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A weighted least squares particle-in-cell method for solid
mechanics

P. C. Wallstedt∗, J. E. Guilkey†
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SUMMARY

A novel meshfree method is introduced that incorporates features of the Material Point (MPM)
and Generalized Interpolation Material Point (GIMP) methods and can be used within an existing
MPM/GIMP implementation. Weighted least squares kernel functions are centered at stationary
grid nodes and used to approximate field values and gradients. Integration is performed over cells
of the background grid and material boundaries are approximated with an implicit surface. The
new method avoid nearest-neighbor searches while significantly improving accuracy over MPM and
GIMP. Implementation is discussed in detail and several example problems are solved, including
one manufactured solution which allows measurement of dynamic, non-linear, large deformation
performance. Copyright c© 2009 John Wiley & Sons, Ltd.
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1. Introduction

For many decades the Finite Element Method (FEM) has been trusted with predictive
computations for a wide range of structures and systems; it is known to be robust and accurate.
However, there are classes of problems that remain difficult to solve with FEM. For example,
the simulation of extrusion and molding operations produces extremely large deformations
of the mesh, while simulation of failure processes involves tracking of arbitrary and complex
cracks and material interfaces. The most reliable way of dealing with moving discontinuities
in FEM is to re-mesh at every step of the problem. This leads to greater computational effort
and relies critically on automated meshing algorithms that may only be reliable for simple
domains or for linear triangles and tetrahedra.

During the last two decades a plethora of methods has been developed to circumvent the
limitations of FEM. The Smooth Particle Hydrodynamics (SPH) method was developed by
Lucy (1), Monaghan (2), and coworkers to model astrophysics problems and later extended to
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2 WALLSTEDT AND GUILKEY

solid mechanics by Libersky, Petschek and Randles (3; 4). Although it originally suffered from
instability and lack of convergence, SPH has since been refined and corrected by Swegle (5),
Johnson and Beissel (6), Dilts (7) and others. While these modifications improved the accuracy
and stability of SPH, they also introduced some inconvenience, such as keeping track of
additional stress points.

By reforming the Diffuse Element Method (DEM) of Nayroles and coworkers (8) in terms
of Moving Least Squares (MLS), Belytschko, Lu and Gu (9; 10; 11) introduced the Element
Free Galerkin (EFG) method which achieved substantial improvements in accuracy. Several
other families of MLS-based methods appeared soon after including the Reproducing Kernel
Particle Method (RKPM) of Liu and Jun and coworkers (12; 13; 14; 15) and the Meshless
Local Petrov Galerkin (MLPG) method of Atluri et al. (16). Excellent overviews of meshfree
methods include the papers of Belytschko and coworkers (17), and Fries and Matthies (18),
and the text of Liu (19). MLS-based methods were seen to be instances of a more general
partition of unity framework (20; 21) and convergence properties were proven for broad classes
of MLS-based methods (22).

The MLS-based methods were shown to be useful for new classes of problems for which FEM
was ill-suited; development and application of these methods is on-going. Some limitations
exist, however, such as the application of essential boundary conditions (23) and the
substantially larger computational cost relative to FEM. The cell-based integration schemes
used by some MLS-based methods are particularly troublesome for dynamic problems (24).

The material point method (MPM) was described by Sulsky et al. (25; 26) as an extension to
the FLIP (Fluid-Implicit Particle) method of Brackbill (27), which itself is an extension of the
particle-in-cell (PIC) method of Harlow (28). Interestingly, the name “material point method”
first appeared in the literature two years later in a description of an axisymmetric form of the
method (29). MPM is extraordinarily easy to implement and use for arbitrarily complicated
domains such as foams, geologic formations, or biological structures and can be initialized in
seconds from imaging data such as a CT scan. For those familiar with SPH, MPM may be
loosely thought of as SPH with stress points, where the stress points and kernel functions are
located at nodes of a stationary cartesian grid.

A major correction and improvement to MPM was offered by Bardenhagen and Kober (30)
and called the Generalized Interpolation Material Point (GIMP) method. GIMP retains the
same generality as MPM, though at additional computational cost. For realistic problems
GIMP approaches first order accuracy (31) and does not enjoy the reproducibility of MLS-
based methods.

MPM and GIMP have been studied and used by numerous investigators; a subset of
these contributions includes: analysis and improvement of time integration properties by
Bardenhagen (32), Sulsky and Kaul (33), and Wallstedt and Guilkey (31); membranes and
fluid-structure interaction by York, Sulsky and Schreyer (34; 35); implicit time integration by
Guilkey and Weiss (36), and Sulsky and Kaul (37); conservation properties and plasticity by
Love and Sulsky (38; 39); contact by Bardenhagen et al. (40); cracks and fracture by Nairn (41);
tracking of particle extents by Ma et al. (42); enhanced velocity projection and verification via
the method of manufactured solutions by Wallstedt and Guilkey (43; 31),

In this work a new method is proposed that fits within the GIMP framework: it is based on
a cartesian grid and it does not search for nearest neighbors or require a finite element mesh.
The new method is based on a Weighted Least Squares approximation of data surrounding
each grid node and is referred to in the remainder of this paper as “WLS”. The method gives
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A WEIGHTED LEAST SQUARES PIC METHOD FOR SOLID MECHANICS 3

up some of the generality and ease-of-use of GIMP while making substantial gains in accuracy.
WLS takes advantage of the previous decade’s worth of development of meshfree methods
while avoiding the disadvantage of nearest-neighbor searches. In contrast to many meshfree
particle methods, WLS performs integration over a background, as does EFG.

Some of the volume decomposition features of WLS are analogous to a method that was
presented by Belytschko and coworkers (44) for creating structured finite element models from
solid models by means of implicit surface definitions. While their techniques focused on finite
element discretizations, the cell decomposition and implicit surface estimation also apply to
the Cartesian background grid used in the present method.

This paper is organized as follows: Several components of the algorithm are first described
such as the PIC framework, weight functions, least squares scheme, implicit surface definition,
marching cubes polygonization, and off-object node correction. Then these individual
components are combined in a detailed description of the discrete governing equations of
the main algorithm. Lastly, several example problems are defined and solved, followed by a
discussion of the utility of the method.

2. Governing Equations

An Updated Lagrangian formulation allows straightforward modeling of history-dependant
materials with complicated constitutive models. The equation of motion is

σ∇+ ρb = ρa (1)

where σ is Cauchy Stress, ρ is density, b is acceleration due to body forces, and a is acceleration.
Essential boundary conditions may be set on velocity and acceleration, resulting in prescribed
values of displacement u = x−X, where X is position in the reference configuration and x is
position in the current configuration. The deformation gradient is defined as F = ∂x

∂X . Surface
tractions are σn = t where n is normal to the object surface and t is the traction vector on
the surface. The conservation of mass is

ρ0 = ρJ (2)

where ρ0 is density in the reference configuration and J = det(F) is the Jacobian.
A FEM implementation might update the position and velocity of nodes and compute F

from u: F = (I − ∂u
∂x )−1. However, the current method (as well as GIMP) updates position,

velocity, and deformation gradient. The result is that spatial derivatives are only first order
and the WLS basis defined later in the manuscript can be planar.

The stress can be a function of virtually any variable used in the simulation, but in this
work it is only a function of the deformation gradient F. The rates of position, velocity, and
deformation gradient are ẋ = v, v̇ = a and Ḟ = (∇v)F, respectively.

The weak form of the governing equations is obtained by multiplying Equation 1 by a
monotonically decreasing weight function with a narrow basis φ, and integrating over the
current configuration Ω with boundary Γ; see, for example, the text of Belytschko, Liu and
Moran (45). Integrating by parts over the highest order term results in:

−
∫

Ω

σ(∇φ) dΩ +
∫

Γ

tφ dΓ +
∫

Ω

ρbφdΩ =
∫

Ω

ρaφ dΩ (3)
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4 WALLSTEDT AND GUILKEY

3. Description of the Method

The FEM relies on a connected mesh of nodes while meshfree methods typically rely on
a cloud of disconnected nodes (along with a background integration grid and octree search
structure). However, the WLS method of this work is embedded within a Particles-In-Cell
(PIC) framework that is also used for the MPM and GIMP methods. In this way WLS
represents a hybrid of PIC and meshfree schemes.

Values of position, velocity, deformation gradient, and other variables are assigned to
disconnected particles that are suitably spaced throughout an object such that sufficient
information is present. A stationary cartesian grid facilitates a bucket-sorting scheme so that
particle values are collected, via weighted least squares, to the regularly-spaced nodes of the
grid to create fields of acceleration and velocity throughout the domain. Gradients of stress and
velocity on the grid are used to update particle position, velocity and deformation gradient.

The stationarity of the local least squares equations makes the “weighted” designation in
WLS appropriate, rather than “moving” least squares in which values are collected to mobile,
disconnected nodes based on nearest neighbors.

A contiguous, non-overlapping integration scheme is defined by using the cartesian
background grid for integration. As an object moves through the grid its boundaries pass
through several cells of the grid. Such boundary cells are subdivided into interior and exterior
portions and integration is performed over the interior portion of each cell only.

The subdomains over which numerical integration is performed differ in this method from
FEM and from GIMP, as illustrated in Figure 1.

(a) Finite Elements (b) GIMP Particles (c) WLS Cell Volumes

Figure 1. Comparison of Volume Partition Strategies

Finite elements always form a contiguous non-overlapping partition of an object into
subdomains, which provides accurate and reliable integration, albeit at the cost of complicated
mesh generation.

The GIMP method only forms a contiguous non-overlapping partition of the material for
the initial position; during problem evolution, gaps or overlaps may develop in the partition.
Despite this shortcoming, GIMP’s great advantage is the easy initialization of complicated
domains.

The WLS method of this paper forms integration domains that remain contiguous and non-
overlapping by using the cell structure of a PIC method. When a material boundary cuts
through the middle of a cell, the cell is split in two and only a portion of the cell is allowed
to contribute to the integration. The new cell integration method represents an improvement
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A WEIGHTED LEAST SQUARES PIC METHOD FOR SOLID MECHANICS 5

of accuracy compared to GIMP, while retaining the existing PIC framework, data structures
and initialization procedures. However, it involves the extra complication of marching cubes
polygonization and it tends to ignore sharp corners, in a manner similar to GIMP.

The WLS method makes use of several mathematical components from the computer
graphics and meshfree communities; detailed explanations of these are given in the following
sections.

3.1. Weight Functions

Two different shape or weight functions are used within WLS. The shape functions are centered
on nodes of the background grid and are defined in terms of the cell size h. A wide second
degree spline with 27 node support (in 3D) allows nodes to “see” particles that are farther
away. A narrower piecewise linear function with 8 node support is used to interpolate grid
data back to particles. This “see wide, apply narrow” concept ensures that only nodes with
sufficient data are allowed to influence particle updates. All weights and shapes are expressed
in 1D as functions of r = x − xi and are implemented such that the first available choice in
the list is always used; note that sign(r) = (−1 if r < 0, 1 otherwise).

Wi(r) =


.75− r2

h2 |r| < h
2

(1.5h−|r|)2
2h2 |r| < 3h

2

0 otherwise

(4)

Si(r) =

{
1− |r|

h |r| < h

0 otherwise
(5)

Gi(r) =

{
− sign(r)

h |r| < h

0 otherwise
(6)

Tensor products of these are used as shapes and weights in higher dimensions and the shapes
and weights become functions of vectors.

A shorthand is frequently used for these functions involving indices of particles or quadrature
points. For example, if particles are indexed with p, then Wip = Wi(xp−xi), Sip = Si(xp−xi),
and Gip = Gi(xp − xi).

3.2. Weighted Least Squares Framework

Although many basis functions can be chosen within a weighted least squares framework, the
hyperplane is used throughout this method. The particles that fall within the non-zero region
of a weight function centered at each node contribute to the equation at the node:

fLS
i (r) = c0 + c1x + c2y + c3z (7)

where x, y, and z are components of r = xp − xi. The error norm that defines the WLS
formulation is:

L2 =
∑

p

Wip

(
fLS

i (rp)− fp

)2
(8)
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6 WALLSTEDT AND GUILKEY

Differentiating L2 with respect to the coefficients c and setting each equation equal to zero
results in the following system:

∑
p W

∑
p Wx

∑
p Wy

∑
p Wz∑

p Wx
∑

p Wx2
∑

p Wxy
∑

p Wxz∑
p Wy

∑
p Wxy

∑
p Wy2

∑
p Wyz∑

p Wz
∑

p Wxz
∑

p Wyz
∑

p Wz2




c0

c1

c2

c3

 =


∑

p Wfp∑
p Wfpx∑
p Wfpy∑
p Wfpz

 (9)

The system is rewritten as Mc = l and M , c, and l are termed the moment, coefficient,
and load vectors/matrices, respectively. Each local function is found by the following, which
is simply a different form of Equation 7.

fLS
i (r) = M−1l ·

(
1 x y z

)T (10)

A shorthand is defined for the value and gradient of fLS
i (r), at the location of the node:

o

fi = fLS
i (r = 0) = c0 (11)

∇
o

fi = ∇fLS
i (r = 0) =

(
c1 c2 c3

)T (12)

3.3. Implicit Surface Definition

In FEM, surfaces are modeled with the edges or faces of elements, and are accurate insofar
as the element can match the curve of the object. In GIMP, surfaces are implied but never
defined. This means that GIMP does not resolve sharp convex or concave features; however it
also avoids many of the complications of FEM such as meshing and special contact algorithms.

The treatment of material surfaces in WLS is one of its most critical components. The
method uses flagged points that are placed on material surfaces and given special treatment in
the algorithm. The surface particles add an extra component of difficulty to the initialization
of the method, as compared to GIMP, but the difficulty is not severe. For geometrically simple
objects such as pressure vessels and beams the surface of the object is clearly defined. And
for complicated domains arising from three-dimensional scan data, surface particles can be
located by placing them halfway between data samples that are “in” and “out”.

A cell subdivision method is developed based on the marching cubes polygonization
algorithm of Lorensen and Cline (46). For a 3D domain, the marching cubes algorithm requires
a cartesian grid of points as input. The value stored at each point may be a simple binary flag
indicating whether the point is inside or outside the object. However, a more sophisticated
version uses the value on each point to represent a signed distance from the surface of the
object, indicating how far the point is located away from the object’s surface.

For WLS, a cartesian grid is already used in parts of the algorithm. A means of imposing
a signed distance on each grid node is developed that makes use of existing least squares
machinery. A flag βp is defined on all particles that is unity for surface particles and is larger
for interior particles; a value of 2 is used. The flag values are integrated to nearby grid nodes:

βi =
∑

p

Sipβp (13)

Based on the values of βi a signed distance di for every node in the grid is estimated as:

di =

{
h βi > 2
−h otherwise

(14)
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A WEIGHTED LEAST SQUARES PIC METHOD FOR SOLID MECHANICS 7

This first estimate is rough but it serves to initialize all nodes as in or out.
The next formula relies on the idea that the surface to be located is always one dimension less

than the domain of the problem. Therefore the positions of surface particles can be integrated
as though they are ordinary particle variables. The formula shown below forms sums over
surface particles only to find an average distance to the surface for each node that has one or
more surface particles within the non-zero region of its weight function.

xsurf
i =

∑
p Sipxsurf

p∑
p Sip

(15)

Note that xsurf
i is only defined on nodes near the surface, and for each such node the following

steps are performed:

1. Define surface normal n at surface position xsurf
i as the gradient of the particle flags:

n =
∑

i

Gi(x
surf
i )βi (16)

2. Signed distance is projection of distance vector onto surface normal:

di = −sign((xsurf
i − xi) · n)||xsurf

i − xi|| (17)

Thus the creation of signed distances for all nodes takes place in two stages. In the first
stage all signed distances are estimated with Equation 14, and in the second stage those nodes
that fall near the surface are given more precise signed distances via Equations 15-17.

3.4. Subdivision of Boundary Cells via Marching Cubes

The integration domain for an object in WLS consists of the sum of the volumes of each full or
partially full cell that is occupied by the object. Cells within the object are completely filled,
cells on the boundary are partially filled, and cells away from the object are empty.

In order to subdivide each cell’s volume in an efficient manner the Marching Cubes algorithm
of Lorensen and Cline (46) is used. The 2D variation of this algorithm is called Marching
Squares. For a 2D cell each of its four nodes may flagged as “in” or “out” based on whether the
node is located within the object or outside of it. Thus there exist 24 = 16 combinations of node
flags, which may be reduced, with symmetric reflections and rotations, to four unique cases
involving triangles, quadrilaterals, or pentagrams; see Figure 2. In 3D there exist 28 = 256
combinations of node flags which reduce to fifteen unique cases. This exhaustive listing of
possible cases of cell subdivision makes the Marching Cubes algorithm speedy and robust.

(a) triangle (b) quad (c) pentagram (d) square (e) not allowed

Figure 2. Subdivided cell regions
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8 WALLSTEDT AND GUILKEY

While it is easy to perform integration over cells that are empty or full, the complex
polyhedra generated by Marching Cubes may have variations of topology that, in general,
cannot be expressed in terms of a single hexahedral or tetrahedral finite element. Although it
may be theoretically possible to compute the correct weights and locations of Gauss points for
a 2D pentagram, for example, such is not generally done. And the task becomes unmanageable
if Gauss points are to be computed for the fifteen different polyhedra in 3D.

In lieu of exact integration, two methods of approximate integration are discussed, and one
of these is ultimately chosen for implementation in WLS.

3.4.1. Multi-point integration over partially-filled cells The cells of the background grid may
be integrated to arbitrarily high order by filling them with the requisite number of Gauss points.
For an interior cell this is guaranteed to exactly integrate a polynomial over the cell. But if
such a cell is subdivided into two regions, only one of which is occupied by the object, then the
integration is no longer exact. However, such a scheme may be considered an approximation.

For example, consider a 2D cell which is populated with 16 Gauss points, and assume that
eleven points are within the object and five are outside of it. The approximation of the integral
over the cell is then found as the sum of all the weight-value products of the Gauss points,
where the value of the “outside” Gauss points is taken to be zero. Another closely related
approximation is to space sixteen sample points evenly throughout the cell, rather than at the
Gauss locations, and set the “outside” points to zero as above. The weight of each “inner”
point is simply one sixteenth of the cell volume. Such approximation schemes obviously lose
their high order.

The multi-point approximate integration scheme is used by Belytschko and coworkers for the
Element Free Galerkin method. In their overview of meshfree methods Belytschko et al. state
that the background grid “strikes many researchers as unacceptably crude, for within a cell,
quadrature is performed over any discontinities and boundaries which do not coincide with the
boundaries of the cells. Our experience so far suggests that the effects are quite minimal (17).”

However, in a broad review of meshfree methods Fries and Matthies (18) are more critical,
claiming that “the integration error which arises from the misalignment of the supports and
the integration domains is often higher than the one which arises from the rational character
of the shape functions.”

3.4.2. Low order integration over cell sub-domains In this approximate integration scheme
the volume of integration is considered to be more important than the order of integration.
The volume of a cell is subdivided into inner and outer portions and a single sample point is
located at the centroid of the inner region.

In a FEM implementation the deformation gradient and stress are computed at Gauss points
based on information interpolated from the nodes of the element. However, in WLS the stress
at Gauss points is found in three stages. First, stress is computed on each particle; second,
functions of average stress in the neighborhood of each node are created at the node (see
Sections 4.1 and 4.3); and third, the stress at Gauss points is interpolated from the stress
functions at the cell nodes (see Equations 21 and 24). This smoothing and averaging process
causes information from several nearby cells to be included at each Gauss point, rather than
information from only the enclosing cell.

One advantage of this approximation is that the centroid is unique for the region so
that ambiguous configurations are disallowed. The uniqueness of the integration point, the
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A WEIGHTED LEAST SQUARES PIC METHOD FOR SOLID MECHANICS 9

stationarity of cell boundaries, and the broad and smooth information used at Gauss points,
together suggest that zero energy modes, such as those occurring with single Gauss point
integration of quadrilateral finite elements, are unlikely to occur. Generally speaking, the
mathematical analogies between FEM, GIMP, and WLS remain tentative due to the major
differences between the methods. Each family of methods must be independently analyzed for
limitations and troublesome modes.

Another advantage of the centroidal approximation is that the value of the integral varies
smoothly as the object boundary passes through the cell. In the multi-point approximation,
Gauss points may abruptly “turn on” or “turn off” as the object surface passes through them.
The single point integration method of this section is used throughout WLS.

3.4.3. Details of Cell Subdivision The signed distance information developed in section 3.3
is used to subdivide cell edge segments and enclose a shape within them. If any two nodes
are on the same edge of a cell they are termed “adjacent”. And if two nodes are adjacent, yet
one of them is in, and the other is out, then it is clear that the surface of the object passes
somewhere between them. Furthermore, the signed distance information is used to approximate
the location on the segment at which the surface crosses. In the following equation two special
node indices are denoted with capital letters: I is the index of the “in” node and O is the index
of the “out” node. For any two adjacent nodes with one “in” and one “out”, the following
expression gives global coordinates for the location at which the material boundary intersects
the cell segment:

xcut = xI − dI
xI − xO

dI − dO
(18)

The cell boundary cut positions xcut are used, together with the “in” node or nodes of the
cell to form the shape indicated by the Marching Cubes scheme. For example, if one node of a
cell is in and the other three nodes are out, then two cut points are created between the “in”
node and its two adjacent nodes. The two cut points plus the “in” node form a triangle, whose
volume and centroid are used for integration.

This integration scheme eliminates the gaps and overlaps of GIMP integration but incurs
the extra inconvenience of initializing surface particles and building a surface. Each WLS cell
that is near a surface is divided into filled and empty portions. This results in a contiguous,
non-overlapping description of the object, although corners tend to be rounded; see Figure 1.

3.5. Surface Conditioning

While the weighted least squares scheme provides excellent results for values and gradients at
nodes with sufficient numbers of particles, there are nodes near object boundaries that may
end up with spurious values due to ill conditioning of the moment matrix. A reliable way of
detecting spurious nodes is described in this section, followed by two remedial procedures.

Some cases of ill-conditioning are easily detected, such as an insufficient number of particles
to form the planar basis (3 particles are required in 2D; 4 in 3D) or a matrix determinant
that is within machine precision of zero. But other spurious nodes may arise that cannot
be detected by these means. A more robust and general method of predicting ill-conditioned
moment matrices is as follows.

For weight function Wi(r) of Equation 4 a particle has greater weight as it gets closer to
the node; therefore the weight function for each contributing particle is a good approximation
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10 WALLSTEDT AND GUILKEY

for a dimensionless radius from the particle to the node; see Figure 3(a) and note how the
weight contours are nearly circular. If all sample particles fall outside a chosen weight, then
remedial procedures are performed. Experience suggests that a trigger weight TW in the range
0.1 < TW < 0.25 will indicate an appropriate amount of extra surface conditioning; the TW
used throughout this paper is 0.12 and an example of predicted spurious nodes is shown in
Figure 3(b).

TW = 0.4
TW = 0.2
TW = 0.1

TW = 0.05
TW = 0.005

Window Node

(a) Trigger Weight

Particles
Good Nodes

Ill Nodes
Window Node

(b) Spurious Nodes

Figure 3. Trigger Weight for Spurious Nodes; (a) is a magnified view of the region near the window
node of (b).

For every spurious node the rank of the moment matrix is reduced. This is accomplished
by replacing Equation 7 with qi(r) = c0. Then the inverse of the moment matrix is formed by
setting all values to zero, except for M−1

xx = 1/Mxx.
For the computation of internal forces, experience shows that moment matrix rank reduction

is insufficient to remedy the effects of spurious nodes, and a more drastic step must be taken.
In these cases the weighted least squares coefficients for internal force at a node are discarded,
and values at the node are found from an average of the 26 nodes that surround it in 3D, or
the 8 nodes that surround it in 2D. This procedure eliminates the influence of spurious nodes
on the gradient of stress.

4. Algorithm Sequence and Discrete Equations

In this section each stage of the WLS time step is described and the least squares, marching
cubes, and matrix conditioning techniques of previous sections are combined to form the
algorithm.

4.1. Current particle density, body force, and stress

From the current particle values of position xp, acceleration due to body forces bp, and
deformation gradient Fp, the Jacobian Jp = det(Fp), density ρp = ρ0/Jp, and body force
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A WEIGHTED LEAST SQUARES PIC METHOD FOR SOLID MECHANICS 11

fext
p = ρpbp are computed.
Stress is computed on each particle from a constitutive equation σp = σ(Fp), which may be

very general due to the Lagrangian formulation.

4.2. Least squares moment matrix and object surface

A least squares moment matrix is formed at each node to be used for subsequent calculations.
Particles that fall within the non-zero region of the weight function of each node contribute to
its matrix; see section 3.2.

Special flagged surface particles are used via the procedure of section 3.3 to determine how
far “in” or “out” of the object each node is located.

4.3. Node values via WLS

The least squares values
o
vi,

o
ρi,

o

fext
i , and

o
σi are computed on the nodes via the weighted least

squares framework of Equation 10, keeping in mind the shorthand of Equations 11 and 12.

4.4. Integrate over full and partial cell volumes

Let q be an index over the quadrature points (one for each non-zero volume cell) and i an
index over nodes. Values of density, body force, and stress are found at each quadrature point
by:

ρq =
∑

i αiSiq
o
ρi∑

i αiSiq
(19)

fext
q =

∑
i αiSiq

o

fext
i∑

i αiSiq
(20)

σq =
∑

i αiSiq
o
σi∑

i αiSiq
(21)

where α is unity if a node’s maxVW > TW and zero otherwise. By using α in this manner
the values on quadrature points are only based on well-conditioned nodes. In practice the
quadrature point values are not stored; they are computed on-the-fly during integration.

The following integrations are performed:

mi =
∑

q

SiqρqVq (22)

fext
i =

∑
q

Siqfext
q Vq (23)

f int
i =

∑
q

σiGiqVq (24)

4.5. Extrapolation

If a node’s maxVW < TW, then the averaging process of Section 3.5 is performed for f int
i only.
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12 WALLSTEDT AND GUILKEY

4.6. Equations of motion

All necessary data are now collected on the grid and the equation of motion can be solved
and particle variables updated. The grid velocity is found directly via weighted least squares:
vi =

o
vi.

The equation of momentum is solved on the grid by:

ai =
f int
i + fext

i

ρi
(25)

4.7. Time update

The time update is a centered-difference scheme commonly used in FEM. Grid acceleration is
used to update grid velocity:

vn+ 1
2

i = vn− 1
2

i + ai∆t (26)

Acceleration is interpolated back to particles and used to update particle velocity:

vn+ 1
2

p = vn− 1
2

p +
∑

i

Sipai∆t (27)

Position is updated by interpolated grid velocity, not by current particle velocity. This at
first seems unnecessary but is done to ensure that particles at the same point in space have
the same velocity:

xn+1
p = xn

p +
∑

i

Sipv
n+ 1

2
i ∆t (28)

The gradient of velocity is calculated on each particle and used to update the deformation
gradient:

∇vn+ 1
2

p =
∑

i

Gipv
n+ 1

2
i (29)

Fn+1
p = Fn

p +∇vn+ 1
2

p Fn
p∆t (30)

The centered-difference update scheme requires that velocity be initialized to a negative half
time step. Velocities at the −1/2 time step are sometimes available, but for typical simulations
they may be impossible to find. Instead, the approach used in this paper is to multiply the grid
acceleration values of Equation 25 by 1/2 for the first time step only. This propagates the 1/2
through the algorithm and corrects the first order error that would otherwise be incurred.

5. Example Problems

A neo-Hookean constitutive model (45) is used for the example problems of this section. The
strain energy function is:

Ψ(F) =
1
2
λ(lnJ)2 − µ lnJ +

1
2
µ
(
trace

(
FT F

)
− 2
)

(31)

where µ and λ are standard Lamé constants. Then the stress in the current configuration is
defined to be:

σ =
λ lnJ

J
I +

µ

J

(
FFT − I

)
(32)
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A WEIGHTED LEAST SQUARES PIC METHOD FOR SOLID MECHANICS 13

For the sake of stability a time step size is chosen to ensure that information cannot travel
more than a characteristic distance in a single time step. However, the integration regions
produced from cell subdivision cannot be used as a characteristic distance because several
of them are guaranteed to be very small at any time within the problem. Experience has
consistently shown that the cell size of the background grid represents a reliable characteristic
distance, which is confirmed by the temporal convergence measurements of the first example
to follow.

The maximum wave speed for a 3D isotropic elastic solid is defined as:

vmax =

√
λ + 3µ

ρ
, (33)

Note that vmax approaches infinity as Poisson’s ratio approaches 1/2.
An adaptive time step size may be set throughout the simulation by:

∆t(x, t) = CFL
min(h)

vmax + max(|vp|)
(34)

where 0 < CFL < 1; see Figure 6(b).
A nominal time step size may be chosen at the beginning of the simulation by assuming

that material properties are constant in space and time, that object velocities are well below
wave speeds, and that Poisson’s ratio is close to zero:

∆t0 = CFL
min(h)√

E/ρ
(35)

where E is Young’s modulus.
For comparison purposes an explicit non-linear FEM code based on linear triangles with

single Gauss point integration is constructed according to typical designs; see, for example,
the text of Belytschko, Liu, and Moran (45). The discrete equations are listed in Appendix A.

5.1. Oscillating Ring

In previous work (31) a manufactured solution is developed for a dynamic ring made of a
neo-Hookean material. The full development of the solution is not repeated here but its key
element is the radial displacement of a ring as a function of time and position:

u(R) = Acos(cπt)
(
c1R + c2R

2 + c3R
3
)

(36)

where

c1 =
−6RI

RO(RO − 3RI)
, c2 =

3(RO + RI)
R2

O(RO − 3RI)
, c3 =

−2
R2

O(RO − 3RI)
, (37)

A is a user-specified amplification factor, c =
√

E/ρ, t is time, R is radius in the reference
configuration, RI is the inner ring radius and RO is the outer ring radius. The manufactured
solution is used to measure the accuracy properties of the WLS method described in this work
in comparison to an existing algorithm, GIMP, and to a FEM code.

For PIC methods there is some freedom in the way in which particles are arranged within
the cell structure. The GIMP method typically works best when particles are arranged in a
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14 WALLSTEDT AND GUILKEY

cartesian manner, because gaps and overlaps between particles are minimized. The cartesian
arrangement of particles is used to discretize the ring for GIMP; see Figure 4(a).

In contrast to GIMP, the “particles” of WLS do not represent volume in the algorithm;
they can be treated as sample points only. Therefore it has been found that performance is
improved by using a body-fitted arrangement of particles such as shown in Figure 4(b). For

(a) Cartesian particle place-
ment used with GIMP

(b) Radial particle placement
used with WLS

Figure 4. Alternate Particle Arrangements

the results that follow, the arrangement of particles is chosen that produces the best accuracy
for each method.

Error is measured on particles as the magnitude of the difference between computed and
exact displacement:

δp = ||(xp −Xp)− uexact(Xp, t)||. (38)

The manufactured solution is always smooth in space and time, therefore a strict definition of
error may be used: the maximum error from all particles and all time steps L∞ = max(δp).
This definition demands that error over all particles be reduced for a problem to be considered
more accurate, instead of merely reducing error for a majority of the particles.

The Poisson’s ratio used for the ring must be zero, else the manufactured solution cannot
be expressed in a closed form. In 2D the number of particles per cell is four with the cartesian
arrangement, and approximately four in the radial particle arrangement. Young’s modulus is
10000, initial density is one, and the amplication factor is 0.1. The ring’s initial outer radius
is one and initial inner radius is 0.5. The CFL is 0.4, except for the measurements of temporal
convergence. Representative plots of the time history are shown in Figure 5.

Results for temporal and spatial convergence of WLS are presented in Figure 6 in comparison
to FEM and GIMP. Temporal convergence measurements are made using the nominal time
step size of Equation 35.

For this problem WLS is an improvement over GIMP. The method behaves in a second
order manner for coarser meshes, in contrast to the first-order (at best) behavior of GIMP.
This suggests that the method is suitable for use with geometrically simple objects such as
pressure vessels and beams for which the accuracy of FEM is customarily expected.

5.2. Single Disk Impact

Although a contact model is not developed in this paper, the problems for which GIMP
and WLS may be used frequently involve contact, impact, and inter-penetration scenarios
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(a) time = 0ms (b) time = 5ms
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Figure 5. Radial (top) and Hoop (right) stress (Pa) for oscillating ring
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Figure 6. Convergence for the Oscillating Ring

where energy conservation is a high priority. This aspect of the algorithm is assessed via the
frictionless impact of a disk against a wall as shown in Figure 7.

The Poisson’s ratio is 0.3, the number of particles per cell is about four, and Young’s modulus
and initial density are both 1000. The disk is 0.4 units in diameter and is initially located within
a unit square of 48x48 cells at (0.3,0.3). The disk has initial particle velocities of (0.2,-0.2) with
CFL = 0.4.

This system is modeled with WLS and GIMP and the strain and kinetic energies are plotted
in Figure 8 as a function of the time.

It can be seen that energy is handled correctly in WLS. The transfer of energy from kinetic
to strain, then back again, occurs smoothly and without significant fluctuation or instability.
The corresponding energy plot is also shown for GIMP which displays the same desirable
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16 WALLSTEDT AND GUILKEY

(a) time = 0s (b) time = 2s
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(c) time = 3s

Figure 7. Strain Energy per volume for single disk
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(b) GIMP

Figure 8. Energy for single-disk impact

trends.
For multi-body impact it should be straightforward to implement contact in the manner

commonly used for GIMP, where a separate computational grid is created for each object, and
the contact is handled with a method such as that described by Bardenhagen (40).

5.3. Dynamic Hole in Plate

A square plate with a circular hole is suddenly subjected to a body force in the horizontal
direction. The body force is modeled with a force vector (5 × 106X,0) in the reference
configuration that increases with X-position but remains constant in time. The solution
involves a large deformation, dynamic simulation with a neo-Hookean constitutive model;
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A WEIGHTED LEAST SQUARES PIC METHOD FOR SOLID MECHANICS 17

therefore no exact answer is available. The Poisson’s ratio is 0.3, the number of particles per
cell is about four, Young’s modulus is 210 × 109, and initial density is 7850. The plate is one
unit high and wide and the hole radius is 0.5. The CFL is 0.4. The progression of the simulation
is shown in Figure 9.

(a) time = 0µs (b) time = 464µs

 0
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 80
 100
 120
 140

(c) time = 696µs

Figure 9. Von Mises stress (GPa) of plate with hole

In order to compare WLS to GIMP and FEM, a critical area of the problem - the surface
of the hole - is examined. For the sake of stress analysis it must be found what values of stress
develop on the hole’s surface so a determination can be made about whether the plate is strong
enough to withstand the forces on it.

In Figure 10 the particles or FEM Gauss points that are initially located within a distance
of 0.35h from the hole surface, where h is the WLS cell size, are compared for FEM, WLS and
GIMP. The Von Mises stress is plotted with respect to the angle along the hole surface. The
angle of the bottom face of the bar is zero, and the angle of the left face is π/2.
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Figure 10. Comparison of Von Mises stress (GPa) at hole surface

The results displayed in the figure suggest that WLS is able to provide a surface stress which
is nearly as accurate as FEM. But GIMP shows some difficulty in predicting surface stress, and
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18 WALLSTEDT AND GUILKEY

the GIMP result has more scatter. While it would be difficult to determine a reliable failure
point for the surface of the hole using GIMP, the WLS result reflects realistic stresses at the
hole’s surface.

6. Discussion

The WLS method introduced in this paper achieves the objective of improving the accuracy
of solid mechanics simulations that are performed within a PIC framework. The method takes
advantage of the concepts of weighted least squares surface estimation and implicit surface
definition to more precisely define the region of integration. The method is motivated by two
general requirements. It needs to provide the accuracy of finite elements, which are well-known
and are trusted for predictive results. And it needs to be as easy to initialize as other PIC
methods, while avoiding nearest neighbor searches and handling contact and inter-penetration
scenarios with ease. The method of this paper represents a compromise between the demands
of these two families of methods and affords several benefits of both.

The method achieves accuracy that is significantly better than GIMP, but somewhat less
than FEM. Its PIC form allows it to be used within an existing MPM/GIMP implementation
while avoiding nearest neighbor searches. However, the complexity of implementation and
initialization are both greater than required for MPM/GIMP. In addition to the programming
effort required for GIMP, WLS also requires implementation of least squares and marching
cubes routines. Problems are initialized with the interior particles of GIMP, but also require
surface particles, which may be calculated from three-dimensional image data with additional
effort.

The PIC structure of the method allows it to be used side-by-side with GIMP in space or
time to provide additional accuracy for certain objects. The interior particles of WLS may be
located at the same positions as GIMP particles and have the same initial volumes; surface
particles have zero volume. This enables a one-way transfer of algorithm from WLS to GIMP if
a problem begins to display behaviors for which WLS is ill-suited, such as rupture of a surface.
For example, an over-pressurized tank can be modeled up until its point of rupture with
WLS, then GIMP may assume control of the solution using the same particles and continue
simulation of the disintegration of the tank.

7. Appendix A: Discrete equations for the comparison finite element code

An explicit non-linear FEM code based on linear triangles with single Gauss point integration
is constructed following the text of Belytschko, Liu, and Moran (45). The discrete momentum
equation at each node i is

ai = f int
i /Mi + b(Xi, t) (39)

Mass lumping is defined from the reference configuration as

Mi =
1
3
ρ0
∑

e

A0
e (40)
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where the index e loops over the elements surrounding node i. The internal forces are

f int
i = −

∑
e

σ(Fe)∇φe(xi) (41)

where the deformation gradient on each element is

Fe =

(
I−

3∑
i

ui∇φe(xi)

)−1

(42)

The updates of nodal velocity and position are

vn+1/2
i = vn−1/2

i + an
i ∆t (43)

xn+1
i = xn

i + vn+1/2
i ∆t (44)
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