coupling
occurs completely through the multifield equations (Eq. 8).

This simulation was carried out at several grid resolutions in order to
characterize the order of accuracy of this implementation. The error for each
resolution was computed by:

Error =
1

N

∑

N

||σr + σθ| −
2
3
P |

2
3
P

(43)

Results from that are shown in Fig. 3b. When plotted in this log-linear manner,
the slope of the straight line that best approximates these points indicates the
order of accuracy. Here, a slope of 0.89 is found.

4.2 Adiabatic compression of a confined gas by a piston

A one-dimensional simulation of a piston adiabatically compressing a confined
gamma-law gas was carried out to test different aspects of the coupled
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Fig. 3. Results from pressurization of an annulus, (a) radial and circumferential
stresses, compared to the theoretical solutions, of the row of particles nearest the
x-axis, and (b) natural log of solution error, averaged over all particles, vs. natural
log of grid spacing. The slope of the line fit to the four data points indicates an
order of accuracy of 0.89.

governing equations. Specifically, this test exercises the Eulerian evolution
equation for the specific volume, Eq. 53, the source of internal energy under
large volume changes as well as advection. Both are crucial in order to
accurately predict the pressure of the confined gas. This simulation also
demonstrates that the algorithm accurately describes the interaction between
the piston and the gas via momentum coupling as the piston moves slowly
through a large number of computational cells. The rigid piston was described
by material points and its motion was specified. Figure 4 shows the cell
centered gas pressure at the bottom of the cylinder versus time as well as
the analytical solution (assuming thermodynamic equilibrium) given by:

P2 = P1

(

V1

V2

)γ

(44)

A large momentum exchange coefficient, (Krs = 1015) was chosen. This drives
the velocity of the gas and the piston to the same value in cells where
both gas and piston are present (i.e., at the interface between the gas and
the solid). This enforces a no-slip, no-interpenetration condition between the
piston and the gas. For this simulation, the compression ratio of the gas (initial
volume/final volume) reached a maximum of 5.9.
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Fig. 4. Adiabatic compression of a confined gas by a piston. Pressure versus time
at y = 0.0.

4.3 Supersonic Wedge

The final validation test presented here is a symmetric 20o wedge moving
at Mach 3 through initially stationary air. The main purpose of this test is
to demonstrate the ability of the compressible multifield ICE formulation to
capture the oblique shocks and expansion fan that result from the interaction
of the solid wedge with the surrounding air. Traditionally, tests such as this are
done by keeping the geometry fixed and describing it as a boundary condition
to a CFD code which moves the fluid over the stationary item.

Figure 5 depicts the wedge, represented by material points, as well as contours
of the cell centered pressure on the Eulerian grid. The bold dashed line starting
at the leading point of the wedge represents the expected angle of the oblique
shock, 38o for ideal inviscid supersonic flow [?] (pp. 308-309). The expansion
fan over the top of the wedge and the second shock at the trailing edge of
the wedge are also evident as expected. In general, quite good agreement is
achieved relative to the anticipated solution. The curvature of the shock away
from the body is expected for non ideal supersonic flow.

In addition to the shock capturing, this test also demonstrates another
important capability. While the wedge used here is a simple shape, arbitrarily
complex geometries can be generated using particle distributions, and their
interaction with the surrounding flow field studied, all without the time
consuming step of complex mesh generation. The motion of the solid object can
be either prescribed or the full dynamic response of the solid can be computed
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β=38ο

Fig. 5. Wedge moving at Mach 3 through initially stationary air. Contours of
pressure are shown.

as it interacts with the flow field. We believe that these are capabilities unique
to this approach.

5 Explosion of a Confined Energetic Material

The final simulation illustrates the algorithm’s capabilities with regards
to large deformations and the treatment of multiple materials, including
intermaterial mass exchange and the interaction of gases from initially separate
regions. The simulation configuration is a 1/8th symmetric section of a
cylindrical steel container filled with a plastic bonded explosive (PBX). A
lengthwise notch has been removed from the container to introduce a region of
weakness, as shown in Fig. 6a, where the outside of the container is depicted by
an isosurface of the steel’s mass. The initial temperature of the container was
650K, well above the reaction threshold temperature for PBX. The reaction
model used allows burning only on the surface of the PBX and is of the form
Γ = AKP n, where A is the surface area, K is a rate constant and P is the
pressure. From the start of the simulation, the PBX begins burning at the
interface between itself and the container. Figures 6b-d show the evolution
of the container, including its failure, which begins at the notch as expected.
As the container fails, product gases resulting from the reaction, depicted
by an isosurface of the volume fraction, are seen escaping the failed region.
These subsequently expand and mix with the air surrounding the container.
In Fig. 6d both the container and the product gases can be seen colliding with
the boundaries of the computational domain.

A few features of this simulation warrant further explanation. Initially the
volume fraction of the gas was zero within the container. As the reaction
proceeded, gas was generated in regions formerly occupied by the solid
materials. Next, upon the rupture of the container, product gas from inside
the container escapes and interacts with the surrounding air. Both the
phase change and the subsequent interaction of gases from initially separate
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Fig. 6. Deformation and rupture of a steel container pressurized by the reaction of
explosive contents. As the container ruptures, product gases of the reaction can be
seen escaping the container.

regions are extremely problematic for FSI techniques based on the separated
model approach. Finally, in this case, to achieve “failure” of the container, a
deficiency in the MPM algorithm was exploited. Namely, when particles are
subject to sufficient strain that initially adjacent particles become separated by
an entire computational cell, the material no longer behaves as a continuum in
this region, and is effectively broken. While this feature was exploited here for
demonstration purposes, recently a collaborator has implemented constitutive
models in which material failure is determined based on deterministic criteria,
including strain rate, shear banding and dislocation. Discussion of these
models is beyond the intended scope of this manuscript, and as such these
models were not used in its preparation.

6 Discussion and Conclusions

A novel technique for simulation of large deformation Fluid Structure
Interaction (FSI) phenomena has been presented. This approach is based upon
solving the multifield governing equations for both the solid and fluid materials
on an Eulerian mesh. In addition, solid materials have a second representation
in the Lagrangian frame in the form of a particle representation, based on the
Material Point Method (MPM). This dual representation allows both material
phases the advantage of operating within their traditionally preferred frame of
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reference, thus alleviating some of the problems typically encountered when
attempting to treat both phases in a single reference frame. Several simple
validation tests were performed, each of which was intended to bring a degree
of confidence to one or more elements of the physics involved in multifield
problems. Finally, an example simulation was presented to demonstrate the
complex types of problems that this method is capable of treating.

A few words on the applicability of this methodology are appropriate.
Currently, the version of the MPM that is described here uses explicit time
integration. Typical engineering solids have a large sound speed, and as such,
stability considerations require the use of small timesteps. Thus the technique
described here is best suited for high rate simulations, such as explosions,
detonations, blast wave or projectile interactions, and other scenarios where
the timescales involved lend themselves to being treated by explicit integration
in time. In cases where one does not need to resolve the dynamic response of
the solid, as in the supersonic wedge case of Sec. 4.3, only slight modification
is required to allow one to ignore the stability constraint imposed by the solid
material. In addition, future plans include incorporating a version of the MPM
that uses implicit time integration, such as that described in [?]. This will
greatly expand the range of timescales over which the techniques described
here is applicable.

7 Appendix: Derivation of the Specific Volume Evolution Equation

The generalized Reynolds Transport Theorem for the r-material specific
volume is

Dr (Mrvr)

Dt
= vr

DrMr

Dt
+ Mr

Drvr

Dt

= vrV Γr + Mr
Drvr

Dt
(45)

The Lagrangian rate for the change of vr is obtained by differentiation of the
state equation, Eq. 11. That is

Drvr

Dt
= vr

(

−κr
Drp

Dt
+ βr

DrTr

Dt

)

(46)

where the partial derivatives are

κr =−

[

1

vr

∂vr

∂p

]

T

isothermal compressibility ; (47)
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βr =

[

1

vr

∂vr

∂T

]

p

constant pressure volumetric expansivity . (48)

In the problems shown here, ideal materials with constant specific heats are
assumed.

The rate equation for the hydrodynamic pressure begins with the differenti-
ation of the multifield equation of state, Eq. 13, and proceeds with the use
of conservation of mass, the definition of the material derivative of vs, the
product rule and Eqs. 46 and 12.

∂

∂t

[

1 −
N
∑

s=1

(ρsvs)

]

= 0 =
N
∑

s=1

[

ρs
∂vs

∂t
+ vs

∂ρs

∂t

]

=
N
∑

s=1

[

ρs
∂vs

∂t
− vs∇ · (ρsus) + vsΓs

]

=
N
∑

s=1

[

ρs
Dsvs

Dt
− ρsus · ∇vs − vs∇ · (ρsus) + vsΓs

]

=
N
∑

s=1

[

ρs
Dsvs

Dt
−∇ · (ρsusvs) + vsΓs

]

=
N
∑

s=1

[

θs

(

−κs
Dsp

Dt
+ βs

DsTs

Dt

)]

−∇ ·
N
∑

s=1

θsus +
N
∑

s=1

vsΓs

At this point it is useful to introduce a few relationships, namely:

κ =
∑

N

s=1θsκs , (49)

u =
∑

N

s=1θsus . (50)

Use of each of these results in

κ
Dpp

Dt
= −∇ · u +

N
∑

s=1

(

θsβs
DsTs

Dt

)

(51)

where Dpp/Dt = ∂p/∂t + up · ∇p in which the transport velocity is

up = (
∑

N

s=1θsκsus) /κ .

However, what we need to complete Eq. 46 is Dpp/Dt = ∂p/∂t + up · ∇p. To
find this, we consider the difference:
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κ
Drp

Dt
− κ

Dpp

Dt
=

[

κ
∂p

∂t
+ κur · ∇p

]

−

[

κ
∂p

∂t
+

N
∑

s=1

θsκsus · ∇p

]

=ur

N
∑

s=1

θsκs · ∇p −
N
∑

s=1

θsκsus · ∇p

= κ (ur − up) · ∇p

or:

Drp

Dt
=

Dpp

Dt
+ (ur − up) · ∇p (52)

Substitution of Eq. 52 into Eq. 46 gives a rate equation for the specific volume
of the r-material:

Mr

V

Drvr

Dt
= f θ

r ∇ · u +

(

θrβr
DrTr

Dt
− f θ

r

N
∑

s=1

θsβs
DsTs

Dt

)

− f θ
r

N
∑

s=1

vsΓs − κrθr (ur − up) · ∇p (53)

where f θ
r = θrκr/κ. Finally, Eq. 53 is used with Eq. 45 to give a rate equation

for the volume of r-material

1

V

Dr (Mrvr)

Dt
= f θ

r ∇ · u +

(

θrβr
DrTr

Dt
− f θ

r

N
∑

s=1

θsβs
DsTs

Dt

)

+

(

vrΓr − f θ
r

N
∑

s=1

vsΓs

)

− θrκr (ur − up) · ∇p (54)
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