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Abstract

An approach for the simulation of explosions of “energetic devices” is described. In this
context, an energetic device is a metal container filled with a high explosive (HE). Examples
include bombs, mines, rocket motors or containers used in storage and transport of HE
material. Explosions may occur due to detonation or deflagration of the HE material, with
initiation resulting from either mechanical or thermal input. This approach is applicable to
a wide range of fluid-structure interaction scenarios, the application to energetic devices is
chosen because it demonstrates the full capability of this methodology.

Simulations of this type are characterized by a number of interesting and challenging
behaviors. These include the transformation of the solid HE into highly pressurized gaseous
products that initially occupy regions which formerly contained only solid material. This
rapid pressurization of the container leads to large deformations at high strain rates and
eventual case rupture. Once the container breaks apart, the highly pressurized product
gas that escapes the failing container generates shock waves that propagate through the
initially quiescent surrounding fluid.

The approach, which uses a finite-volume, multi-material compressible CFD formulation,
within which solid materials are represented using a particle method known as the Material
Point Method, is described, including certain of the sub-grid models required to close the
governing equations. Results are first presented for “rate stick” and “cylinder test” scenar-
ios, each of which involves detonating unconfined and confined HE material, respectively.
Experimental data are available for these configurations and as such they serve as valida-
tion tests. Finally, results from an unvalidated “fast cook-off” simulation in which the HE
is initiated by thermal input, which causes deflagration, are shown.



1 Introduction

The work presented here describes a numerical approach for “full physics” simula-
tions of dynamic fluid structure interactions involving large deformations and mate-
rial transformations (e.g., phase change). “Full physics” refers to problems involving
strong interactions between the fluid field and solid field temperatures and velocities,
with a full Navier Stokes representation of fluid materials and the transient, nonlin-
ear response of solid materials. These interactions may include chemical or physical
transformation between the solid and fluid fields.

Approaches to fluid structure interaction (FSI) problems are typically divided into
two classes. “Separated” approaches treat individual materials as occupying distinct
regions of space, with interactions occurring only at material interfaces. The details
of those interactions vary between implementations, and are often a function of the
degree, or “strength” of the coupling between the fluid and solid fields. Because of
the separated nature of the materials, only one set of state variables is needed at
any point in space, since only one material is allowed to exist at that point. “Aver-
aged” model approaches allow all materials to exist at any point in space with some
probability. Variables describing the material state vary continuously throughout the
computational domain, thus, the state of every material is defined at every point
in space. Distinct material interfaces are not defined, rather the interaction between
materials is computed in an average sense, and, as such, interactions among materials
may take place anywhere.

While both the separated and averaged model approaches have their respective mer-
its, the averaged model, when carried out on an Eulerian grid, allows arbitrary dis-
tortion of materials and material interfaces. However, these distortions can be catas-
trophic for the solid material, as the deformation history of the solid must be trans-
ported through the Eulerian grid. This transport can lead to non-physical stresses
and the interface between materials is also subject to diffusion. The latter problem
can be mitigated via surface tracking and the use of a single valued velocity field [1,2],
but this does not eliminate the problems of stress transport.

The approach described here uses the averaged model approach and addresses the
issue of stress transport by integrating the state of the solid field in the “material”
frame of reference through use of the Material Point Method (MPM) [3,4]. MPM is
a particle method for solid mechanics that allows the solid field to undergo arbitrary
distortion. Because the fluid state is integrated in the Eulerian frame, it can also un-
dergo arbitrary distortion. MPM uses a computational “scratchpad” grid to advance
the solution to the equations of motion, and by choosing to use the same grid used in
the Eulerian frame of reference, interactions among the materials are facilitated on
this common computational framework. By choosing to use an infinitely fast rate of
momentum transfer between the materials, the single velocity field limit is obtained,
and the interface between materials is limited to, at most, a few cells. Thus, in the
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differential limit, the separated model can be recovered. This means that with suffi-
cient grid resolution, the accuracy of the separated model and the robustness of the
averaged model can be enjoyed simultaneously.

The theoretical and algorithmic basis for the fluid structure interaction simulations
presented here is based on a body of work of several investigators at Los Alamos
National Laboratory, primarily Bryan Kashiwa, Rick Rauenzahn and Matt Lewis.
Several reports by these researchers are publicly available and are cited herein. It is
largely through our personal interactions that we have been able to bring these ideas
to bear on the simulations described herein.

An exposition of the governing equations is given in the next section, followed by
an algorithmic description of the solution of those equations. This description is first
done separately for the materials in the Eulerian and Lagrangian frames of refer-
ence, before details associated with the integrated approach are given. Because this
manuscript is focused on explosions of energetic devices, some of the models used to
close the governing equations are described briefly. Finally, results from three calcu-
lations are presented. The first two of these are intended to serve as validation of the
general approach and the models used, while the third is an unvalidated demonstra-
tion calculation. The reader is encouraged to browse Section 5 at this point to better
appreciate the direction that the subsequent development is headed.

2 Governing Equations

The governing multi-material model equations are stated and described, but not
developed, here. Their development can be found in [5]. Here, our intent is to identify
the quantities of interest, of which there are 8, as well as those equations (or closure
models) which govern their behavior. Consider a collection of N materials, and let
the subscript r signify one of the materials, such that r = 1, 2, 3, . . . , N . In an arbitary
volume of space V (x, t), the averaged thermodynamic state of a material is given by
the vector [Mr,ur, er, Tr, vr, θr, σr, p], the elements of which are the r-material mass,
velocity, internal energy, temperature, specific volume, volume fraction, stress, and
the equilibration pressure. The r-material averaged density is ρr = Mr/V . The rate
of change of the state in a volume moving with the velocity of r-material is:

1

V

DrMr

Dt
=
∑N

s=1Γrs (1)

1

V

Dr(Mrur)

Dt
= θr∇ · σ + ∇ · θr(σr − σ) + ρrg +

∑N

s=1frs +
∑N

s=1u
+
rsΓrs (2)

1

V

Dr(Mrer)

Dt
=−ρrp

Drvr

Dt
+ θrτr : ∇ur −∇ · jr +

∑N

s=1qrs +
∑N

s=1h
+
rsΓrs (3)
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Equations (1-3) are the averaged model equations for mass, momentum, and internal
energy of r-material, in which σ is the mean mixture stress, taken here to be isotropic,
so that σ = −pI in terms of the hydrodynamic pressure p. The effects of turbulence
have been explicitly omitted from these equations, and the subsequent solution, for
the sake of simplicity. However, including the effects of turbulence is not precluded
by either the model or the solution method used here.

In Eq. (2) the term
∑N

s=1 frs signifies a model for the momentum exchange among
materials. This term results from the deviation of the r-field stress from the mean
stress, averaged, and is typically modeled as a function of the relative velocity between
materials at a point. (For a two material problem this term might look like f12 =
K12θ1θ2(u1 − u2) where the coefficient K12 determines the rate at which momentum
is transferred between materials). Likewise, in Eq. (3),

∑N
s=1 qrs represents an exchange

of heat energy among materials. For a two material problem q12 = H12θ1θ2(T2 − T1)
where Tr is the r-material temperature and the coefficient Hrs is analogous to a
convective heat transfer rate coefficient. The heat flux is jr = −ρrbr∇Tr where the
thermal diffusion coefficient br includes both molecular and turbulent effects (when
the turbulence is included).

In Eqs. (1-3) the term Γrs is the rate of mass conversion from s-material into r-
material, for example, the burning of a solid reactant into gaseous products. The rate
at which mass conversion occurs is governed by a reaction model, two examples of
which are given in Section 4.1. In Eqs. (2) and (3), the velocity u+

rs and the enthalpy
h+

rs are those of the s-material that is converted into r-material. These are simply the
mean values associated with the donor material.

The temperature Tr, specific volume vr, volume fraction θr, and hydrodynamic pres-
sure p are related to the r-material mass density, ρr, and specific internal energy, er,
by way of equations of state. The four relations for the four quantites (Tr, vr, θr, p)
are:

er = er(vr, Tr) (4)

vr = vr(p, Tr) (5)

θr = ρrvr (6)

0 = 1−
∑N

s=1ρsvs (7)

Equations (4) and (5 )are, respectively, the caloric and thermal equations of state.
Equation (6) defines the volume fraction, θ, as the volume of r-material per total
material volume, and with that definition, Equation (7), referred to as the multi-
material equation of state, follows. It defines the unique value of the hydrodynamic
pressure p that allows arbitrary masses of the multiple materials to identically fill the
volume V . This pressure is called the “equilibration” pressure [6].

A closure relation is still needed for the material stress σr. For a fluid σr = −pI +
τr where the deviatoric stress is well known for Newtonian fluids. For a solid, the
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material stress is the Cauchy stress. The Cauchy stress is computed using a solid
constitutive model and may depend on the the rate of deformation, the current state
of deformation (E), the temperature, and possibly a number of history variables.
Such a relationship may be expressed as:

σr ≡ σr(∇ur,Er, Tr, . . . ) (8)

The approach described here imposes no restrictions on the types of constitutive
relations that can be considered. More specific discussion of some of the models used
in this work is found in Sec. 4

Equations (1-8) form a set of eight equations for the eight-element state vector
[Mr,ur, er, Tr, vr, θr, σr, p], for any arbitrary volume of space V moving with the r-
material velocity. The approach described here uses the reference frame most suit-
able for a particular material type. As such, there is no guarantee that arbitrary
volumes will remain coincident for materials described in different reference frames.
This problem is addressed by treating the specific volume as a dynamic variable of
the material state which is integrated forward in time from initial conditions. In so
doing, at any time, the total volume associated with all of the materials is given by:

Vt =
∑N

r=1Mrvr (9)

so the volume fraction is θr = Mrvr/Vt (which sums to one by definition). An evolution
equation for the r-material specific volume, derived from the time variation of Eqs.
(4-7), has been developed in [5]. It is stated here as:

1

V

Dr(Mrvr)

Dt
= f θ

r ∇ · u+
[
vrΓr − f θ

r

∑N

s=1vsΓs

]
+
[
θrβr

DrTr

Dt
− f θ

r

∑N

s=1θsβs
DsTs

Dt

]
. (10)

where f θ
r = θrκr∑N

s=1θsκs

, and κr is the r-material bulk compressibility.

The evaluation of the multi-material equation of state (Eq. (7)) is still required in
order to determine an equilibrium pressure that results in a common value for the
pressure, as well as specific volumes that fill the total volume identically.

3 Numerical Implementation

A description of the means by which numerical solutions to the equations in Sec-
tion 2 are found is presented next. This begins with separate, brief, overviews of the
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methodologies used for the Eulerian and Lagrangian reference frames. The algorith-
mic details necesssary for integrating them to achieve a tightly coupled fluid-structure
interaction capability is provided in Sec. 3.3.

3.1 Eulerian Multi-Material Method

The Eulerian method implemented here is a cell-centered, finite volume, multi-material
version of the ICE (for Implicit, Continuous fluid, Eulerian) method [7] developed by
Kashiwa and others at Los Alamos National Laboratory [8]. “Cell-centered” means
that all elements of the state are colocated at the grid cell-center (in contrast to a
staggered grid, in which velocity components may be centered at the faces of grid
cells, for example). This colocation is particularly important in regions where a ma-
terial mass is vanishing. By using the same control volume for mass and momentum
it can be assured that as the material mass goes to zero, the mass and momentum
also go to zero at the same rate, leaving a well defined velocity. The technique is fully
compressible, allowing wide generality in the types of problems that can be addressed.

Our use of the cell-centered ICE method employs time splitting: first, a Lagrangian
step updates the state due to the physics of the conservation laws (i.e., right hand side
of Eqs. 1-3); this is followed by an Eulerian step, in which the change due to advection
is evaluated. For solution in the Eulerian frame, the method is well developed and
described in [8].

In the mixed frame approach used here, a modification to the multi-material equa-
tion of state is needed. Equation (7) is unambiguous when all materials are fluids or
in cases of a flow consisting of dispersed solid grains in a carrier fluid. However in
fluid-structure problems the stress state of a submerged structure may be strongly
directional, and the isotropic part of the stress has nothing to do with the hydro-
dynamic (equilibration) pressure p. The equilibrium that typically exists between a
fluid and a solid is at the interface between the two materials: there the normal part
of the traction equals the pressure exerted by the fluid on the solid over the interface.
Because the orientation of the interface is not explicitly known at any point (it is
effectively lost in the averaging) such an equilibrium cannot be computed.

The difficulty, and the modification that resolves it, can be understood by considering
a solid material in tension coexisting with a gas. For solid materials, the equation of
state is the bulk part of the constitutive response (that is, the isotropic part of the
Cauchy stress versus specific volume and temperature). If one attempts to equate the
isotropic part of the stress with the fluid pressure, there exist regions in pressure-
volume space for which Eq. (7) has no physical solutions (because the gas pressure
is only positive). This can be seen schematically in Fig. 1, which sketches equations
of state for a gas and a solid, at an arbitrary temperature.

Recall that the isothermal compressiblity is the negative slope of the specific volume
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versus pressure. Embedded structures considered here are solids and, at low pressure,
possess a much smaller compressibility than the gasses in which they are submerged.
Nevertheless the variation of condensed phase specific volume can be important at
very high pressures, where the compressibilities of the gas and condensed phase ma-
terials can become comparable (as in a detonation wave, for example). Because the
speed of shock waves in materials is determined by their equations of state, obtaining
accurate high pressure behavior is an important goal of our FSI studies.

To compensate for the lack of directional information for the embedded surfaces, we
evaluate the solid phase equations of state in two parts. Above a specified postive
threshold pressure (typically 1 atmosphere), the full equation of state is respected;
below that threshold pressure, the solid phase pressure follows a polynomial chosen
to be C1 continuous at the threshold value and which approaches zero as the specific
volume becomes large. The effect is to decouple the solid phase specific volume from
the stress when the isotropic part of the stress falls below a threshold value. In regions
of coexistence at states below the threshold pressure, p tends to behave according
to the fluid equation of state (due to the greater compressibility) while in regions
of pure condensed phase material p tends rapidly toward zero and the full material
stress dominates the dynamics as it should.

3.2 The Material Point Method

Solid materials with history dependent constitutive relations are more conveniently
treated in the Lagrangian frame. Here we briefly describe a particle method known as
the Material Point Method (MPM) which is used to evolve the equations of motion
for the solid phase materials. MPM is a powerful technique for computational solid
mechanics, and has found favor in applications involving complex geometries [9], large
deformations [10] and fracture [11], to name a few. After the description of MPM,
its incorporation within the multi-material solution is described in Sec. 3.3.

Originally described by Sulsky, et al., [3,4], MPM is a particle method for structural
mechanics simulations. MPM is an extension to solid mechanics of FLIP [12], which
is a particle-in-cell (PIC) method for fluid flow simulation. The method typically
uses a cartesian grid as a computational scratchpad for computing spatial gradients.
This same grid also functions as an updated Lagrangian grid that moves with the
particles during advection and thus eliminates the diffusion problems associated with
advection on an Eulerian grid. At the end of a timestep, the grid is reset to the
original, regularly ordered, position.

In explicit MPM, the equations of motion are cast in the form [4]:

ma=Fext − Fint (11)
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where m is the mass matrix, a is the acceleration vector, Fext is the external force
vector (sum of the body forces and tractions), and Fint is the internal force vector
resulting from the divergence of the material stresses.

The solution procedure begins by projecting the particle state to the nodes of the
computational grid, to form the mass matrix m and to find the nodal external forces
Fext, and velocities, v. In practice, a lumped mass matrix is usually used. These
quantities are calculated at individual nodes by the following equations, where the∑
p

represents a summation over all particles:

mi =
∑
p

Sipmp, vi =

∑
p

Sipmpvp

mi

, Fext
i =

∑
p

SipF
ext
p (12)

and i refers to individual nodes of the grid. mp is the particle mass, vp is the particle
velocity, and Fext

p is the external force on the particle. Sip is the shape function of
the ith node evaluated at xp. Traditionally, standard tri-linear shape functions are
used, but recently smoother interpolants, as described in [13], have yielded improved
results.

A velocity gradient, ∇vp is computed at the particles using the velocities projected
to the grid:

∇vp =
∑

i

Gipvi (13)

where Gip is the gradient of the shape function of the ith node evaluated at xp.

This is used as input to a constitutive model which is evaluated on a per particle
basis, the result of which is the Cauchy stress at each particle, σp. With this, the
internal force due to the divergence of the stress is calculated via:

Fint
i =

∑
p

GipσpVp, (14)

where Vp is the particle volume.

Equation (11) can then be solved for a. An explicit forward Euler method is used for
the time integration:

vL = v + a∆t (15)

and the particle position and velocity are explicitly updated by:

vp(t + ∆t) =vp(t) +
∑

i

Sipai∆t (16)
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xp(t + ∆t) =xp(t) +
∑

i

Sipv
L
i ∆t (17)

This completes one timestep.

By describing and implementing MPM in an independent fashion, validation of the
method itself as well as submodels (e.g., constitutive models and contact) is simplified.
However, we emphasize that its use here is for selected material field description
within the general multi-material formulation. This integration is described next.

3.3 Integration of MPM within the Eulerian Multi-Material Formulation

An important feature of this work is the ability to represent a material in either
the Lagrangian or Eulerian frame. This allows treating specific phases in their tra-
ditionally preferred frame of reference. The Material Point Method, is used to time
advance solid materials that are best described in a Lagrangian reference frame. By
choosing the background grid used to update the solid materials to be the same grid
used in the multi-material Eulerian description, all interactions among materials can
be computed in the common framework, according to the momentum and heat ex-
change terms in Eqs (2-3). This results in a robust and tightly coupled solution for
interacting materials with very different responses.

To illustrate how the integration is accomplished in an algorithmic fashion the explicit
steps for advancing a fluid-structure interaction problem from time t to time t + ∆t
are described below.

(1) Project particle state to grid: A simulation timestep begins by interpolating
the particle description of the solid to the grid. This starts with a projection of
particle data to grid vertices, or nodes, as described in Eq. (12), and is followed
by a subsequent projection from the nodes to the cell-centers, given by (for
velocity):

uj =

∑N
i=1 wijmiui∑N

i=1 wijmi

(18)

Since our work uses a cartesian grid, N = 8. wij = 1
8
, except for those nodes at

symmetry boundaries where the weight of those nodes must be doubled in order
to achieve the desired effect.

(2) Compute the equilibration pressure: While Eq. (7) and the surrounding
discussion describes the basic process, one specific point warrants further ex-
planation. In particular, the manner in which each material’s volume fraction is
computed is crucial. Because the solid and fluid materials are evolved in different
frames of reference, the total volume of material in a cell is not necessarily equal
to the volume of a computational cell. Material volume is tracked by evolving
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the specific volume for each material according to Eq. (10). The details of this
are further described in step 11.

With the materials’ masses and specific volumes, material volume can be com-
puted (Vr = Mrvr) and summed to find the total material volume. The volume
fraction θr is then computed as the volume of r-material per total material vol-
ume. With this, the solution of Eq. (7) can be carried out at each cell using a
Newton-Raphson technique[14], which results in new values for the equilibrium
pressure, peq, volume fraction, θr and specific volume, vr.

(3) Compute face-centered velocities, u∗r , for the Eulerian advection: At
this point, fluxing velocities are computed at each cell face. The expression for
this is based on a time advanced estimate for the cell-centered velocity. A full
development can be found in [8] and [5] but here, only the result is given. The
following expression gives the face normal velocity component based on adjacent
cell values:

u∗r =
ρrL

urL
+ ρrR

urR

ρrL
+ ρrR

−
(

2vrL
vrR

∆t

vrL
+ vrR

)(
peqR

− peqL

∆x

)
+ g∆t (19)

The first term above is a mass weighted average of the logically left and right cell-
centered velocities, the second is a pressure gradient acceleration term, and the
third is acceleration due to the component of gravity in the face normal direction.
Not shown explicitly is the necessary momentum exchange at the face-centers.
This is done on the faces in the same manner as described subsequently in step
10 for the cell-centered momentum exchange.

(4) Multiphase chemistry: Compute sources of mass, momentum, energy and spe-
cific volume as a result of phase changing chemical reactions for each r-material,
Γr, urΓr, erΓr and vrΓr. Specifics of the calculation of Γr are model dependent,
and examples are given in Sec. 4.1. Care must be taken to reduce the momentum,
internal energy and volume of the reactant by an amount proportional to the
mass consumed each timestep, so that those quantities are depleted at the same
rate as the mass. When the reactant material is described by particles, decre-
menting the particle mass automatically decreases the momentum and internal
energy of that particle by the appropriate amount. This mass, momentum and
internal energy is transferred to the product material’s state, and the volume
fraction for the reactant and product materials is recomputed.

(5) Compute an estimate of the time advanced pressure, p: Based on the
volume of material being added to (or subtracted from) a cell in a given timestep,
an increment to the cell-centered pressure is computed using:
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∆p = ∆t

N∑
r=1

vrΓr −
N∑

r=1
∇ · (θ∗r u∗r )

N∑
r=1

θrκr

(20)

p = peq + ∆p (21)

where κr is the r-material bulk compressibility. The first term in the numerator
of Eq. (20) represents the change in volume due to reaction, i.e., a given amount
of mass would tend to occupy more volume in the gas phase than the solid phase,
leading to an increase in pressure. The second term in the numerator represents
the net change in volume of material in a cell due to flow into or out of the
cell. The denominator is essentially the mean compressibility of the mixture of
materials within that cell. This increment in pressure is added to the equilibrium
pressure computed in step 2 and is the pressure used for the remainder of the
current timestep. Again, the details leading to this equation can be found in [8].

(6) Face Centered Pressure p∗: The calculation of p∗ is discussed at length in
[5]. For this work, it is computed using the updated pressure by:

p∗ =

(
pL

ρL

+
pR

ρR

)
/

(
1

ρL

+
1

ρR

)
(22)

where the subscripts L and R refer to the logically left and right cell-centered
values, respectively, and ρ is the sum of all materials’ densities in that cell. This
will be used subsequently for the computation of the pressure gradient, ∇p∗.

(7) Material Stresses: For the solid, we calculate the velocity gradient at each
particle based on the grid velocity (Eq. (13)) for use in a constitutive model
to compute particle stress. Fluid stresses are computed on cell faces based on
cell-centered velocities.

(8) Accumulate sources of mass, momentum and energy at cell-centers:
These terms are of the form:

∆(m)r = ∆tV
N∑

s=1,s 6=r

Γs (23)

∆(mu)r =−∆tV

θr∇p∗ + ∇·θr(σr − σ) +
N∑

s=1,s 6=r

usΓs

 (24)

∆(me)r =−∆tV

f θ
r p

N∑
s=1

∇ · (θ∗ru∗r ) +
N∑

s=1,s 6=r

esΓs

 (25)

Note that the only source of internal energy being considered here is that due
to “flow work”. This is required for the compressible flow formulation, but other
terms, such as heat conduction are at times included.

(9) Compute Lagrangian phase quantities at cell-centers: The increments in
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mass, momentum and energy computed above are added to their time t coun-
terparts to get the Lagrangian values for these quantities. Note that here, some
Lagrangian quantities are denoted by an L− superscript. This indicates that all
physical processes have been accounted for except for inter-material exchange of
momentum and heat which is described in the following step.

(m)L
r = (m)t

r + ∆(m)r (26)

(mu)L−
r = (mu)t

r + ∆(mu)r (27)

(me)L−
r = (me)t

r + ∆(me)r (28)

(10) Momentum and heat exchange: The exchange of momentum and heat be-
tween materials is computed according to:

(mu)L
r = (mu)L−

r + ∆tmr

N∑
s=1

θrθsKrs(u
L
s − uL

r ) (29)

(me)L
r = (me)L−

r + ∆tmrcvr

N∑
s=1

θrθsHrs

(
TL

s − TL
r

)
(30)

These equations are solved in a pointwise implicit manner that allows arbitrarily
large momentum transfer to take place between materials. Typically, in FSI solu-
tions, very large (1015) values of K are used, which results in driving contacting
materials to the same velocity. Intermaterial heat exchange is usually modeled
at a lower rate. Again, note that the same operation must be done following
Step 3 above in the computation of the face-centered velocities.

(11) Specific volume evolution: As discussed above in step 2, in order to correctly
compute the equilibrium pressure and the volume fraction, it is necessary to
keep an accurate accounting of the specific volume for each material. Here, we
compute the evolution in specific volume due to the changes in temperature and
pressure, as well as phase change, during the foregoing Lagrangian portion of
the calculation, according to:

∆(mv)r = ∆tV

[
vrΓr + f θ

r ∇ ·
N∑

s=1

θ∗su
∗
s + θrβrṪr − f θ

r

N∑
s=1

θsβsṪs

]
(31)

(mv)L
r = (mv)n

r + ∆(mv)r (32)

where β is the constant pressure thermal expansivity and Ṫ = T L−T t

∆t
is the rate

of change of each material’s temperature during the Lagrangian phase of the
computation.

(12) Advect Fluids: For the fluid phase, use a suitable advection scheme, such
as that described in [15], to transport mass, momentum, internal energy and
specific volume. As this last item is an intensive quantity, it is converted to
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material volume for advection, and then reconstituted as specific volume for use
in the subsequent timestep’s equilibrium pressure calculation.

(13) Update Nodal Quantities for Solid Materials: Those changes in solid ma-
terial mass, momentum and internal energy that are computed at the cell-centers
are interpolated to the nodes as field quantities, e.g., changes in momentum are
expressed as accelerations, for use in Eq. (15).

(14) Advect Solids: For the solid phase, interpolate the time advanced grid velocity
and the corresponding velocity increment (acceleration) back to the particles,
and use these to advance the particle’s position and velocity, according to Eqs.
(16-17).

This completes one timestep. In the preceding, the user has a number of options
in the implementation. The approach taken here was to develop a working MPM
code and a separate working multi-material ICE code. In addition, some routines
specific to the integration are required, for example, to transfer data from grid nodes
to cell-centers. We note, however, that the fluid structure interaction methodology
should not be looked at in the context of a “marriage” between an Eulerian CFD
code and MPM. The underlying theory is a multi-material description that has the
flexibility to incorporate different numerical descriptions for solid and fluid fields
within the overarching solution process. To have flexibility in treating a widest range
of problems, it was our desire that in the integration of the two algorithms, each of
the components be able to function independently. As described here, this method
is fully explicit in time. To make this implicit with respect to the propagation of
pressure waves, a Poisson equation is solved in the calculation of ∆p, which is in turn
used to iteratively update the face-centered velocities [8].

4 Models

The governing equations given in Section 2 are incomplete without closure equations
for quantities such as pressure, stress, and rate of exchange of mass between materi-
als. Equations of state, constitutive models and reaction models provide the needed
closure. Brief descriptions of some of the models used in this work are given below.

4.1 High Energy Material Reaction Models

Two types of High Energy (HE) reaction models were considered here. The first is a
model for detonation, in which the reaction front proceeds as a shock wave through
the solid reactant, leaving highly pressurized product gases behind the shock. The
second is a deflagration model, in which the reaction proceeds more slowly through
the reactant in the form of a thermal burn. Each is described here.
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4.1.1 The JWL++ Detonation Model

The detonation model used in two of the calculations discussed in Section 5 is a
reactive flow model known as JWL++[16]. JWL++ consists of equations of state for
the reactant and the products of reaction as well as a rate equation governing the
transformation from product to reactant. In addition, the model consists of a “mixer”
which is a rule for determining the pressure in a mixture of product and reactant, as
found in a partially reacted cell. Because pressure equilibration among materials is
already part of the multi-material CFD formulation described in Section 3, the mixer
was not part of the current implementation. Lastly, two additional rules apply. The
first is that reaction begins in a cell when the pressure in that cell exceeds 200 MPa.
Finally, no more than 20% of the explosive in a cell is allowed to react in a given
timestep.

The Murnaghan equation of state [17] used for the solid reactant material is given
by:

p =
1

nκ

(
1

vn
− 1

)
(33)

where v = ρ0/ρ, and n and κ are material dependent model parameters. Note that
while the reactants are solid materials, they are assumed to not support deviatoric
stress. Since a detonation propagates faster than shear waves, the strength in shear
of the reactants can be neglected. Since it is not necessary to track the deformation
history of a particular material element, in this case, the reactant material was tracked
only in the Eulerian frame, i.e. not represented by particles within MPM.

The JWL C-term form is the equation of state used for products, and is given by:

p = A exp(−R1v) + B exp(−R2v) +
C

ρ0κvn−1
(34)

where A, B, C, R1, R2, ρ0 and κ are all material dependent model parameters.

The rate equation governing the transformation of reactant to product is given by:

dF

dt
= G(p + q)b(1− F ) (35)

where G is a rate constant, and b indicates the power dependence on pressure. q is an
artificial viscosity, but was not included in the current implementation of the model.
Lastly:

F =
ρproduct

ρreactant + ρproduct

(36)
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is the burn fraction in a cell. This can be differentiated and solved for a mass burn
rate in terms of dF :

Γ =
dF

dt
(ρreactant + ρproduct) (37)

This detonation model is empirically based and was designed to be simple and ef-
ficient, and while it works well for the geometries employed here, it may not be
suitable for all applications. Implementation of other models within the algorithmic
and computational framework described here is straightforward.

4.1.2 Deflagration Model

The rate of thermal burning, or deflagration, of a monopropellant solid explosive is
typically assumed to behave as:

D = Apn (38)

where D can be thought of as the velocity at which the burn front propagates through
the reactant (with units of length/time) and p is the local pressure [18]. A and n
are parameters that are empirically determined for particular explosives. Because
deflagration is a surface phenomena, our implementation requires the identification
of the surface of the explosive. The surface is assumed to lie within those cells which
have the highest gradient of mass density of the reactant material. Within each surface
cell, an estimate of the surface area a is made based on the direction of the gradient,
and the rate D above is converted to a mass burn rate by:

Γ = aDρreactant (39)

where ρreactant is the local density of the explosive. While the reaction rate is in-
dependent of temperature, initiation of the burn depends on reaching a threshold
temperature at the surface.

Since the rate at which a deflagration propagates is much slower than the shear wave
speed in the reactant, it is important to track its deformation as pressure builds up
within the container. This deformation may lead to the formation of more surface area
upon which the reaction can take place, and the change to the shape of the explosive
can affect the eventual violence of the explosion. Because of this, for deflagration cases,
the explosive is represented by particles in the Lagrangian frame. The stress response
is treated by an implementation of ViscoSCRAM [19], which includes representation
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of the material’s viscoelastic response, and considers effects of micro-crack growth
within the granular composite material.

4.2 Constitutive Model for Container Breakup

One of the unique features of the approach described here is its ability to treat
the interaction of fluid regions that are initially separated by a solid material. Such a
situation is found when gaseous products of reaction are contained in a metal canister
surrounded by air. When the pressure within the container is sufficient, it will rupture
and the product material will be in direct contact with the surrounding air. Given
the ability to treat these situations, it is worthwhile to accurately describe the failure
of the container.

While a full exposition of metal plasticity and failure is beyond the scope of this
manuscript, a brief description of the current implementation is given here. More
details of the models and algorithms, as well as validation of these models against
experimental data, can be found elsewhere [20–22].

The Cauchy stress in the metal container was additively decomposed into a volumetric
component and a deviatoric component. The deviatoric part of the stress is modeled
using hypoelasticity, while the pressure behaves according to an equation of state.
The Green-Naghdi stress rate [23,24] is used to provide objectivity to the constitutive
equation. The assumption of an additive decomposition of the rate of deformation
into elastic and plastic parts was made for this work, even though a multiplicative
decomposition as described by other investigators [25–29] is likely more appropriate,
and will be considered in future works.

The volumetric stress is computed using a Mie-Grüneisen equation of state [30]:

p =
ρ0C

2
0(η − 1)

[
η − Γ0

2
(η − 1)

]
[η − Sα(η − 1)]2

+ Γ0E ; η = ρ/ρ0 (40)

where p is the pressure, C0 is the bulk speed of sound, Γ0 is the Grüneisen’s gamma at
the reference state, Sα is a linear Hugoniot slope coefficient, E is the internal energy
per unit reference specific volume, ρ0 is the initial density, and ρ is the current density,

In the elastic domain, the deviatoric stress is computed using a hypoelastic model
with a constant shear modulus. The von Mises yield condition is used to determine
whether the material is in the plastic domain. The flow stress (σy) is computed using
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the Johnson-Cook model [31]:

σy(εp, ε̇p, T ) = σ0

[
1 +

B

σ0

(εp)
n

] [
1 + C ln(ε̇∗p)

]
[1− (T ∗)m] (41)

ε̇∗p =
ε̇p

ε̇p0

; T ∗ =
(T − T0)

(Tm − T0)
(42)

where σ0 is the yield stress at zero plastic strain, and (B, C, n, m) are material con-
stants, εp is the equivalent plastic strain, ε̇p is the plastic strain rate, ε̇p0 is a reference
strain rate, T0 is a reference temperature, and Tm is the melt temperature.

The plastic strain and the deviatoric Cauchy stress in the plastic domain are com-
puted with a semi-implicit stress update algorithm [32,23]. A portion of the plastic
work is converted into heat using a Taylor-Quinney coefficient of 0.9. The temperature
of a material point is updated accordingly.

Experiments show that metal containers fail both by void nucleation and growth and
by adiabatic shear banding. We use three criteria to determine whether a material
point has failed.

(1) Melting: A material point is tagged as ”failed” when its temperature is
greater than the melting point of the material at the applied pressure.

(2) TEPLA-F failure condition: A material point is also assumed to have
failed when the TEPLA-F failure criterion [33] is satisfied. This criterion can be
written as

(f/fc)
2 + (εp/ε

f
p)

2 = 1 (43)

where f is the current porosity, fc is the maximum allowable porosity, εp is the
current plastic strain, and εf

p is the plastic strain at fracture.
The evolution of porosity is given by [34,35]:

ḟ = ḟnucl + ḟgrow (44)

ḟgrow = (1− f)tr(Dp) (45)

ḟnucl =
fn

(sn

√
2π)

exp

[
−1

2

(εp − εn)2

s2
n

]
ε̇p (46)

where Dp is the rate of plastic deformation tensor, fn is the volume fraction of
void nucleating particles , εn is the mean of the distribution of nucleation strains,
and sn is the standard deviation of the distribution. A gaussian distribution of
initial porosity is assumed.

The plastic strain at fracture is determined using the Johnson-Cook damage
model [36]:

εf
p =

[
D1 + D2 exp

(
D3

3
σ∗
)]

[1 + D4 ln(ε̇p
∗)] [1 + D5T

∗] ; σ∗ =
tr(σ)

σeq

; (47)
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where D1, D2, D3, D4, D5 are material constants, σ is the Cauchy stress, and T ∗

is the homologous temperature. We assume that the plastic strains at failure
are also distributed in a gaussian manner. The distribution of fracture strains
is simulated by evolving an internal damage variable based on the plastic strain
and by initializing the damage variable to a non-zero value at the beginning of
the simulation.

(3) Loss of material stability: The third criterion that is used to determine
failure is the loss of material stability of the solid. Since this condition is not
sufficient to determine failure, we check two conditions - the Drucker stabil-
ity condition [37] and the loss of hyperbolicity of the governing equations (the
determinant of the acoustic tensor changes sign) [38,39].

Determination of the acoustic tensor requires a search for a normal vector
around the material point and is therefore computationally expensive. A simpli-
fication of this criterion is a check which assumes that the direction of instability
lies in the plane of the maximum and minimum principal stress [40]. In this ap-
proach, we assume that the strain is localized in a band with normal n, and the
magnitude of the velocity difference across the band is g. Then the bifurcation
condition leads to the relation

Rijgj = 0 ; Rij = Mikjlnknl + Milkjnknl − σiknjnk (48)

where Mijkl are the components of the co-rotational tangent modulus tensor and
σij are the components of the co-rotational stress tensor. If det(Rij) ≤ 0, then
gj can be arbitrary and there is a possibility of strain localization.

If this condition for the loss of hyperbolicity is met, a material point deforms
in an unstable manner and failure is assumed to have occurred at that point.

After it has been determined that a material point has failed, the stress at that point
is set to zero - indicating that a free surface has been created. As the simulation
evolves, cracks develop in the material around the failed particles ultimately leading
to the break-up of the container.

5 Numerical Results

The simulation results presented here are intended to serve two purposes, to validate
the method presented above, and to demonstrate its capabilities. While results from
some very basic validation tests, as well as an order or accuracy study, can be found
in [41,42], those presented here are targeted toward exploding energetic devices. Ad-
ditional validation tests of an intermediate degree of complexity would be an ideal
addition to what is presented here, but the availability of theoretical solutions or ex-
perimental data for such cases is not good. In contrast, extensive experimental data
have been collected for the first two cases shown here, and these data are compared
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with simulation results. The first test, detonation of a series of cylinders of explosive,
validates both the general multi-material framework, including material transforma-
tion, as well as the detonation model itself. In the second test, a cylinder of explosive
confined in a copper tube is detonated. There, the confidence gained from the first
test is built upon and extended to include the interaction of the highly pressurized
product gases with the confining copper cylinder. Wall velocity of the copper tube is
compared with experimental measurements.

For the last case, a steel cylinder filled with PBX-9501 is heated to the critical tem-
perature to commence a deflagration. The simulation continues through the rupture
of the case when product gases are free to interact with the surrounding air. This
simulation demonstrates a unique capability of this approach, in which initially sep-
arate fluid regions are allowed to interact following the failure of the steel container.
While previous calculations give some confidence in the validity of this calculation,
it does make use of models which have not been fully validated, and as such, should
be considered a prediction.

5.1 Rate Stick Simulations

A well known phenomenon of detonating solid high explosives is the so-called “size
effect”. The size effect refers to the change of the steady state detonation velocity
of explosives, Us with size R0 [16]. In order to validate our implementation of the
JWL++ detonation model within our multi-material framework, a parameter study
was conducted for cylinders of Ammonium Nitrate Fuel Oil (ANFO-K1) with length
of 10 cm and radii ranging from 4 mm to 20 mm. In addition, a one-dimensional
simulation provided for the “infinite radius” case. In each of the finite radius cases,
the cylinder was initially surrounded by air. Detonation was initiated by impacting
the cylinder at 90 m/s against the boundary of the computational domain, at which
a zero velocity Dirichlet boundary condition was imposed. This impact was sufficient
to raise the pressure within the cylinder to above the threshold for initiation of
reaction. The detonation velocity was determined by comparing the arrival time of
the detonation at two points along the cylinder, sufficiently into the far field that the
detonation had reached a steady state.

Material properties for these cases included the following: The reactant was described
by a Murnaghan equation of state with parameters n = 7.4, κ = 3.9 × 1011 Pa−1

and ρ0 = 1160.0 kg/m3. The products of reaction were described by a JWL C-
term form equation of state with parameters A = 2.9867 × 1011 Pa, B = 4.11706 ×
109 Pa, C = 7.206147×108 Pa, R1 = 4.95, R2 = 1.15, ω = .35 and ρ0 = 1160.0 kg/m3.
The JWL++ parameters were taken as: G = 3.5083 × 10−7 s−1 Pab, b = 1.3, ρ0 =
1160.0 kg/m3. In all, this simulation included 3 materials; the reactant material, the
products of reaction and the surrounding air.
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Simulations were carried out on uniform meshes with cell sizes of 1.0 mm, 0.5 mm
and 0.25 mm. A one-quarter symmetry was assumed in all cases. A qualitative rep-
resentation is shown in Figure 2, which depicts a volume rendering of the density of
the reactant as the detonation has progressed about halfway into the material for the
12 mm radius case at the finest resolution. The curvature of the burn front and the
elevated density just ahead of it are evident in this view.

Figure 3 is a plot of detonation velocity versus the inverse of the sample radius. Ex-
perimental data are represented by open squares, while results of the simulations are
shown with filled circles (h = 1.0 mm), filled diamonds (h = 0.5 mm) and filled trian-
gles (h = 0.25 mm). Connecting lines for the numerical data are in place to guide the
eyes of the reader. Evident from this plot is the convergence of detonation velocities
with grid resolution, and the generally good agreement between experimental and
computed detonation velocities at the finer grid resolutions, particularly at the larger
radii, where both the experimental data and the model are considered more reliable.
Better agreement with data could likely have been achieved by “tuning” the JWL++
parameters, a step which is commonly done to calibrate the model with a particular
hydrodynamics code. That step was neglected here, as the radius at which the sub-
sequent test was carried out is within the range at which good agreement exists for
all resolutions. Note that “goodness” of fit has been judged solely by inspection, not
by any analytical means.

Again, while this set of tests doesn’t validate the full fluid-structure interaction ap-
proach, it does give credibility to the underlying multi-material formulation, including
the pressure equilibration and the exchange of mass between materials, in this case
as governed by the JWL++ detonation model, as well as momentum and energy.

5.2 Cylinder Test Simulation

The cylinder test is an experiment which is frequently used to calibrate equations
of state for detonation products of reaction[43]. In this case, the test consists of an
oxygen free, high conductivity (OFHC) copper tube with an inner radius of 2.54 cm,
an outer radius of 3.06 cm and a length of 35 cm. The tube is filled with QM-100, an
Ammonium Nitrate emulsion, and a detonation is initiated at one end of the tube.
Measurements of the wall velocity wall are made at individual points along the length
of the tube using Fabry-Perot interferometry or streak cameras.

A simulation of this configuration was performed and wall velocity data were collected
at an axial location 25 cm from the point of initiation. The reactant was again de-
scribed by a Murnahan equation of state with parameters n = 7.0, κ = 1.02×−9 Pa−1

and ρ0 = 1260.0 kg/m3. The products of reaction were described by a JWL C-
term form equation of state with parameters A = 4.8702 × 1011 Pa, B = 2.54887 ×
109 Pa, C = 5.06568 × 108 Pa, R1 = 5.0, R2 = 1.0, ω = .3 and ρ0 = 1260.0 kg/m3.
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The JWL++ parameters were taken as: G = 9.1 × 10−5s−1 Pa, b = 1.0, ρ0 =
1260.0 kg/m3. The copper tube was modeled as an elastic-plastic material with a
density of 8930.0 kg/m3, bulk and shear moduli of 117.0 GPa and 43.8 GPa, respec-
tively, and a yield stress of 70.0 MPa. The copper tube was surrounded by air. In all,
4 materials are present in this simulation, the reactant, the products of reaction, the
copper tube, and the surrounding air.

Again, a one-quarter symmetry section of the full cylinder was modeled using a
cell size of h = 0.5 mm and a total domain size of 35 cm X 6 cm X 6 cm. Zero
gradient conditions described the exterior boundaries, which allowed material to exit
the domain.

Figure 4 shows a snapshot of this test midway through the simulation, at t =
18.8 microseconds. The copper tube is depicted using an iso-surface of the cell-
centered mass density (the two surfaces are the inner and outer walls of the tube)
that is colored by velocity. A volume rendering of the pressure field is also present.
Alternating bands of high and low velocity of the tube wall are evidently due to the
reflection of the impulse provided by the shock between the inner and outer surfaces
of the tube.

Velocity data was collected from those particles which were both initially at an ax-
ial location of 25 cm, and upon the exterior surface of the tube. The velocity from
this collection of particles was averaged over the circumference and plotted vs. time
in Figure 5. In addition, experimental results (LLNL, Shot No. K260-581) are also
shown. Both datasets are time shifted to coincide with the arrival of the detona-
tion. Visual inspection of the data indicates reasonably good agreement between the
experimental and numerical data. There are some differences in the high frequency
component of the datasets, but without multiple sets of experimental data against
which to compare, it is difficult to know how much of this deviation is due to exper-
imental uncertainty. Further analysis of both the numerical and experimental data
would be required to deem this case fully validated, but these results provide confi-
dence in the ability of this approach to generate meaningful results for scenarios such
as this.

5.3 Fast Cookoff Simulation

Cookoff tests, generally speaking, refer to experiments in which energetic material
is heated until it reaches ignition. The rate of heating typically differentiates these
tests in to “fast” or “slow” cookoff. In slow cookoff tests, the temperature is usually
increased very slowly, perhaps a few degrees per hour, so that the entire sample is able
to equilibrate and is nearly isothermal when ignition occurs. In fast cookoff tests, heat
is added to the system quickly, which is likely to lead to relatively local ignition at
the surface of the sample. Fast cookoff is more likely to occur in an accident scenario,
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Table 1
Material constants for 4340 steel.

ρ K µ T0 Tm C0 Γ0 Sα

(kg/m3) (GPa) (GPa) (K) (K) (m/s)

7830.0 173.3 80.0 294.0 1793.0 3574 1.69 1.92

A B C n m D1 D2 D3 D4 D5

(MPa) (MPa)

792.0 510.0 0.014 0.26 1.03 0.05 3.44 -2.12 0.002 0.61

where ordinance may be subject to heating by a fire, as occurred on the USS Forrestal
in 1967.

The scenario considered here consists of a cylindrical 4340 steel container with both
inner diameter and length of 10.16 cm, and wall thickness of 0.635 cm, filled with
PBX-9501. The temperature of the container was initialized to be 1oK above the
ignition temperature in the deflagration model for PBX-9501. In this way, the entire
outer surface of the explosive is ignited simultaneously. This is, of course, somewhat
unrealistic for an accident scenario, but rather is an idealization. Additionally, while
the deflagration model described in Section 4.1.2 is used throughout the simulation, it
is possible for deflagrations, also known as thermal burns, to transition to detonation
(DDT). However, the physics governing DDT are not yet well understood, and good
numerical models to describe the phenomenon are not yet available.

Mechanical properties for PBX 9501 were obtained from the literature [19], while
the material constants used in the modeling of 4340 steel are shown in Table 1. A
temperature-dependent specific heat model [44] was used to compute the internal
energy and the rate of temperature increase in the material. We assumed an initial
mean porosity of 0.005 with a standard deviation of 0.001. The critical porosity was
0.3. The mean strain at void nucleation was assumed to be 0.3 with a standard
deviation of 0.1. The scalar damage variable was initialized with a mean of 0.005 and
a standard deviation of 0.001.

Three planes of symmetry are assumed, which allows modeling only 1/8th of the
total geometry. Each dimension of the computational domain was 9.0 cm discretized
into 180 computational cells, for a grid spacing of h = 0.5 mm. Four materials were
present, the steel container and the PBX-9501, each of which are treated in the
Lagrangian frame of reference, as well as the air initially surrounding the container,
and the products of reaction from the deflagration, both of which are represented in
the Eulerian frame of reference. Neumann zero gradient boundary conditions were
used on the exterior domain boundaries to allow material to flow out of the domain,
as the explosion progressed.

Results from this simulation are shown in Fig. 6. In each panel, the container and
explosive are depicted by isosurfaces, blue and red, respectively. In Fig. ??-??, a
volume rendering of the mass density of the product material of the reaction is also
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included. Fig. ?? shows the initial state of the geometry, while the remaining panels
show the progression of the simulation at the times indicated in the captions. The last
two panels depict the same time, with the product gas removed in the final panel,
to more clearly show the state of the container at that time. Close comparison of
the initial and final panels also reveals the reduction in size of the explosive pellet,
due to the reaction. Product gas first begins to leave the container through a rupture
where the side and end of the container meet (Fig. ??), and ultimately also through a
rupture in middle (Fig. ??). The formation of these openings is governed by material
localization as described in Sec. 4.2.

Since no surface tracking is required in this method, there is no requirement to track
the creation of the new surfaces that occur due to material failure. Gas is free to
escape through the openings simply because there is no longer anything in those
computational cells to prevent it once the gap is sufficiently wide.

6 Conclusions

An approach for solving full-physics fluid-structure interaction scenarios has been pre-
sented which uses an Eulerian frame description for fluids and a Lagrangian frame
description for solids. The equations governing the behavior of these materials, in-
cluding their interactions, are based on an averaged model approach, which eliminates
the need to maintain a description of the interface between the materials. In addition
to allowing for arbitrary distortion of material interfaces, the treatment of solid to
gas phase reactions is also facilitated by this approach.

The validation calculations presented here give a high degree of confidence in the qual-
ity of the solutions obtained by this method, while the final demonstration calculation
indicates the complexity of the situations that can be considered. It is important to
point out, however, that in the authors’ experience, this approach is best suited to
high deformation rate problems, and may do less well in situations where the solid is
loaded more slowly. This is true for two reasons. First, while making the algorithm
implicit in time with respect to pressure is relatively straightforward, doing so with
respect to the stress waves in the solid is less so. Implicit versions of MPM have been
implemented with success, but the strategy for incorporating any of these within
the integrated formulation is not obvious, and may require making the entire algo-
rithm fully implicit in time. Second, as a method for solid mechanics, currently MPM
is best suited for highly dynamic loading, although improvements are continuously
being made that should improve its performance in quasi-static scenarios.

In order to improve the efficiency of calculations, a structured adaptive mesh refine-
ment (SAMR) strategy is being pursued that will allow resources to be concentrated
on those parts of the domain where they are needed. The current implementation
allows for the solid materials described using MPM to be advanced at a single level
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of resolution, while those materials integrated in the Eulerian frame are advanced on
an arbitrary number of levels of resolution. Thus, in the final simulation shown here,
the container and solid explosive, which require the greatest degree of resolution to
accurately compute the phase transformation and material response, can be repre-
sented on the finest level. Meanwhile the region away from the device can advance at
a lower spatial resolution until container expansion and rupture dictate the need for
refinement. This strategy enhances the range of simulations that can be considered,
reduces the required computational time and lowers the requirement for the storage
of data.
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8 Figure Captions

(1) Specific volume vs. pressure for a gas phase material and a solid phase material.
Light dashed line reflects an altered solid phase equation of state to keep all
materials in positive equilibration pressure space.

(2) Unconfined 12 mm “rate-stick”. The mass density of the reactant material is
volume rendered, and shows evidence of the curvature of the reaction front,
and the compression of the reactant just ahead of the reaction. Behind the
detonation, most of the reactant material is consumed.

(3) Detonation velocity vs. inverse radius. Experimental and numerical data are
presented, and indicate good agreement of the model with experiment, as well
as convergence of detonation velocity with grid resolution.

(4) Copper cylinder test simulation. The walls of the copper tube are depicted as an
isosurface of density of the copper material and are colored by velocity magni-
tude. Pressure is represented by a volume rendering, and indicates the progress of
the detonation, as well as the interaction of the pressurized products of reaction
with the confining walls.

(5) Copper cylinder test simulation. Experimental and computational velocities of
the cylinder vs. time. Data was collected at a point 25 cm from the point of
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initiation of the detonation.
(6) Time series of a steel container (blue) filled with deflagrating plastic bonded ex-

plosive(red). A volume rendering of the mass density of the products of reaction
is also shown, except in the final panel, where it is removed to more clearly show
the regions where the container has failed. (a) t = 0 ms, (b) t = .137 ms, (c)
t = .203 ms, (d) t = .259 ms, (e) t = .312 ms, (f) t = .312 ms.
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Fig. 1. Specific volume vs pressure for a gas phase material and a solid phase material.
Light dashed line reflects an altered solid phase equation of state to keep all materials in
positive equilibration pressure space.
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Fig. 2. Unconfined 12mm “rate-stick”. The mass density of the reactant material is volume
rendered, and shows evidence of the curvature of the reaction front, and the compression
of the reactant just ahead of the reaction. Behind the detonation, most of the reactant
material is consumed.
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Fig. 3. Detonation velocity vs. inverse radius. Experimental and numerical data are pre-
sented, and indicate good agreement of the model with experiment, as well as convergence
of detonation velocity with grid resolution.
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Fig. 4. Copper cylinder test simulation. The walls of the copper tube are depicted as an
isosurface of density of the copper material and are colored by velocity magnitude. Pressure
is represented by a volume rendering, and indicates the progress of the detonation, as well
as the interaction of the pressurized products of reaction with the confining walls.
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Fig. 5. Copper cylinder test simulation. Experimental and computational velocities of the
cylinder vs. time. Data was collected at a point 25 cm from the point of initiation of the
detonation.
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(a) t=0 ms (b) t=.137 ms

(c) t=.203 ms (d) t=.259 ms

(e) t=.312 ms (f) t=.312 ms

Fig. 6. Time series of a steel container (blue) filled with deflagrating plastic bonded explo-
sive(red). A volume rendering of the mass density of the products of reaction is also shown,
except in the final panel, where it is removed to more clearly show the regions where the
container has failed.

31


