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Motivation: large uncertainties in properties

• Environmental conditions dictate snow metamorphism 
(‘sintering’ process)

• Metamorphism determines microstructure

• Microstructure determines properties
– Mechanical (elasticity, viscoplasticity, damage, fracture…)
– Physical (thermal conductivity, permeability, dielectric constant…)

• Density alone is insufficient to characterize properties

• Process -> microstructure -> properties
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Applications

• Vehicle-snow interaction (ground and air vehicles)

• Civil infrastructure (foundation, pavement, runway …)

• Avalanche

• Sports

• Geophysical

• Extraterrestrial (comets …)



Vehicle-Snow Interaction

Tires Snow

Tire-Snow 
Interactions

Tire/Vehicle Dynamics
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Tire Models

Smooth

Grooved Treaded



2-D Tire-Snow Interaction: Abaqus, 
200 kg/m^3, Drucker-Prager (CRREL) 

model

Density distribution, grey region indicates density larger than 700 kg/m3

Sharp corner
Sharp corner
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Stochastic Reconstruction of Snow Microstructure 
from X-Ray Tomography Images

• Properties of snow strongly depend on microstructure – one 
major source of uncertainties

• Structure-property relationships needed to understand physical 
mechanisms of deformations and failure

• Build digital stochastic models to represent snow 
microstructures

• Stochastic geometry and mechanics



What is stochastic reconstruction?

Generate a simulated microstructure having the same statistical characteristics 
as the real one

Real microstructure Simulated one



Porosity 
(pore volume 

fraction)

Two-point probability 
function

Probability that two 
points a distance r 
apart will lie in pore 

space

Statistical Information 
from Snow Microstructure
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Reconstruction Steps using Gaussian Random Fields

1. Find one-point and two-point correlation functions from snow images

2. Solve for level cut parameter

Determine function g from experimental one-point and two-point correlation 
functions by solving:

3. Solve three unknown parameters in g:     ,      ,    

4. Numerically generate Fourier transform coefficients

5. Perform 3D inverse FFT to generate discrete GRF

6. Perform one-level cut to get phase function in spatial domain  
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Skyscan 1172 Microtomography



Snow Sample Holder

Diameter 1 cm



Grey-level Cross-Sectional Image 
Sieved Snow < 1 mm Grain Size

7.344 mm by 7.344 mm, density 387 kg/m^3
Resolution:1225 by 1225, Pixel size: 6 micron

Brighter pixels 
represent ice



3-D Visualization of a Cube of Snow Microstructure 
Side Length = 3.618 mm

Link to 
reconstructed



Reconstruction results

Translation distance, r, micron



Reconstruction Results

Reconstructed microstructure

Link to 
real one



ARC

Representative Volume Element (RVE)

• Definition

• Elastic Properties
– Theoretical bounds
– Initial results

• Viscoplastic Properties
– SUVIC-I
– Initial results
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Representative Volume Element (RVE) for 
Mechanical Properties

• Definition (Nemat-Nasser and Hori): 
– RVE for a material point of a continuum mass is a material volume 

which is statistically representative of the infinitesimal material 
neighborhood of that material point.

– RVE is the volume element over which homogenization can be 
performed.

– Size of an RVE depends on the physical or mechanical properties 
of interest.

– Size of an RVE requires a tolerance.
– Size of an RVE should be independent of boundary conditions.
– Size of volume smaller than RVE is called an SVE (statistical 

volume element).

Return
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RVE of Elastic Moduli

• Numerical calculation of elastic moduli of scanned images and 
reconstructed volume.

• Using elastic material properties so ‘error’ due to creep or time- 
dependent effects won’t be present.

• Relatively ‘easy’ to conduct.

• Several numerical methods available – finite element method 
using voxel-based or solid-based mesh.

• Material Point Method (MPM) used:
– Snow is considered as a semi-granular material.
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Elastic Moduli using Uintah 
MPM Implicit

• Unconfined compression

• Load-displacement -> Macroscopic stress and strain ->Young’s 
modulus and Poisson’s ratio

• Largest size - 2.8 million cells, 83 million particles

• Nominal density 387 

• Ice properties 
– Young’s modulus 9.3 GPa
– Poisson’s ratio 0.325

3
kg
m



Hashin-Sritkman Upper Bound
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Uintah Results - Young’s Modulus

Test data (CR 97): 10MPa - 0.8GPa



Uintah Results - Poisson’s Ratio

Test data (CR 97): 0.22 - 0.35
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Viscoplasticity 
SUVIC-I (Aubertin and Lee)

• Strain rate history-dependent Unified Viscoplastic model with Internal 
variables for Crystalline materials – Ice

• Isotropic polycrystalline ice at 

• Unified model – plasticity, creep and their interactions are modeled in 
the same way

• Three internal variables: back stress (kinematic hardening), yield and 
drag stress (isotropic hardening)

• Evolution of the state variables: combined action of hardening, dynamic 
recovery 

• Viscoplastic – introduction of a yield surface makes a clear distinction 
between elastic and inelastic behavior.

0 8 2 155 ;10 10 ;0.04MPa 20 MPaeqivT C sε σ− − −≥ − ≤ ≤ ≤ ≤
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SUVIC-I - continued

• Part of the inelastic strains are recoverable – grain boundary 
sliding, reverse motion of dislocations (backstress)

• Hardening has mixed (kinematic and isotropic) nature related to 
the existence of internal stresses

• Kinematic hardening due to backstress created by directional 
obstacles to dislocations motion.



Summary of SUVIC-I
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Numerical Integration
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Viscoplastic Behavior – Uintah MPM Implicit 
SUVIC-I
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Microscale Plane Strain Indentation (1/3) 
(7.344mm x 7.344mm x 0.012 mm) 

Uintah MPM Implicit SUVIC-I

PUNCH

SNOW

SUBSTRATE

A
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D



ARC

Microscale Plane Strain Indentation (2/3)

I II III

a

b

c

Sinkage

Pres
sure



Plane Strain Indentation @20% strain (3/3)
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Future Work

• Obtain statistical distributions of the elastic and tangent moduli 
of real and simulated snow

• Optimize the code for SUVIC-I

• Implement damage, failure models of ice into Uintah

• Conduct simulations of triaxial cell and micropenetrometer 
(snow pen)

• Conduct microscale tension/compression experiments inside 
MicroCT and compare with simulations

• Develop continuum constitutive laws

• …
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Thank You! 

Questions?
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