

Numerical Integration Errors in the Material Point Method

Mike Steffen University of Utah Scientific Computing and Imaging Institute

Fourth Material Point Method Workshop University of Utah March 17, 2008

Outline

- "Analysis and Reduction of Quadrature Errors in MPM" M. Steffen, R.M. Kirby, and M. Berzins, IJNME, 2008
 - Interpretation of particle volume
 - Midpoint integration across discontinuities
 - Internal force errors
 - 1D simulation convergence (basis functions)
- GIMP as Implemented in UINTAH (UGIMP)
 - M. Steffen, P. Wallstedt, J. Guilkey, R.M. Kirby, M. Berzins
 - Basis function framework/similarities
 - Smoothing length tests
 - Stability tests
 - Revisit GIMP bar under gravity

Particle Volume

- Deformed voxel properties approximated with information at one sample point
- Can try to improve representation of the deformed voxel (GIMP, Ma *et al.*)
- Can acknowledge error understand how different basis functions affect this error

Integration Across Discontinuities

Particle arrangement respects discontinuity:

Particle arrangement does not respect discontinuity:

Integration Across Discontinuities

- Nodal integration errors in MPM related to midpoint integration across discontinuities
 - Midpoint integration term is 2nd order
 - Jump term depends on smoothness of function

$$\operatorname{Error} = O(\Delta x^2) + O(\Delta x^{p+2})$$

Midpoint

Jump

 \boldsymbol{p} - Continuity of the function being integrated

Integration Across Discontinuities

Piecewise-Linear: $E = O(\Delta x^2) + O(\Delta x)$ Midpoint Jump

Quadratic B-spline:

$$E = O(\Delta x^2) + O(\Delta x^2)$$

Midpoint Jump

Cubic B-spline:

$$E = O(\Delta x^{2}) + O(\Delta x^{3})$$

Midpoint Jump

Internal Force Errors Evenly Spaced Particles – Constant Stress

Piecewise-Linear

Cubic B-splines

Quadratic B-splines

Internal Force Errors Non Uniform Particle Spacing

- Locally non-uniform:
 - Piecewise Linear
 - 1st Order
 - Quadratic B-spline
 - 2nd Order
 - Cubic B-spline
 - 3rd Order
- Globally non-uniform:
 - Cubic B-spline
 - 2nd Order

1D Bar with Traction Force

 $q(x,t) = \delta(x-l)H(t)\tau\sin(xt/l),$

lack of convergence20 Grid cells

B-spline

- 2nd order spatial convergence
- Cubic B-splines have lower error plateau

Quadrature Error Review

- Nodal integration errors in MPM related to midpoint integration across discontinuities
- Smoother basis functions provide much less quadrature error
 - Piecewise-Linear, 1st order w.r.t. PPC
 - Quadratic B-splines, 2nd order
 - Cubic B-splines, 2nd / 3rd order
- Suggest using or smoother basis functions C_1

M. Steffen, R.M. Kirby, M. Berzins, "Analysis and Reduction of Quadrature Errors in MPM", IJNME, 2008 (accepted)

UGIMP

- Full GIMP: Smoothing length determined by particle width at time t
- Contiguous Particle GIMP: Smoothing length determined by particle width at time t=0
 - Results in particle-specific smoother basis functions, but constant for all time
- UGIMP: Disassociate smoothing lengths in GIMP from particle widths
 - Results in a single set of smoother basis functions for all time

Basis Function Framework

Full GIMP:

Contiguous Particle GIMP: UGIMP:

Quadratic B-spline:

Piecewise Linear:

 $\phi_p^t(x) = \chi_h * \chi_h * \chi_p^t / (|\chi_h| |\chi_p^t|)$ $\phi_p(x) = \chi_h * \chi_h * \chi_p^0 / (|\chi_h| |\chi_p^0|)$ $\phi(x) = \chi_h * \chi_h * \chi_l / (|\chi_h| |\chi_l|)$ $\phi(x) = \chi_h * \chi_h * \chi_h / (|\chi_h|)^2$ $\phi(x) = \chi_h * \chi_h * \delta / (|\chi_h| |\delta|)$

Midpoint Error - Integrating Across Two Discontinuities

 $E = \int f(x) - \text{Midpoint Approximation}$ $E = -\frac{1}{8}(a_3 - a_1)\Delta x^2 + \frac{1}{2}(a_2 - a_3)\Delta x \delta - \frac{1}{2}(a_2 - a_3)\delta^2$

Integration Errors in UGIMP

Spans two jumps: $E = \frac{l - \Delta x}{h}$

Spans one jump: $E = -\frac{1}{4 l h} \Delta x^2$

UGIMP Internal Force Errors Evenly Spaced Particles – Constant Stress

Smoothing Fraction = 1/2

Smoothing Fraction = 1/4

Smoothing Fraction = 1

Periodic Bar

- Manufactured Solution-Wallstedt and Guilkey
- Periodicity allows us to neglect boundary conditions – focus on other numerics

Exact Solution:

$$\begin{split} u(X,t) &= A \sin \left(2 \pi x \right) \cos \left(C \pi t \right) \\ v(X,t) &= -A C \pi \sin \left(2 \pi x \right) \sin \left(C \pi t \right) \\ F(X,t) &= 1 + 2A \pi \cos \left(2 \pi x \right) \cos \left(C \pi t \right) \\ b(X,t) &= E \pi^2 u(X,t) \left(1 + 2F(X,t)^{-2} \right) \end{split}$$
Initialize MPM:

$$\begin{split} x_p &= x_p^0 + u(x_p^0,0) \quad \text{Same with } v_p \text{ and } F_p \\ \text{Body Force:} \quad b_p &= b(x_p^0,t) \end{split}$$

UGIMP – Smoothing Fraction

 UGIMP becomes unstable when particle widths are larger than the smoothing length

UGIMP Stability

 Stability of UGIMP depends more on the smoothing length than the number of particles per cell

Original GIMP Bar* - Extension

*S.G. Bardenhagen and E.M. Kober, *The Generalized Interpolation Material Point Method*, CMES, 5(6):477-495, 2004

Conclusions

- Benefits to using C_1 or smoother basis functions
 - Midpoint Approximation limits us to 2nd order
- Quadratic B-splines and GIMP are closely related
- Smoothing length is more important for stability than number of particles per cell
- Smoothing lengths larger than the particle width provide extra stability

Acknowledgments

- Utah MPM group. Especially:
 - Mike Kirby, Phillip Wallstedt, Martin Berzins, and Jim Guilkey
- Center for the Simulation of Accidental Fires and Explosions (CSAFE) DOE Grant W-7405-ENG-48

