Meso scaling of Reynolds shear stress in turbulent channel and pipe flows
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This paper presents experimental and numerical data of the Reynolds shear stress in turbulent
channel and pipe flows under a meso-normalization. The meso-length scale associated with this
normalization is intermediate to the traditional inner and outer lengths. Justification for the meso-
scales is provided by a direct analysis of the mean momentum equation. Specifically, the meso-
normalization is revealed through a rescaling that appropriately reflects the physics of an internal
meso-layer within which a balance breaking and subsequent balance exchange of terms in the mean
momentum equation takes place. The maximum Reynolds shear stress locations and values are
also presented. Examination of data reveals that the Reynolds shear stress has different scaling at
low Reynolds numbers, while at high Reynolds numbers the data agree well with the new scaling,

supporting the new theory.

PACS numbers:

I. INTRODUCTION

Turbulent duct flows are commonplace. A distin-
guishing characteristic of these (and all turbulent)
flows is that the rate of momentum transport is el-
evated relative to their laminar counterparts. Be-
cause of this characteristic, turbulent duct flows are
especially important to a large number of techno-
logical applications. The origin of this enhanced
momentum transport is the intrinsically, but im-
perfectly, correlated nature of the turbulent fluctu-
ations. This underlying organization of the flow is
manifested as an apparent stress gradient owing to
the net effect of the inertial terms in the differential
statement of Newton’s second law — when subjected
to the Reynolds decomposition and averaged over
time. Of course, the appearance of these Reynolds
stress gradients renders the mean balance equation
indeterminate. In the case of statistically stationary,
fully developed, flow in a pipe or channel, there is
only one non-zero stress gradient, —d{uv)/dy, where
u and v are the axial and wall-normal velocity fluc-
tuations respectively, y is the coordinate normal to
the wall and angle brackets denote time averaging.
For this reason, over the past century a major effort
of turbulence research has been associated with the
measurement, modeling and Reynolds number scal-
ing of —(uv). The present effort focuses on the last
of these.

Despite the importance of the Reynolds shear
stress relative to momentum transport, its proper
scaling remains an open question. Challenges limit-
ing progress relate to the scarcity of high quality
data sets that also span a useful Reynolds num-
ber range. That is, the difficulties inherent to

measuring the Reynolds shear stress at any fixed
Reynolds number are compounded by the require-
ment to maintain good spatial resolution with in-
creasing Reynolds number (see, for example, De-
Graaff and Eaton.!) In this regard, Direct Numeri-
cal Simulations (DNS) provide exceptionally smooth
data, but, unfortunately, are limited to relatively
low Reynolds numbers. On the other hand, data
from physical experiments can be obtained at higher
Reynolds numbers, but inherently exhibit greater
scatter.

Overall, the vast majority of Reynolds stress data
reported in the literature are shown under either
inner or outer normalization.? Inner normalization
utilizes the friction velocity, u; = \/Twau/p (Where
Twall 1S the mean wall shear stress, and p is the mass
density), and the kinematic viscosity, v. Outer nor-
malization utilizes the channel half-height or bound-
ary layer thickness, §. Existing data reveal that in-
ner normalization results in the different Reynolds
number profiles merging to a single curve (i.e., is suc-
cessful) only out to about 20 viscous units from the
wall.! This is a much smaller scaling domain than
for the inner normalized mean velocity profile — an
intriguing point given that the mean velocity and
Reynolds shear stress are the two dependent vari-
ables in the same mean momentum balance. Outer
normalization successfully scales the Reynolds stress
profiles over a large portion of the flow in which
the distance from the wall is of the same order as
the channel half-height (or boundary layer thick-
ness). As is well-known, for channel or pipe flows
this normalization is given theoretical support by
outer-normalizing the mean momentum balance, ne-
glecting the viscous stress gradient term (owing to



the appearance of a small multiplicative parameter
on this term), and integrating once.? Interestingly,
neither inner nor outer normalizations are success-
ful in the vicinity of the peak in the Reynolds stress
profile. The present effort explicitly addresses this
issue.

The normalization of the Reynolds stress de-
scribed herein is based on the multiscale analyses
of Wei et al.* and Fife et al.> These studies describe
a newly revealed layer structure for wall bounded
flows that is based upon the properties of the mean
momentum balance. Their multiscale analyses are
rigorous with regard to turbulent pressure driven
pipe and channel flows, as well as turbulent Cou-
ette flow. (For the zero pressure gradient boundary
layer, the mean momentum equation has been em-
pirically shown to exhibit a highly similar balance
breaking and exchange of terms.) Herein, normaliza-
tions directly obtained from the multi-scale analysis
are shown to render the Reynolds stress profiles in-
variant with Reynolds number from the lower edge
of the meso-layer to the channel half-height. This
zone of validity is explicitly shown to be in agree-
ment with the “scaling patch” appropriate for meso-
normalization.®

II. TRADITIONAL SCALING OF
REYNOLDS SHEAR STRESS

A rational starting point for a scale analysis of the
Reynolds stress is the properly scaled mean momen-
tum equation. The inner scaled mean momentum
equation for fully developed channel or pipe flow is

d?Ut  dTt
0=+ —5 +—r, (1)

dyt?  dyt
where €2 = 1/(%%) = 1/§%, U™ is the inner normal-
ized streamwise velocity, T = —(utv™) is the inner

normalized Reynolds shear stress, § is the channel
half height or pipe radius, and w, is the friction ve-
locity. The boundary conditions are UT = T+ =
0,4% =1 at the wall.

Provided €? is small, Equation 1 expresses a bal-
ance between viscous stress gradients and Reynolds
stress gradients. The rationale underlying inner scal-
ing is that in the inner region, the Reynolds num-
ber dependence can be neglected in the inner nor-
malized equations (either momentum equation or
the integrated momentum equation), as well as in
the boundary conditions. This implies similarity
(Reynolds number independence) of the inner nor-
malized variables U1, T+ as functions of y. This
argument is valid at least in a region next to the wall
of width O(1) in y*.

The outer scaled mean momentum equation for
the fully developed channel or pipe flow is
L, d?Ut dT+

dn? dn”’

0=1+c¢ (2)
where ) = ¥ is the outer normalized distance from
the wall. For large Reynolds number the outer nor-
malized mean momentum equation indicates a bal-
ance between pressure gradients (or mean advection
in flat plate boundary layer) and the Reynolds stress
gradient.

The inner normalized Reynolds shear stress pro-
files for different Reynolds number flows are shown
in FIG. 1(a). While the mean streamwise velocity
profiles exhibit good agreement with inner scalings
for a large range of y* (Traditionally it has been
claimed that the inner scaled law of the wall de-
scribes the mean velocity profile in the viscous sub-
layer, buffer layer and log-layer which covers from
the wall to yT < 0.267 or < 0.2, i.e., yT < 80 for
Re, = 395), the validity of the inner scaling for the
Reynolds shear stress profiles is limited to a much
smaller region near the wall. Except very close to
the wall (say, y™ < 10 to 20), the inner scaling pro-
vides a poor characterization of the scaling of the
Reynolds shear stress. The inner normalized peak
Reynolds shear stress location moves outward with
increasing Reynolds number, while the inner nor-
malized maximum Reynolds shear stress value in-
creases and apparently approaches 1 with increasing
Reynolds number. This is very clearly shown in FIG.
1(a).

The outer scaling of Reynolds shear stress is based
on the outer scaling of the mean momentum equa-
tion. For large Reynolds number (small €2) the outer
scaled mean momentum equation is

dT+
0=1+—. 3
= 3)
Integrating and applying the boundary conditions
gives

T+ =1, (4)

yielding a Reynolds number independent linear vari-
ation with 7. This form is valid in the region where,
from equation 2, the pressure gradient and Reynolds
stress gradient are in nominal balance.

The outer normalized Reynolds shear stress pro-
files for different Reynolds number flows are shown
in FIG. 1(b). The outer scaling merges the data
quite well away from the wall (say, 5 > 0.2). It is
also clear from the data that the outer normalized
maximum Reynolds shear stress location moves in-
ward with increasing Reynolds number.
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FIG. 1: Traditional scaling of Reynolds shear stress, 7.
(a). Inner scaling. (b). Outer scaling. (Note that the
negative values for 7 > 1 of the superpipe flow data are
due to the change of the Reynolds shear stress direction
across the centerline.)

III. REYNOLDS SHEAR STRESS PEAK
VALUE AND LOCATION

The inner scaling and outer scaling of Reynolds
shear stress as shown in FIG. 1(a) and FIG. 1(b)
illustrate that there is a significant region (in inner
normalized wall units), between about y+ ~ 20 and
a location beyond the peak in the Reynolds stress
that is not properly described by either the inner
or outer scaling. The meso-scaling presented in this
paper specifically applies in this region around the
peak Reynolds shear stress location. In this section
the data on the peak Reynolds shear stress loca-
tion and value are first summarized and compared
with results of the multiscale analysis of Wei et al.*
and Fife et al.> The value of the maximum Reynolds
shear stress and its location have been extracted
from DNS data and experimental data for a range

of Reynolds numbers. Relative to the low Reynolds
number DNS results, the scatter is greater of exper-
imental data around the maximum Reynolds shear
stress location.

It has been well recognized that the peak Reynolds
shear stress location, y;, is proportional to the
square root of Re,™ !0 ie. ytf = CRe%® (C is
roughly between 1.8 and 2.0). This relationship is
also supported by the multiscale analysis of Wei et
al.* and Fife et al.5 Specifically, the multiscale anal-
ysis of the mean momentum equation by Wei et
al. yields the following: a) The inner normalized
peak location varies with Re, as y,, ~ Re%5, and
b) The Reynolds number dependence of the inner
normalized maximum Reynolds shear stress, (T}}),
was shown to deviate from a possible maximum of 1
(at infinite Reynolds number) as 1 — TF ~ Re;%>.

The peak Reynolds shear stress location, y;!, data
are shown in FIG. 2, as a function of Re, or Z.
At high Reynolds number the Re%® dependence of
the peak location is seen. At low Reynolds number
the trend line deviates from the theory. This is not
unexpected since the theory predictions are arrived
at under the assumption of high Reynolds number.
For high enough Reynolds number, the data strongly
support the theoretical results. FIG. 2(b) is plotted
as y,- /v/Re, versus Re;.

Maximum Reynolds shear stress, T.F, data are
presented in FIG. 3 as the deficit from 1, 1 — T)F.
At high Reynolds number, the theory and data are
in good agreement, but show increasing deviation
at low Reynolds number, which again is not unex-
pected.

IV. MESO SCALING OF THE REYNOLDS
SHEAR STRESS

For large Reynolds number (small €), the inner
scaled mean momentum equation (Eq. 1) implies
a balance between the viscous stress gradient and
Reynolds stress gradient, while the outer scaled
equation (Eq. 2) implies a balance between the pres-
sure gradient and Reynolds shear stress. Wei et
al. have provided an analysis of wall bounded flow
based on the relative magnitudes of force balances in
the boundary layer and provided a physically based
layer structure reflecting these force balances. As
pointed out by Wei et al., the transition between
inner and outer scaling requires a breaking and ex-
change of the force balances identified above. In
particular, this balance exchange requires a balance
among all three terms in the mean momentum equa-
tion in an intermediate region (mesolayer) between
the inner and outer layers.
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FIG. 2: Reynolds stress peak location dependence on
+
Reynolds number. (a). y;, versus Re,. (b). \/yR”‘T versus
Re,. The DNS data of this paper are from Moser et
al.l! Iwamoto et al.!? The experimental data are from

Wei and Willmarth'® and McKeon et al.**

Applying a differential scaling (Fife et al.’), a
proper meso scaling that formally yields all terms
in the mean momentum equation to be of the same
order is

. PO |

g=ey" —yn), T=-(T"=TF). (5
The mean momentum equation under this meso scal-
ing is

PUt | dT
e +dgj +1=0. (6)
The absence of a small parameter in Equation 6
properly reflects the fact that all the terms are of
the same order of magnitude, and thus provides the
validity of the T and § scaling in the mesolayer.
Note further that since dnp = €e2dy™ = edj and
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FIG. 3: Reynolds stress peak value dependence on
Reynolds number. (a). 1 — Tt versus Re,. (b).
(1 — T;%)v/Re- versus Re-.

dT+ = edT, there is a transparent matching between
the meso equation 6 and the outer equation 2 as g
extends to the outer layer. The meso scaling should
therefore be appropriate for the Reynolds stress data
into the outer region as well.

The meso scaling of the Reynolds shear stress pro-
files is shown in FIG. 4. By the definition of T
and g, all the profiles will lie to the point (§ = 0,
T' = 0). Note that T' is defined through the deficit of
the Reynolds shear stress from its maximum value,
therefore T' < 0. Using the estimation of y;f, = O(1),
the extent of ¢ in FIG. 4 is

1
€

) (7)

The meso scaling itself is theoretically valid at least
for the region around § = 0 with extent of Ag =
O(1). As mentioned above, there is a transparent
matching between meso scaling and outer scaling.
Therefore the meso scaling extends throughout the

~0(1) < § < O(
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FIG. 4: Meso scaling of the Reynolds shear stress for
different Reynolds number flows. Data are from the DNS
of turbulent channel flows. Experimental data are not
included, because of the difficulty in extracting precise
yt and T, .

outer layer. This is strongly supported by the data
shown in FIG. 4. .

Formally applying the meso scaling, T vs. ¢
(Eq. 5) to Reynolds shear stress requires knowledge
of the peak Reynolds stress value and location, T,}
and y}, which are not necessarily known before-
hand, and often difficult to precisely determine from
data. However, the multiscale analysis of the mean
momentum equation yields estimates for T)} and y;},,
in agreement with the data of FIG.2 and FIG. 3.

Namely, as described in the previous section and
derived in Wei et al., for sufficiently high Reynolds
number the Reynolds stress peak location and value
are shown to satisfy

i=0(1). Ti=1-00.  ®

Using these relations in the definition of 7' and §
yields

T = (- 1)+ 0(), (9)
and
§=eyt - 0(L). (10)

Therefore a plot of 2(T+ — 1) versus ey provides

A

an alternate scaling to the “exact” meso scaling, T'
versus g, without the a priori knowledge of the peak
location and magnitude of the Reynolds shear stress.
This scaling is shown in FIG. 5(a) and 5(b). FIG.
5(a) is plotted on linear axes, emphasizing the outer
region. FIG. 5(b) is plotted on semi-log axes, em-
phasizing the near wall region. Two features of this
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FIG. 5: Alternate meso scaling of Reynolds shear stress.
(a). On linear scale. (b). Semi-log scale.

figure are reiterated: 1) The alternate meso scal-
ing merges the maximum Reynolds stress locations
and values to a single curve (should be within O(1)).
This simply reflects that the correct scaling has been
applied for the peak Reynolds stress (T) = 1—0(e))
and its location (y; = O(1)) in the definition of T
and . 2) The Reynolds stress profiles of different
Reynolds numbers merge in the outer region under
the approximate meso scaling. This is because of
the reasons mentioned above.

V. CONCLUSIONS

In this paper the meso scaling of Wei et al.
has been applied to the scaling of the Reynolds
shear stress in turbulent channel and pipe flows.
This scaling is shown to accurately characterize the
Reynolds shear stress around the peak location of
the Reynolds stress. Furthermore, the data convinc-
ingly support the meso scaling in the outer layer as



predicted by the theory of Wei et al.. As a result
the meso scaling is appropriate for Reynolds shear
stress over a spatial domain extending from the lower
boundary of the meso layer to the centerline.
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