Arctic Sea Ice Modeling with MPM

MPM Workshop

18 March 2008

K. Peterson¹

D. Sulsky¹

H. Schreyer²

¹Department of Mathematics and Statistics ²Department of Mechanical Engineering University of New Mexico

Outline

- Background
 - Motivation Why Sea Ice?
 - Satellite Data
 - Goal
- Components of Sea Ice Model
 - Momentum equation
 - Constitutive model
 - Ice thickness distribution
 - Thermodynamics
- Numerical Implementation MPM
- Satellite Data Based Kinematics
- Beaufort Sea Calculations
- Conclusions

Sea Ice Model Uses

Climate Modeling

science.hq.nasa.gov

www.climateprogress.org

Forecasting

Ice Structure Interactions

Satellite Data

RADARSAT Geophysical Processor System (RGPS)

Goal

Want a numerically efficient sea ice model that includes observational features such as leads and ridges and uses available satellite data for verification

- Existing Sea Ice Models
 - Isotropic constitutive model
 - Generally use Eulerian numerical schemes
- Our Model
 - Anisotropic constitutive model
 - Lagrangian material points

Components of Sea Ice Model

2-D Dynamics
Momentum Balance
Constitutive Model

1-D Thermo
Flux Balance

Momentum Equation

$$\rho h \frac{d\mathbf{v}}{dt} = \nabla \cdot (\sigma h) + \tau_a + \tau_w - \rho h f_c(\mathbf{e}_3 \times \mathbf{v})$$

$$\mathbf{t}_a = c_a \rho_a ||\mathbf{v}_a|| \mathbf{R}_a \mathbf{v}_a$$

$$\mathbf{t}_w = c_w \rho_w ||\mathbf{v} - \mathbf{v}_w|| \mathbf{R}_w (\mathbf{v} - \mathbf{v}_w)$$

 ρ = ice density h = ice thickness

 \mathbf{v} = ice velocity

 σ = stress tensor

 τ_a = air drag

 $\tau_{w=}$ water drag

 f_c = Coriolis parameter

Elastic-Decohesive Constitutive Model

Strain Rate

$$\dot{\varepsilon} = \frac{1}{2} \left(\nabla \mathbf{v} + (\nabla \mathbf{v})^T \right)$$

$$\varepsilon = \varepsilon^e + \varepsilon^d$$

Elasticity

$$\dot{\sigma} = \mathbb{E}\dot{\varepsilon}^e$$

Failure Function $F_n(\sigma)$

Decohesion

$$\varepsilon^d = (\llbracket \mathbf{u} \rrbracket \otimes \mathbf{n})^s \delta_{\Gamma}$$

Flow Rules $[\![\dot{u_n}]\!] = \omega \frac{\partial F}{\partial \tau_n}$ $[\![\dot{u_t}]\!] = \omega \frac{\partial F}{\partial \tau_t}$

 $au_n = \mathbf{n} \cdot \mathbf{\sigma} \cdot \mathbf{n}$ - normal traction $au_t = \mathbf{n} \cdot \mathbf{\sigma} \cdot \mathbf{t}$ - tangential traction

Ice Thickness Distribution

$$\int_{\Omega} d\Omega = R$$

$$\int_{0}^{h} g(h, t) dh = \frac{1}{R} A(h, t)$$

$$\int_{0}^{\infty} g(h,t)dh = 1$$

g = thickness distribution R = ice region area A(h, t) = ice area with thickness

A(h, t)= ice area with thickness less than h at time t

Evolution Equation

$$\frac{dg}{dt} = (-\nabla \cdot \mathbf{v})g - \frac{\partial}{\partial h}(fg) + \psi$$

f = dh/dt= growth rate

 ψ = mechanical redistribution (ridging)

Ridging Function

$$\psi = \delta(h)r_{op} + w_r r_{cl}$$

$$w_r(h) = \frac{-a(h) + n(h)}{-\int_0^{h_{max}} (-a(h) + n(h))dh}$$

thickness distribution of ice participating in ridging: a(h) = b(h)g(h)

thickness distribution of newly ridged ice: n(h)

$$n(h) = \int_0^{h_{max}} a(\tilde{h}) \gamma(\tilde{h}, h) d\tilde{h}$$

Thermodynamics

Balance of Fluxes

$$(1 - \alpha)F_R - I_0 + F_L - \epsilon_L \sigma T_0^4$$

$$+ F_s + F_l + k_0 \left(\frac{\partial T}{\partial z}\right)_0$$

$$= \begin{cases} 0 & \text{for } T_0 < 0^{\circ}C \\ -q_s \frac{dh}{dt} & \text{for } T_0 = 0^{\circ}C \end{cases}$$

Bottom

$$k_B \left(\frac{\partial T}{\partial z} \right)_B - F_w = q_B \frac{dh}{dt}$$

Snow/Ice Interface

$$k_s \left(\frac{\partial T}{\partial z}\right)_{h_s} = k_i \left(\frac{\partial T}{\partial z}\right)_{h_s}$$

Diffusion

$$(\rho c)\frac{\partial T}{\partial t} = \frac{\partial}{\partial z}k\frac{\partial T}{\partial z} + \kappa I_0 e^{-\kappa z}$$

h =thickness

T = temperature

 q_s = energy of melting at top

 q_B = energy of melting at bottom

c = heat capacity

k = conductivity

 κ = extinction coefficient

MPM for Sea Ice

$$\Omega = \bigcup_{p=1}^{N_p} \Omega_p$$

$$m_p \approx \rho_p \overline{h}_p \Omega_p$$

$$m_i \mathbf{a}_i = F_i^{int} + F_i^{ext}$$

$$(F_x)_i^{int} = \sum_{p=1}^{N_p} \Omega_p \bar{h}_p \left((\sigma_{xx})_p \frac{\partial N_i}{\partial x} (\mathbf{x}_p) + (\sigma_{xy})_p \frac{\partial N_i}{\partial y} (\mathbf{x}_p) \right)$$

$$(F_y)_i^{int} = \sum_{p=1}^{N_p} \Omega_p \bar{h}_p \left((\sigma_{xy})_p \frac{\partial N_i}{\partial x} (\mathbf{x}_p) + (\sigma_{yy})_p \frac{\partial N_i}{\partial y} (\mathbf{x}_p) \right)$$

$$F_i^{ext} = \sum_{p=1}^{N_p} (\Omega_p \tau_a + \Omega_p \tau_w + m_p f_c(\mathbf{e}_3 \times \mathbf{v}_p)) N_i(\mathbf{x}_p)$$

Ice Thickness Distribution in MPM

Discrete ice thickness categories

$$g_{p,n} = \int_{h_{n-1}}^{h_n} g_p(h,t)dh \qquad 1 = \sum_{n=0}^{N_h} g_{p,n} \quad \bar{h}_{p,n} = \frac{v_{p,n}}{g_{p,n}}$$

$$v_{p,n} = \int_{h_{n-1}}^{h_n} hg_p(h,t)dh \qquad \bar{h}_p = \frac{1}{N_h} \sum_{n=0}^{N_h} v_{p,n}$$

Solve in three pieces

$$ullet$$
 Horizontal Transport $\dfrac{dg_{n,p}}{dt}=(-
abla\cdot\mathbf{v})g_{n,p}$

In three pieces
$$\frac{dg_{n,p}}{dt} = (-\nabla \cdot \mathbf{v})g_{n,p}$$
 Transport in Thickness Space
$$\frac{dg_{n,p}}{dt} = -\int_{h_{n-1}}^{h_n} \frac{\partial(gh)}{\partial h} dh$$

Redistribution
$$\frac{dg_{n,p}}{dt} = \psi_n$$

Kinematics

No Cutoff

400 m Cutoff

Beaufort Sea Calculations

- Using RGPS data for 23 Feb 10 Mar 2004 in Beaufort Sea region
- Calculation setup
 - 10 km square background grid
 - 4 material points per cell
 - Rigid material points for land boundary
 - Including wind, ocean, and Coriolis forces
 - Boundary conditions are RGPS velocities linearly interpolated in time
 - RGPS data used to initialize leads in calculation

Beaufort Sea Calculations

Initialization Day 54 (Feb 23)

Beaufort Sea Calculations Leads Day 70 (March 11) MPM Kinematics

Beaufort Sea Calculations

Det (F) Day 70 (March 11)

Kinematics

Conclusions

- Have shown sea ice model using MPM with Elastic-Decohesive constitutive model
- Advantages over other models
 - MPM handles advection naturally
 - Elastic-Decohesive Model allows explicit calculation of <u>lead evolution</u>
- Currently implementing ice thickness distribution
- Future work
 - Implement thermodynamic model
 - Connect to ocean and atmospheric models

Acknowledgments

- Prof. Deborah Sulsky
 - UNM Dept. of Mathematics and Statistics
- Prof. Howard Schreyer
 - UNM Dept. of Mechanical Engineering

This work has been supported by the NSF under Grant No. DMS-0222253