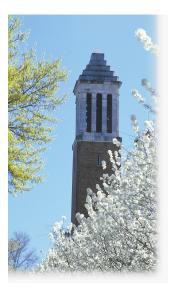
Explicit/Implicit time Integration in MPM\GIMP

Abilash Nair and Samit Roy University of Alabama, Tuscaloosa



Objectives

- Develop a Implicit algorithm for GIMP based on Implicit MPM*
- Benchmark the algorithm using exact solution to a dynamic problem
- Extend the algorithm for large deformation problems

*J.E.Guilkey and J.A.Weiss. Implicit time Integration for the material point method: Quantitative and algorithmic comparisons with the finite element method. Int. J. Numer. Meth. Engng. 2003; 57: 1323-1338

Implicit Algorithm for MPM: Review*

 Extrapolate mass, velocities, accelerations (from time t) and external forces (at time t+Δt) from material points to nodes (standard MPM). Initialize displacement of node for first iteration

 $\mathbf{u}_g^0(t+\Delta t)=\mathbf{0}$

• Newmark approximations for displacement, velocity and accelerations of nodes at time "t+ Δ t". For iteration k,

$$\mathbf{u}_{g}^{k}(t + \Delta t) = \frac{\Delta t}{2} \left(\mathbf{v}_{g}^{k}(t + \Delta t) + \mathbf{v}_{g}(t) \right)$$
$$\mathbf{v}_{g}^{k}(t + \Delta t) = \mathbf{v}_{g}(t) + \frac{\Delta t}{2} \left(\mathbf{a}_{g}^{k}(t + \Delta t) + \mathbf{a}_{g}(t) \right)$$
$$\mathbf{a}_{g}^{k}(t + \Delta t) = \frac{4}{\Delta t^{2}} \mathbf{u}_{g}^{k}(t + \Delta t) - \frac{4}{\Delta t} \mathbf{v}_{g}(t) - \mathbf{a}_{g}(t)$$

*J.E.Guilkey and J.A.Weiss. Implicit time Integration for the material point method: Quantitative and algorithmic comparisons with the finite element method. Int. J. Numer. Meth. Engng. 2003; 57: 1323-1338

Implicit Algorithm Review: continued

• Assemble internal forces and element stiffness matrix. The material points will act as integration points within each cell

$$\mathbf{F}_{\mathbf{int}g}^{k-1}(t+\Delta t) = \sum_{e} \int_{V_e} \mathbf{B}^T \boldsymbol{\sigma}_p dV_e \qquad \mathbf{K}_g^{k-1}(t+\Delta t) = \sum_{e} \int_{V_e} \mathbf{B}^T \mathbf{D}_p \mathbf{B} dV_e + \frac{4}{\Delta t^2} \mathbf{M}_g$$

• Solve for $\Delta \mathbf{u}_g$ and update incremental displacement for timestep "t+At" $\mathbf{K}_g^{k-1}(t+\Delta t)\Delta \mathbf{u}_g = \mathbf{F}_{extg} - \mathbf{F}_{intg}^{k-1}(t+\Delta t) - \mathbf{M}_g \left(\frac{4}{\Delta t^2}\mathbf{u}_g^{k-1}(t+\Delta t) - \frac{4}{\Delta t}\mathbf{v}_g(t) - \mathbf{a}_g(t)\right)$ $\mathbf{u}_g^k(t+\Delta t) = \mathbf{u}_g^{k-1}(t+\Delta t) + \Delta \mathbf{u}_g$

$$\begin{split} d\boldsymbol{\epsilon}_p &= \frac{1}{2} \left(\boldsymbol{\nabla} \mathbf{u}_g^k(t + \Delta t) + (\boldsymbol{\nabla} \mathbf{u}_g^k(t + \Delta t))^T \right) \quad \text{where}, \boldsymbol{\nabla} \mathbf{u}_g^k(t + \Delta t) = \sum_g \mathbf{G}_{pg} \mathbf{u}_g^k(t + \Delta t) \\ \boldsymbol{\epsilon}_p^k(t + \Delta t) &= \boldsymbol{\epsilon}_p(t) + d\boldsymbol{\epsilon}_p \\ \boldsymbol{\sigma}_p^k &= \mathbf{D}_p \boldsymbol{\varepsilon}_p^k \end{split}$$

Implicit Algorithm Review: continued

- Iterate until residuals are minimized (recommended error norms: displacement and energy)
- Interpolate displacement and acceleration from the grid to material point. Update position, velocity and acceleration of MP and proceed to next time step

$$\mathbf{u}_p(t + \Delta t) = \sum_i S_{ip} \mathbf{u}_i^k(t + \Delta t)$$
$$\mathbf{a}_p(t + \Delta t) = \sum_i S_{ip} \mathbf{a}_i^k(t + \Delta t)$$
$$\mathbf{x}_p(t + \Delta t) = \mathbf{x}_p(t) + \mathbf{u}_p(t + \Delta t)$$
$$\mathbf{v}_p(t + \Delta t) = \mathbf{v}_p(t) + \frac{\Delta t}{2} \left(\mathbf{a}_p(t) + \mathbf{a}_p(t + \Delta t)\right)$$

Equations for Implicit Generalized Interpolation Material Point Method (GIMP)

In GIMP, any continuous data f(x), can be represented as

$$\mathbf{f}(\mathbf{x}) = \sum_{p} \mathbf{f}_{p} \chi_{p}(\mathbf{x})$$

• Consider the Integral:

$$\begin{split} \mathbf{K}_{g} &= \sum_{e} \int_{\Omega_{e}} \mathbf{B}^{T} \mathbf{D}(\mathbf{x}) \mathbf{B} d\Omega_{e} \\ &= \sum_{e} \int_{\Omega_{e}} \mathbf{B}^{T} \left(\sum_{p} \mathbf{D}_{p} \chi_{p}(\mathbf{x}) \right) \mathbf{B} d\Omega_{e} \\ &= \sum_{e} \sum_{p} \mathbf{D}_{p} \int \!\!\!\! \int \!\!\!\! \int \!\!\!\! \int_{\Omega_{p}} \mathbf{B}^{T} \mathbf{B} d\Omega_{p} \end{split}$$

If N_i and N_j are Interpolation functions to node i and node j, respectively (S_i is the grid shape function)

$$N_i(x, y, z) = S_i^x \cdot S_i^y \cdot S_i^z$$
$$N_j(x, y, z) = S_j^x \cdot S_j^y \cdot S_j^z$$

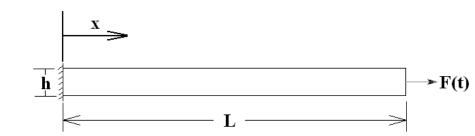
$$S_i^x = \begin{cases} 0 & x \le x_i - L^x \\ 1 + \frac{x - x_i}{L^x} & x_i - L^x < x \le x_i \\ 1 - \frac{x - x_i}{L^x} & x_i < x \le x_i + L^x \\ 0 & x > x_i + L^x \end{cases}$$

Then we have for example for a two-dimensional problem,

$$\iint_{p} \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial y} t_{p} dx dy$$
$$= t_{p} \iint_{p} \left(\frac{dS_{i}^{x}}{dx} \cdot S_{i}^{y} \right) \left(S_{j}^{x} \cdot \frac{dS_{j}^{y}}{dy} \right) dx dy$$

Benchmark Problem #1: Traveling Wave*

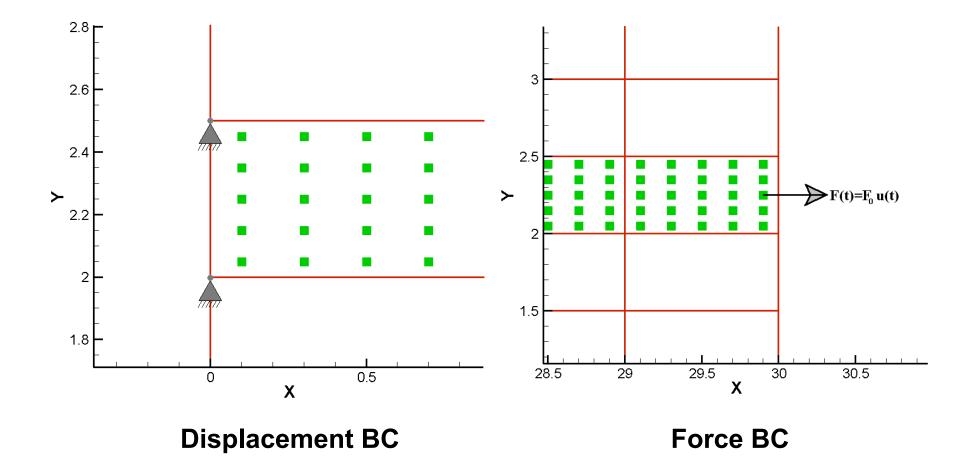
F(t) = F₀ u(t) [u(t) is unit step function L = 30 mm (for infinite span beam) b (thickness) = 1 mm h = 0.5 mm E = 200GPa, v=0.3, ρ =7.8 g/cc F₀=1N



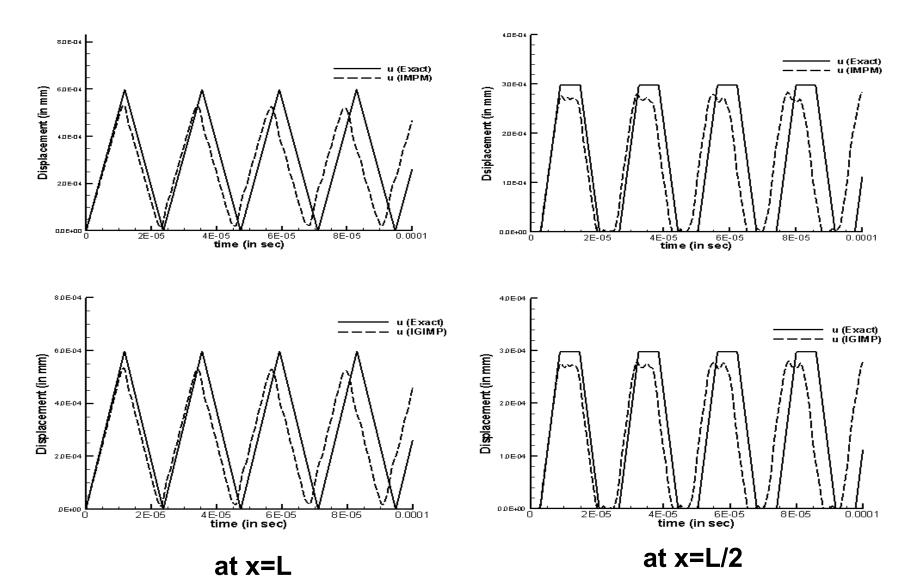
$$u(x,t) = \frac{8F_0L}{\pi^2 EA} \sum_{r=1}^{\infty} \frac{(-1)^{r-1}}{(2r-1)^2} \sin\frac{(2r-1)\pi x}{2L} \left[1 - \cos\frac{(2r-1)\pi}{2} \sqrt{\frac{EA}{mL^2}} t \right]$$

*L.Meirovitch. Fundamentals of Vibrations

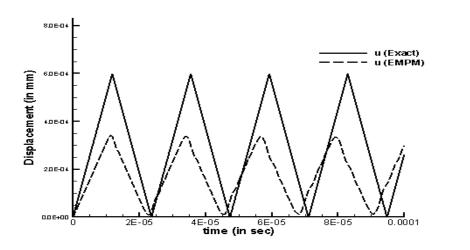
Boundary Conditions in MPM for Problem #1

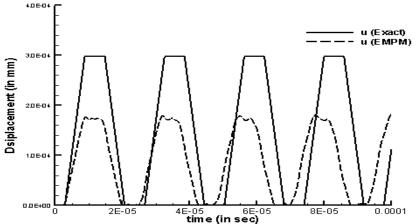


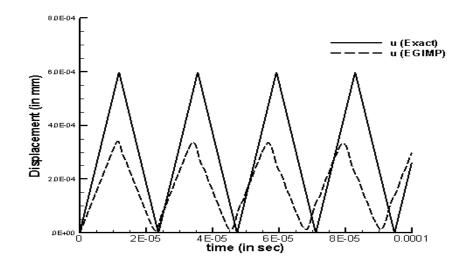
Results: Implicit (Δt=10⁻⁸, 10⁴ timesteps, 30x1 grid, 25MPs per cell)

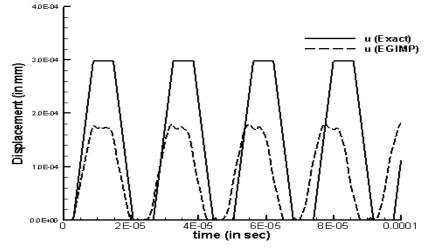


Results: Explicit (Δt=10⁻⁸, 10⁴ timesteps, 30x1 grid, 25MPs per cell)





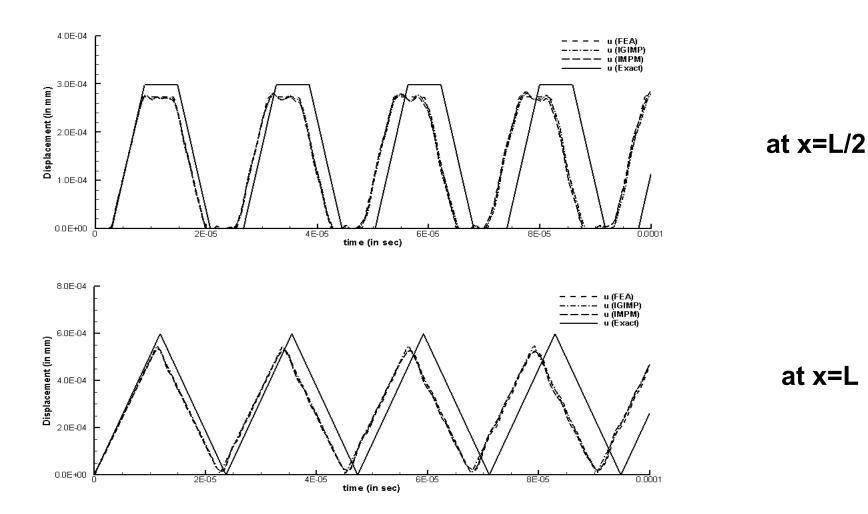




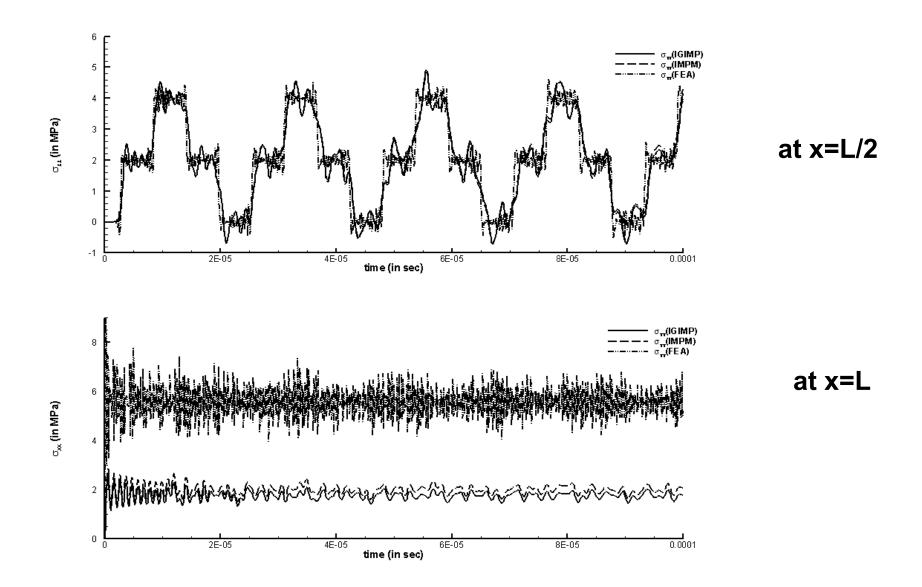
at x=L/2

at x=L

Displacement Results: Implicit MPM and GIMP ($\Delta t=10^{-8}$, 10⁴ time steps, 30x1 grid, 25MPs per cell) with FEA ($\Delta t=10^{-8}$, 10⁴ time steps, 30x2 grid, 8 node plane strain elements)

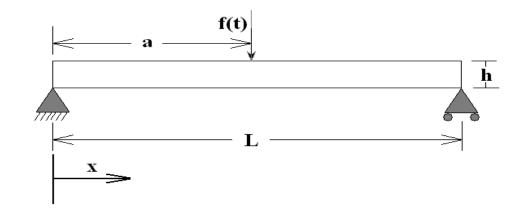


Stress Results: Implicit MPM and GIMP ($\Delta t=10^{-8}$, 10⁴ time steps, 30x1 grid, 25MPs per cell) with FEA ($\Delta t=10^{-8}$, 10⁴ time steps, 30x2 grid, 8 node plane strain elements)



Benchmark Problem #2: Forced vibration of beam*

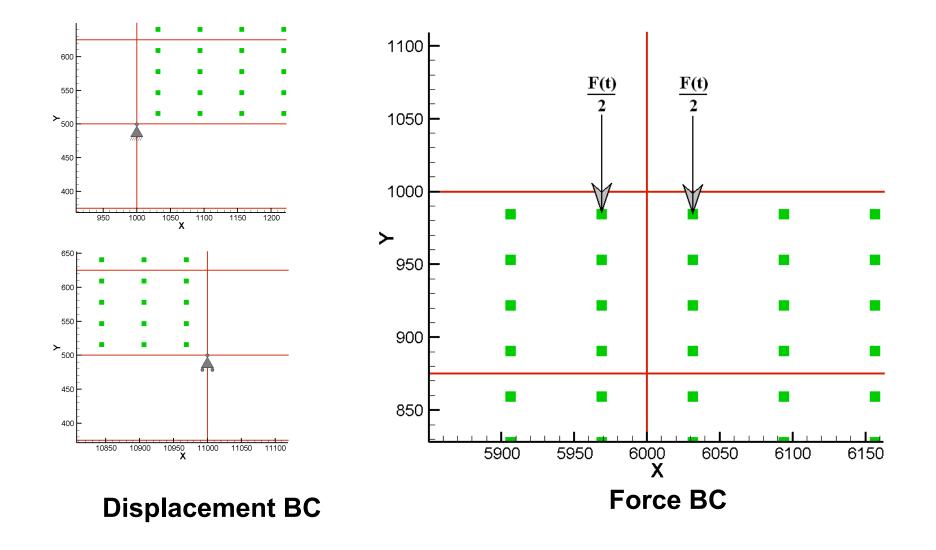
F(t) = $F_0 \sin(\omega t)$ applied at distance "a" from the edge L = 10 m b (thickness) = 1 m h = 0.5 m E = 200GPa, v=0.3, p=7.8 g/cc F_0 =-4N, ω =150 Hz



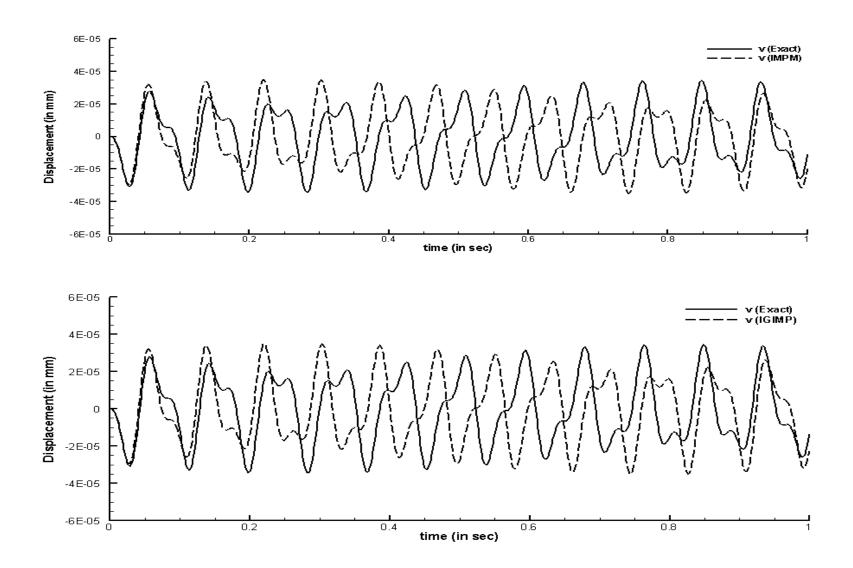
$$w(x,t) = \frac{2F_0L^3}{\pi^4 EI} \sum_{n=0}^{\infty} \frac{\sin\left(\frac{n\pi a}{L}\right)\sin\left(\frac{n\pi x}{L}\right)}{n^4 - \left(\frac{\omega}{\omega_1}\right)^2} \left[\sin(\omega t) - \frac{\omega}{n^2\omega_1}\sin(n^2\omega t)\right]$$
$$\omega_n = \frac{n^2\pi^2}{L^2}\sqrt{\frac{EI}{\rho A}}$$

*E.Volterra and E.C.Zachmanoglou. Dynamics of Vibrations

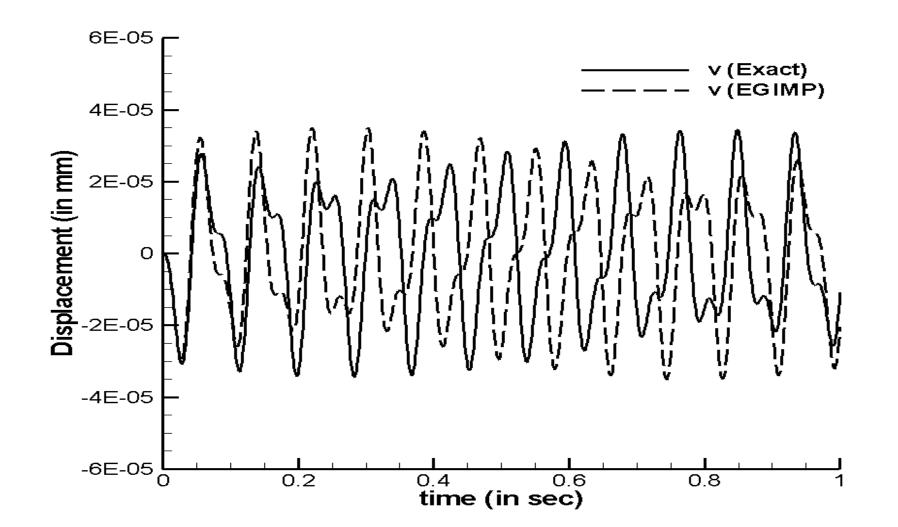
Boundary Conditions in MPM for Problem #2



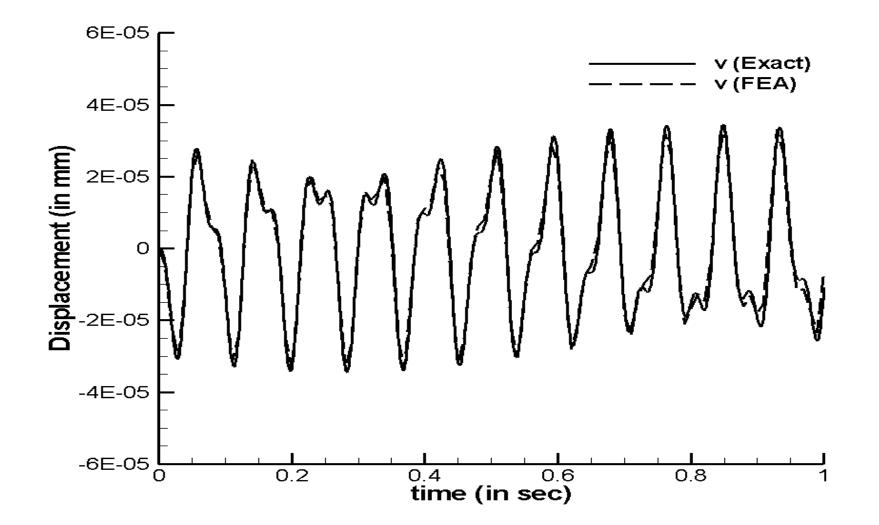
Results: Implicit (Δt=10⁻³, 10³ time-steps, 40x4 grid, 16MPs per cell)



Results: Explicit (Δt=10⁻⁷, 10⁷ time-steps, 40x4 grid, 16MPs per cell)



Results: Implicit FEA (Δt=10⁻³, 10³ time-steps, 40x4 Plane Strain Elements, 4 node quad.)



Conclusions and Future Work

 Implicit algorithm for GIMP seems to agree well with Implicit MPM as well as Explicit MPM

•Discrepancies were observed between exact solution and MPM solutions for dynamic benchmark problems

•Extend the IGIMP algorithm for large deformation problems

Animation (Traveling wave solution. IGIPM)