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Motivation: large uncertainties in properties

* Environmental conditions dictate snow metamorphism
(‘sintering’ process)

« Metamorphism determines microstructure

* Microstructure determines properties
— Mechanical (elasticity, viscoplasticity, damage, fracture...)
— Physical (thermal conductivity, permeability, dielectric constant...)

* Density alone is insufficient to characterize properties

* Process -> microstructure -> properties
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Applications

* Vehicle-snow interaction (ground and air vehicles)

« Civil infrastructure (foundation, pavement, runway ...)
e Avalanche

e Sports

o Geophysical

« Extraterrestrial (comets ...)
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Vehicle-Snow Interaction

Tire/Vehicle Dynamics

Tire-Snow
Interactions
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Tire Models

Treaded
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2-D Tire-Snow Interaction: Abaqus,
200 kg/m~™3, Drucker-Prager (CRREL)
model

Sharp corner

Density distribution, grey region indicates density larger than 700 kg/m3



Stochastic Reconstruction of Snow Microstructure
from X-Ray Tomography Images

* Properties of snow strongly depend on microstructure — one
major source of uncertainties

o Structure-property relationships needed to understand physical
mechanisms of deformations and failure

« Build digital stochastic models to represent snow
microstructures

o Stochastic geometry and mechanics
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What I1s stochastic reconstruction?

Real microstructure Slmulated one

Generate a simulated microstructure having the same statistical characteristics
as the real one



Statistical Information
from Snow Microstructure

Probability that two
points a distance r
apart will lie in pore
Porosity space
(pore volume

fraction)

Two-point probability
function



Reconstruction Steps using Gaussian Random Fields

1. Find one-point and two-point correlation functions from snow images
2. Solve for level cut parameter

o =~2 erf ™ (1-2p,,)

Determine function g from experimental one-point and two-point correlation
functions by solving:

_ (2)
1(9(1)) =27 ( Doy — P2 (1))
Solve three unknown parameters in g: E d
Numerically generate Fourier transform coefficients

Perform 3D inverse FFT to generate discrete GRF

o g kW

Perform one-level cut to get phase function in spatial domain
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Skyscan 1172 Microtomography




Snow Sample Holder

Diameter 1 cm




Grey-level Cross-Sectional Image
Sieved Snhow < 1 mm Grain Size

Brighter pixels
represent ice

7.344 mm by 7.344 mm, density 387 kg/m”3
Resolution:1225 by 1225, Pixel size: 6 micron



3-D Visualization of a Cube of Snow Microstructure
Side Length = 3.618 mm

Link to
reconstructed




Two-point correlation
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Reconstruction results

Comparison of two-point correlation functions

a real snow microstructure
u o reconstructed one

I

th
ﬂﬂ?ﬂﬂﬁﬁlﬁﬁﬁﬂlénanla

50 100 150 200 250 300 350 400 450 500

Translation distance, r, micron

550



Reconstruction Results

Link to
real one

Reconstructed microstructure



Representative Volume Element (RVE)

e Definition

« Elastic Properties
— Theoretical bounds
— Initial results

» Viscoplastic Properties

— SUVIC-I
— Initial results
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Representative Volume Element (RVE) for

Mechanical Properties

» Definition (Nemat-Nasser and Hori):

RVE for a material point of a continuum mass is a material volume
which is statistically representative of the infinitesimal material
neighborhood of that material point.

RVE is the volume element over which homogenization can be
performed.

Size of an RVE depends on the physical or mechanical properties
of interest.

Size of an RVE requires a tolerance.
Size of an RVE should be independent of boundary conditions.

Size of volume smaller than RVE is called an SVE (statistical
volume element).

Return
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RVE of Elastic Moduli

 Numerical calculation of elastic moduli of scanned images and
reconstructed volume.

* Using elastic material properties so ‘error’ due to creep or time-
dependent effects won't be present.

* Relatively ‘easy’ to conduct.

 Several numerical methods available — finite element method
using voxel-based or solid-based mesh.

« Material Point Method (MPM) used:
— Snow is considered as a semi-granular material.
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Elastic Moduli using Uintah
MPM Implicit

* Unconfined compression

 Load-displacement -> Macroscopic stress and strain ->Young's
modulus and Poisson’s ratio

o Largest size - 2.8 million cells, 83 million particles

 Nominal density 387 k_%
m
* Ice properties

— Young’s modulus 9.3 GPa
— Poisson’s ratio 0.325
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Hashin-Sritkman Upper Bound

¢, = volume fraction of air
¢, = volume fraction of ice
G, K = Shear and bulk modulus of ice.

KU — K¢2 . ¢1¢2K2
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Uintah Results - Young’s Modulus

3
| | | | ReaIISan [ ]
Reconstructed Snow =2
Hashin-Strikman Bound =sssssss
2_5 FE NI EEE NI NN NN EE NN NN NI EEE NI NN NN NN NN NN NN NN NN NI EEE NI NN NN NN NN NN ENE NN EEEEEEEEEEEEEED —

Young’s Modulus (GPa)

1.2 2.4 3.6 4.8 5.6
Sidelength of the Cube (mm)

Test data (CR 97): 10MPa - 0.8GPa



Poisson’'s Ratio

Uintah Results - Poisson’s Ratio
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Viscoplasticity
SUVIC-1 (Aubertin and Lee)

Strain rate history-dependent Unified Viscoplastic model with Internal
variables for Crystalline materials — Ice

|sotropic polycrystalline ice at

T >-55°C;10° <¢<107°s*;0.04MPa<c

eqi

, < 20MPa

* Unified model — plasticity, creep and their interactions are modeled in
the same way

 Three internal variables: back stress (kinematic hardening), yield and
drag stress (isotropic hardening)

» Evolution of the state variables: combined action of hardening, dynamic
recovery

 Viscoplastic — introduction of a yield surface makes a clear distinction
between elastic and inelastic behavior.
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SUVIC-I - continhued

« Part of the inelastic strains are recoverable — grain boundary
sliding, reverse motion of dislocations (backstress)

« Hardening has mixed (kinematic and isotropic) nature related to
the existence of internal stresses

* Kinematic hardening due to backstress created by directional
obstacles to dislocations motion.
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Summary of SUVIC-I
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Numerical Integration
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Viscoplastic Behavior — Uintah MPM Implicit
SUVIC-I

Compression of 2.4mm-sidelength Cube (4.2e-04 1/sec)

1 | T T T | :
Scanned
Gaussian Random Field -------

FL i
=
-

Stress (MPa)

| | | | | |
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
Strain



Microscale Plane Strain Indentation (1/3)
(7.344mm X 7.344mm X 0.012 mm)
Uintah MPM Implicit SUVIC-I
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Microscale Plane Strain Indentation (2/3)
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Plane Strain Indentation @20%b6 strain (3/3)
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Future Work

« Obtain statistical distributions of the elastic and tangent moduli
of real and simulated snow

e Optimize the code for SUVIC-I
 Implement damage, failure models of ice into Uintah

« Conduct simulations of triaxial cell and micropenetrometer
(snow pen)

« Conduct microscale tension/compression experiments inside
MicroCT and compare with simulations

e Develop continuum constitutive laws
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Thank You!

Questions?
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