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The Problem

MPM and GIMP don’t have known orders of accuracy

Few MPM/GIMP publications compare to exact solutions

MPM/GIMP “too sexy” for small strain known solutions

Known solutions are rare (non-existent?) for large-
deformation, transient mechanics problems



Pseudo Verification

Eyeball Norms – Verification of Plausibility
• Not predictive: you already know the answer

Symmetry – some coding mistakes exposed
• Many mistakes are symmetric

Compare to existing code (Finite Element)
• Existing code solves different problems
• Existing code has unverified accuracy
• When differences are found, are they errors or not?

Experimental results – scattered data shows same trends
• Data availability is limited
• Differences don’t allow systematic bug finding

Known Solutions to PDE’s
• Few (no?) dynamic solutions for large deformation



A better way
The Method of Manufactured Solutions

Recently proposed as ASME standard

“V&V 10 - 2006 Guide for Verification and Validation
in Computational Solid Mechanics”

Sufficient, not just necessary, if we test all modes:
• Boundary conditions
• Non-square cells and particles
• Time integration algorithms
• Shape functions

Each mode must be tested, but not all in the same test.
Once a mode has “passed”, then further testing not needed.
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Rate of convergence is very sensitive to errors and
can be applied to individual pieces of a method
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An Example MMS Solution:
Body Force on a 1D Bar

Zero
Displacement

u(0,t) = 0

Zero Stress
σ(L,t) = 0

Body Force b(x,t)



Body Force on a 1D Bar

Given

Momentum

Neo-Hookean
Constitutive Model

Constitutive Model with
assumptions: 1D, Poisson = 0
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Find displacement u(x) – in general this cannot be done.



A Detour and a Review:
Reference versus Current Configuration

Particles stationary in reference configuration

Grid stationary in current configuration

X = 4.75
x = 5.2

X = 5
x = 5

X = ?
x = 5

X = 4.75
x = 4.75

Reference

Current



Why manufacture solutions in the reference configuration?

– Convenience.  Consider the following example:

How find the current length and apply boundary?

This is icky.  We can avoid recursive / implicit definitions
like the above by using the reference configuration.



Reference Configuration vs Current Configuration

Momentum

Assume 1D,
Poisson = 0

Neo-Hookean

Deformation
Gradient

Current Configuration
“Updated Lagrange”

Reference Configuration
“Total Lagrange”
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Start with the answer and reformulate backwards

Given Displacement

1D Neo-Hookean with
Poisson’s ratio = 0

Momentum

Solve for Gravity
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What answer (displacement field) do we start with?

The chosen displacement field(s) must:

• exercise all features of the code; large deformation,
translation, rotation, Dirichlet and Neumann boundaries

• be “smooth enough” – sufficiently differentiable in
time and space

• Conform to assumptions made by the method.  For
GIMP this means zero normal stress at free boundaries.

For the 1D rod assume a displacement of the form:



Constants for the 1D bar

Zero stress at X = L
0 0.5 1

0

0.1

0.2
0.2

0

u X( )

L0 X

Zero displacement at X = 0

Scale displacement at L



Return to the 1D Bar: Take Derivatives

Given

Displacement

Deformation Gradient

Divergence of Stress

Solve for b(X)
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Choose a convenient time function A(t)

Trigonometric functions have nice properties:

• Easy to differentiate

• Amount of deformation is bounded

• Tests ability to stay in phase

• Can be made self-similar in time
    i.e. – same number of time steps per period,

regardless of material stiffness.



1D Bar: Restate the Problem

Zero
Displacement

u(0,t) = 0

Zero Stress
σ(L,t) = 0

Body Force
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The answer is (should be):



Solve with GIMP where A(t) = 0.2cos
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Now we can measure convergence under large
deformation – the kind of problem MPM/GIMP
is designed to solve
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Conclusions

• Manufactured Solutions Also Generated in 2D and 3D

• MMS Provides a Tool for:

• Better Understanding MPM and GIMP algorithms

• Isolating Error Sources

• Finding Bugs

• No Excuse Left for not Showing Convergence Behavior

Thanks to Mike Steffen, Mike Kirby and Martin Berzins,
as well as DOE grant W-7405-ENG-48.


