Numerical Modeling of Wood or Other Anisotropic, Heterogeneous, and Irregular Materials

John A. Nairn Professor and Richardson Chair Oregon State University Corvallis, OR, USA

> Fourth MPM Workshop March 17-18, 2008 Salt Lake City, Utah

Monday, March 17, 2008

Hierarchical Smart Adaptive Self-Healing **Multifunctional** Bio Nanocomposite

Morphology-Based Modeling of Structures

M⊕A⊕S⊕∏

- Material properties
 - Elastic, viscoelastic, plastic, moisture, temperature, etc.

Anisotropy

Longitudinal, radial, and tangential directions (orthotropy)

Structure

Polar orthotropic, grain direction, density, cellular structure, knots, etc.

Heterogeneity

Earlywood, latewood, fibers, ray cells, heartwood, knots, etc.

Modeling Methods

How does any model handle M*A*S*H?

- Lower case letter : some attempt, but crude approximation
- Upper case letter : serious attempt, less approximate
- Dash (-) : ignores that issue, may mean model is inadequate
- Transversely isotropic model

Modeling Methods

- Rectilinear orthotropic model
 - m A –
 - Ignores actual structure

- Polar orthotropic model
 - m A s –
 - Ignores heterogeneity

Modeling Methods

Heterogeneous polar orthotropic model

Transverse Compression in Wood

E.V. Kultikova, MS Thesis, VPI (1999)

Experimental Observations

Some References

Bodig (1963, 1965, 1966), Kennedy (1968), Kunesh (1968), Gibson, et al. (1981), Easterling, et al. (1982)

Key Dependencies

- Anatomical features
 - Softwood
 - Hardwood
 - Earlywood and latewood
 - Ray cells
- Loading direction

FEA of Transverse Compression

Shiari (2004)

- Single cell compression
- Linear elastic, with contact (but difficult)
- Problems with FEA of Realistic Wood Structures
 - Meshing realistic morphology
 - Large deformation/mesh distortion
 - Cell-wall contact

Why MPM

- MPM simulation of compaction of foam Bardenhagen, Brydon, and Guilkey (2005)
- Easy to discretize complex morphologies
- Automatically handles contact

Loblolly Pine

E.V. Kultikova, MS Thesis, VPI (1999)

- Microscopy of wood specimen
- Digitize into BMP file at desired resolution
- Convert pixels to material points
 m S h
- Virtual compression test in desired directions.
- Interpretation of results or analysis of experiments

Loblolly Pine

- Microscopy of wood specimen
- Digitize into BMP file at desired resolution
- Convert pixels to material points
 m S h
- Virtual compression test in desired directions.
- Interpretation of results or analysis of experiments

Loblolly Pine

- Microscopy of wood specimen
- Digitize into BMP file at desired resolution
- Convert pixels to material points **m - S h**
- Virtual compression test in desired directions.
- Interpretation of results or analysis of experiments

Loblolly Pine

- Microscopy of wood specimen
 - Digitize into BMP file at desired resolution
- Convert pixels to material points **m - S h**
- Virtual compression test in desired directions.
- Interpretation of results or analysis of experiments

Loblolly Pine - Radial Loading

Cell Wall: E = 10.6 GPa, v = 0.33, $\rho = 1.5$ g/cm³, elastic-plastic with various yield stresses

Radial loading at 10 m/sec (<0.4% wave speed)

Plastic Deformation

Loblolly Pine - Tangential Loading

Plastic Deformation

Yellow Poplar

E.V. Kultikova, MS Thesis, VPI (1999)

Mature yellow poplar

- Diffuse porous hardwood
- Wider ray cells

Digitize to MPM model

- Load in radial or tangential directions
- Examine stress state and compare to softwood results

Yellow Poplar

Mature yellow poplar

- Diffuse porous hardwood
- Wider ray cells
- Digitize to MPM model
- Load in radial or tangential directions
- Examine stress state and compare to softwood results

Yellow Poplar

Mature yellow poplar

- Diffuse porous hardwood
- Wider ray cells

Digitize to MPM model

- Load in radial or tangential directions
 - Examine stress state and compare to softwood results

Yellow Poplar

Mature yellow poplar

- Diffuse porous hardwood
- Wider ray cells
- Digitize to MPM model
- Load in radial or tangential directions
 - Examine stress state and compare to softwood results

Load Bearing Paths

Radial Loading

Tangential Loading

Transverse Fracture of Wood

Actual Specimen

MPM Model

Defines earlywood and latewood but not radial and tangential directions

Polar Orthotropy

$$\theta = 0^{\circ}$$
 $\theta = 90^{\circ}$

Two Images for Structure and Orientation

Input Images **Generated Model** m A S h <BMP name="../Images/FirSample2.bmp" width="25"</pre> angles="../Images/FirSample2Angles.bmp"> <Origin x="0" y="0"/> <Intensity mat="1" imin="128" imax="254"> <Thickness units="mm">1</Thickness> </Intensity> <Intensity mat="2" imin="0" imax="127"> <Thickness units="mm">1</Thickness> </Intensity> <Intensity imin="0" imax="255" minAngle="0.0" maxAngle="90.0"/> </BMP>

Another Sample

The **CRAMP** Algorithm - **CRA**cks in **MP**M

Sample #4 Results

OSB Compaction

Movie from Fred Kamke (OSU), field of view = 30 mm

Compaction Simulations

Anisotropy Complications

- Grain direction changes
- Orientation part of solution
- Anisotropic yielding needed

Red for counter clockwise Blue for clockwise

Coupled Experiments and Modeling

Digitial Image Correlation (DIC)

Simple Tensile Test

Simple Tensile Test

Coupling Modeling with Experiments

Wood Fiber Mat Compaction

Strain Uniformity

Force-Displacement Convergence

Directions

Realistic modeling requires attention to

- Material properties
- Anisotropy
- Structure
- Heterogeneity

Simultaneous inclusion of anisotropy and structure is a challenge

- Nearly solved in 2D
- Serious challenge in 3D
- Analysis of realistic morphologies has many applications in wood science as well as composites science
- Direct coupling of modeling to actual specimens opens up new possibilities

Material Point Method

MPM useful properties

- Discretizing realistic structures
 - Requires new work to discretize realistic anisotropy
- Explicit cracks with crack propagation
- Handling contact
- You can try it at home
 - Open-source 2D/3D MPM (and matching 2D FEA):

http://oregonstate.edu/~nairnj/

- Can Run Calculations and Visualize Results in Graphical Front End
 - Mac Users complete package available for downloading
 - All Others java application controls running and visualization (2D only)

