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The Problem

MPM and GIMP don’t have known orders of accuracy

Few MPM/GIMP publications compare to exact solutions

MPM/GIMP “too sexy” for small strain known solutions

Known solutions are rare (non-existent?) for large-
deformation, transient mechanics problems



Pseudo Verification

Eyeball Norms — Verification of Plausibility

* Not predictive: you already know the answer

Symmetry — some coding mistakes exposed
e Many mistakes are symmetric

Compare to existing code (Finite Element)
» Existing code solves different problems

» Existing code has unverified accuracy

 When differences are found, are they errors or not?

Experimental results — scattered data shows same trends
 Data availability is limited
* Differences don’t allow systematic bug finding

Known Solutions to PDE’s

* Few (no?) dynamic solutions for large deformation



A better way
The Method of Manufactured Solutions

Recently proposed as ASME standard

“V&V 10 - 2006 Guide for Verification and Validation
in Computational Solid Mechanics™

Sufficient, not just necessary, if we test all modes:
» Boundary conditions

* Non-square cells and particles

* Time 1ntegration algorithms

 Shape functions

Each mode must be tested, but not all in the same test.
Once a mode has “passed”, then further testing not needed.



(_Model Equations
I
( Test Suite >

i
( Exact Solution><
10 Fix

Do Test - Compute Err®< Test
1L Fix
Continue Code
Refinement?
1['No

<Compute> Code Error Or
Order Flawed Test?

T
Match Expected :
Ordars ﬁo(Troubleshootm@

uYeS

Verification
Don’t touch anything!
Flowchart C >




Rate of convergence 1s very sensitive to errors and
can be applied to individual pieces of a method

Displacement error compares current to reference configurations.
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An Example MMS Solution:
Body Force on a 1D Bar

Body Force b(x,t)

-
—

/

Zero Stress

Zero o(L,t)=0

Displacement
u(0,t)=0




Body Force on a 1D Bar

Given

Momentum V-0 + pb = pa

Neo-Hookean A u .
Constitutive Model © = (—ln J) 1+ _(FF B I)

J J
Constitutive Model with _E 1
. . o=—|F——
assumptions: 1D, Poisson = 0 o) F

Find displacement u(x) — in general this cannot be done.



A Detour and a Review:
Reference versus Current Configuration

Particles stationary in reference configuration

Grid stationary 1n current configuration

Reference/ @ © © © © © © © O € X =4.75

Curent/ @ @ © @ © © © ® © \ ‘




Why manufacture solutions in the reference configuration?

— Convenience. Consider the following example:

How find the current length and apply boundary?

~ x(2L, —x)
u(x) = L A(t)
— M(L ‘|‘AL) — (LO +AL)(2LO _(LO +AL)) A(t)
0 LOZ

This 1s icky. We can avoid recursive / implicit definitions
like the above by using the reference configuration.



Reference Configuration vs Current Configuration

Reference Configuration

Current Configuration

“Total Lagrange” “Updated Lagrange”
Momentum
V-P+pb=pa | V-0+pb=pa
Deformation »
Gradient| F(X)=I+V,u F(x)=[I1-V u]

Neo-Hookean

P=(AlnJ)F"' +uF " (FF"-1I)

o= (&an)I+E(FFT ~1)
J J

Assume 1D,

Poisson =0

P= E(F(X) —L)
2 F(X)

E 1
"‘E(F@‘ﬁj

Stress Transformation:

P—

JF'o




Start with the answer and reformulate backwards

Given Displacement

1D Neo-Hookean with
Poisson’s ratio =0

Momentum

Solve for Gravity

u(X)

p-ffp_L
2 K

V-P+pb=p,a

b:a—LV-P
Po

Now we just take derivatives . . .



What answer (displacement field) do we start with?

The chosen displacement field(s) must:

» exercise all features of the code; large deformation,
translation, rotation, Dirichlet and Neumann boundaries

* be “smooth enough” — sufficiently differentiable in
time and space

* Conform to assumptions made by the method. For
GIMP this means zero normal stress at free boundaries.

For the 1D rod assume a displacement of the form:

U= (co +c X +c, X’ )A(t)



Constants for the 1D bar

Zero displacement at X =0 02, 22
0= (Co +¢,0+¢,0° )4(t)

Scale displacement at L

A(t) = (co +c, L+ 02L2 )4(t) 0 |

wW(X) 01 [

0 05
Zero stress at X = L 0 x
E 1) E 1
P(L)=0= —(F——) =—|1+(c, +2¢,L)A(r)-
2 F) 2 1+(c, +2¢,L)A(1)

2LX - X*
W) ()= A




Return to the 1D Bar: Take Derivatives

Given Ty _
Displacement u(X) = I A(t)
2(L-X
Deformation Gradient £ =1+ ( = )
E 2L-X) ||
Divergence of Stress V-P= _LZ[H[H ( 72 ) A} ]A

Solve for b(X) b= lelX(ZL - X)4 —f[l +[1Jr 2(LL_2 X) A] }A]



Choose a convenient time function A(t)

Trigonometric functions have nice properties:
 Easy to differentiate

* Amount of deformation 1s bounded

« Tests ability to stay in phase

e Can be made self-similar in time

1.e. — same number of time steps per period,
regardless of material stiffness.

XO2L-X ([E )
U = ( )O.Zcos — Tt

L Np




1D Bar: Restate the Problem

1
b:l;z[

Body Force

X(2L—X)A—E[1+[l+ 2(L—2X) A] }A]
Po L

|

3

N
Zero Stress
o(L.t)=0
, LErg The answer 1s (should be): &
Displacement
ot =0 2LX — X°

u(X) = A(t)

L2






Now we can measure convergence under large
deformation — the kind of problem MPM/GIMP
1s designed to solve
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Conclusions

e Manufactured Solutions Also Generated in 2D and 3D
« MMS Provides a Tool for:
 Better Understanding MPM and GIMP algorithms
e [solating Error Sources
* Finding Bugs

* No Excuse Left for not Showing Convergence Behavior

Thanks to Mike Steffen, Mike Kirby and Martin Berzins,
as well as DOE grant W-7405-ENG-48.



