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Abstract   The standard velocity projection scheme for the 

Material Point Method (MPM) and a typical form of the 

GIMP Method are examined.  It is demonstrated that the 

fidelity of information transfer from a particle representation 

to the computational grid is strongly dependent on particle 

density and location. In addition, use of non-uniform grids 

and even non-uniform particle sizes are shown to introduce 

error.  An enhancement to the projection operation is 

developed which makes use of already available velocity 

gradient information.  This enhancement facilitates exact 

projection of linear functions and reduces the dependence of 

projection accuracy on particle location and density for non-

linear functions.  The efficacy of this formulation for 

reducing error is demonstrated in solid mechanics 

simulations in one and two dimensions. 

keywords:  Material Point Method, MPM, PIC, GIMP, 

meshless methods. 

1 Introduction 

Continual increases in computational power have enabled 

simulations of increasingly complex physical systems.  

Meshless and quasi-meshless methods often provide 

acceptable solutions for problems where the venerable Finite 

Element Method (FEM) fails due to pathologies associated 

with the mesh.  The Material Point Method (MPM) [Sulsky, 

Chen and Schreyer (1994); Sulsky, Zhou and Schreyer 

(1995)] is one such quasi-meshless method.  MPM may be 

considered a Particle-In-Cell (PIC) method that has been 

extended for use in solid mechanics. 

MPM has advantages in modeling geometrically complex 

domains such as those found in biological systems [Guilkey, 

Hoying, Weiss (2005)], as well as scenarios involving large 

deformations [Brydon, Bardenhagen, Miller, Seidler (2005)], 

contact [Bardenhagen, Guilkey, Roessig, Brackbill, Witzel, 

Foster (2001)], fracture [Guo and Nairn (2004)], molecular 

dynamics [Ma, Lu, Wang, Roy, Hornung, Wissink, 

Komanduri (2005); Ma, Liu, Lu, Komanduri (2006a); Ma, 

Liu, Komanduri (2006b); Ma, Lu, Wang, Roy, Hornung, 

Wissink, Komanduri (2006c)], and delamination [Shen, L.; 

Chen, Z.; (2005)].  MPM is relatively easy to parallelize 

because of its use of a Cartesian background grid, or 

“scratchpad”, which eliminates neighbor searches and 

provides for straightforward domain decomposition.  In 

addition, it has been integrated with a compressible CFD 

solver to model fluid-structure interactions in the simulations 

of exploding containers [Parker, Guilkey, Harman (2005)]. 

Several researchers have strengthened and extended the 

mathematical underpinnings of MPM in areas such as 

conservation [Bardenhagen (2002), Love and Sulsky (2006)] 

and completeness [Bardenhagen (2006)].  Others have made 

algorithmic improvements including implicit time integration 

[Guilkey and Weiss (2003); Burgess, Sulsky, and Brackbill 

(1992); Love and Sulsky (2006)] and the aforementioned 

contributions to contact and fracture. 

Bardenhagen and Kober (2004) revisited the formulation of 

MPM by recognizing that the transfer of information between 

particles and grid is best represented as the inner product of 

grid and particle functions.  A finite sized particle was 

developed whose volume can be split among the cells that it 

overlaps, thus providing C
1
 differentiability, which in turn 

reduces the deleterious effects of cell face crossing.  

Furthermore, their work provides a framework for future 

accuracy improvements and error estimation.  This 

framework is generically known as the Generalized 

Interpolation Material Point Method, or GIMP.  Some of the 

advantages of GIMP over traditional MPM, beyond those 

previously reported, will be demonstrated here. 

Along with particular advantages, MPM has some notable 

limitations.  One of these regards the transfer of data from 

particles to the computational scratchpad.  Here we 

demonstrate that the degree to which information is 

preserved in this operation is strongly dependent on particle 

density (number of particles per computational cell) and 

location.  In what follows, this is first demonstrated via 

simple examples, after which a systematic means for 

measuring this error is introduced.  Current observations are 

placed in the context of previous work in this area, after 

which a solution to this problem is proposed and 
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demonstrated.  Other sources of error, such as those due to 

time integration and particle cell-crossing, are not considered 

here. 

 

2 Motivation 

A full description of the MPM algorithm can be found in the 

references cited in the introduction.  In the interest of brevity, 

we forego such a description here, and concentrate on new 

findings.  

The Material Point Method (MPM) features a fixed Eulerian 

grid within which particles are free to move.  The 100 

particles in each panel of Figure 1 may start in idealized 

locations relative to the grid (left), or they could be less 

ideally located as depicted in the radial pattern (right).  The 

radial particle pattern is non-random and includes a nearly 

even spacing between particles.  Yet the fortunate effects of 

symmetry and central differencing that apply to the ideal 

pattern will not apply to the radial pattern.  Standard MPM 

codes produce much less accurate answers for the radial 

pattern than for the ideal.  And of course, even if the initial 

particle distribution is ideal, as simulations evolve, the 

particles will generally move into a less favorable 

configuration. 

    

Figure 1: Ideal Versus General Particle Positions 

Spatial error of individual MPM steps can be studied 

independently by measuring the accuracy with which each of 

the particle-grid interaction steps performs.  Grid-to-particle 

operators behave as expected, with the properties of the 

interpolation function that is used. However, the transfer of 

information from particles to grid is a distinct operation with 

less obvious characteristics. 

Field quantities on the MPM grid are found through a mass-

weighted least squares procedure.  For example, velocity 

projection is given by: 

∑

∑
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where vi is the nodal velocity, vp is the particle velocity, mp is 

the particle mass and Sip  is the trial (or “shape”) function. 

A brief aside is in order at this point.  Throughout this paper 

we refer to “MPM” and “GIMP”, even though MPM can be 

considered a specific version of GIMP methods.  GIMP 

refers to a class of methods for which one can make a choice 

of the grid trial function that is used, as well as the particle 

characteristic function.  Throughout this work, the bilinear 

“tent” function is used as the grid trial function.  When the 

particle characteristic function is chosen to be a Dirac delta 

function, MPM is the resulting method.  When the particle 

characteristic function is the constant “top hat” function, the 

resulting form is called “contiguous particle GIMP” 

[Bardenhagen and Kober, (2004)].  This is the form used 

here, and it will be generically referred to as GIMP.  This 

form of GIMP can be conveniently expressed in terms of a 

change in grid trial function.  The MPM and (effective) 

GIMP trial functions are shown in Figure 2.  The effective 

GIMP trial function is shown assuming a particle width equal 

to half that of a computational cell. 
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Figure 2: Trial Functions for MPM and GIMP 

Although MPM uses bilinear trial functions and GIMP uses a 

more complex C
1
 trial function, neither system is able to 

provide an exact projection of a linear velocity field for 

arbitrary particle positions.  This is demonstrated by 

examples in Figure 3 where four arrangements of particles 

are shown in which the projection of the linear velocity 

function v(x) = mx + b is performed, with the error incurred 

for each.  The errors reported in each panel are for bilinear 

functions, but are non-zero for GIMP as well.  The dashed 

line indicates the correct value for velocity, while the 

diamond symbols indicate the values of the nodal velocities 

computed using Eq. 2.1. 
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Figure 3: Velocity Projection Error for Degenerate Cases 

Inspection of the upper right panel reveals that the error is 

zero for perfectly centered particles.  In all of these cases, 

cancellation of error occurs due to symmetry.  This symmetry 

is lost in each of the cases depicted above.  This has negative 

implications for solutions involving non-uniform meshes, 

non-uniform particle sizes, and arbitrary particle positions. 

Mathematical models that are well-regarded in the scientific 

community include some kind of specific and rigorous 

estimation of error.  For PIC methods, to which MPM is 

closely related, the following relation for the upper bound of 

error of the projection of charge density, ρ, was developed by 

V. A. Vshivkov: 
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where h is the grid spacing and PPC is the ratio of the global 

number of particles to the global number of cells.  It is found 

in subsequent sections that error measurements for MPM fit 

within the form of this equation – that is to say, a sum of two 

terms which can act independently and which must both be 

driven toward zero. 

3 Velocity Projection Error 

Here, the error due to the projection of velocity as given by 

Eq. 2.1 is studied and an approach by which this error may be 

reduced is proposed.  While Eq 2.2 provides guidance to this 

investigation, there is much about the structure of the error 

that it does not reveal.  To learn more, a number of numerical 

experiments are performed on carefully chosen special cases 

and guidelines are inferred based on analysis of those results. 

The error due to velocity projection can be measured by 

prescribing velocity on the particles according to a linear, 

quadratic, or other function.  In this context, the error is 

defined as the difference between velocity on each grid node 

and velocity from the known function evaluated at the nodal 

position.  For a linear function v(x) = 1 + x the velocity on 

each particle is assigned as vp(x) = v(xp), the mass of each 

particle is the same, and the velocity at each grid node is 

found by equation 2.1.  Then the error is defined as: 
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Arbitrary particle position is simulated in 1D by a so-called  

“squeeze test” wherein successively increasing integer 

numbers of particles are packed into the same grid and the 

error is measured for each arrangement (Figure 4).  A global 

particles-per-cell ratio is thus defined for each set of grid and 

particles: 

cells of number total

particles of number total
PPC =  (3.2) 

 

 

 

Figure 4: Global Particles-Per-Cell Ratio 

Using a 1D grid with 100 cells, and starting at PPC=.5, one 

particle at a time is added, and the error computed for each 

arrangement, up to PPC=10 (1000 particles in all).  This 

series of tests is carried out for both the MPM and the GIMP 

trial functions.  The error from this series of tests is shown in 

Figure 5. 

 

 

Figure 5: Velocity Projection Error - Linear 

Significant error is found even for the projection of a simple 

linear function v(x) = 1 + x, except at integer (and half 

integer) values of PPC. While the error does not decrease 

monotonically with increasing PPC, the values of the local 

maxima display a downward trend.  The GIMP trial functions 

perform better in general and the values of the local maxima 

converge as PPC
-3

 (solid line) while the bilinear trial 

functions converge as PPC
-2

 (dashed line). 

When a quadratic velocity function, v(x)=(1+x)
2
, is 

prescribed on the particles, the error shows somewhat 

different behavior. Local error maxima are observed in 

Figure 6 as well, but here they descend to a plateau.  No 

arrangements of particles report zero error, which is no 

surprise considering the use of bilinear trial functions.  But it 

is initially curious that further increase in PPC produces no 

decrease in error.  The GIMP trial functions descend to the 

plateau more quickly and more nearly monotonically, but the 

use of GIMP does not reduce the level of the plateau. 

 

PPC = 4/7 =0.57 

PPC = 8/7 =1.14 
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Figure 6: Velocity Projection Error - Quadratic 

The existence of the plateau in Figure 6 can be attributed to 

the fact that, regardless of how many particles are used, 

ultimately, all of the information is transferred to the two 

nodes (in 1D) that bound each cell.  This is akin to 

trapezoidal integration, which is known to only be capable of 

exactly integrating a linear function. 

Relating observed error in MPM to the analytical expression 

for PIC given by Equation (2.2), it is clear that the plateau in 

error remains after reducing the left term to zero (by making 

PPC large) without altering the right term.  The right term, 

and the associated plateau, could be reduced independently 

by fixing PPC and reducing grid cell size, indicating that 

both grid resolution and particle density are important to 

accuracy.  An example of this is shown in Section 5. 

4 Gradient Enhancement 

A method has been developed that uses the velocity gradient 

information that is already available (for the calculation of 

rate of deformation) within the MPM algorithm to improve 

the accuracy of the projection, including the exact projection 

of linear functions.  Within this method, each particle acts as 

though it is the only particle within a cell and assumes that it 

must exactly project a linear function of velocity.  Let each 

particle carry velocity pv  and velocity gradient ∂vp/∂x.  

Particle p uses this information to suggest an extrapolated 

nodal velocity v
e
 for each node to which it would ordinarily 

contribute.  Conceptually, these suggestions form a table in 

which the extrapolation of velocity on particle p to node i is 

referred to as e
ip

v . 

)xx(
x

v
vv ip
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e
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−
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Each row of the extrapolation table contains 2 entries for the 

1D tent functions, 3 entries for the 1D GIMP functions, 4 

entries for the 2D tent functions or 9 entries for the 2D GIMP 

functions, and so on.  The scheme continues to conserve 

momentum if ipip Sxx Σ= , i.e., for isoparametric trial 

functions.  The table of extrapolated velocities is not stored 

in practice; rather each entry is computed on-the-fly.  The 

original velocity projection (Eq. 2.1) is modified to use the 

extrapolated velocities: 
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A visual representation of the change that occurs due to use 

of the extrapolated e
ip

v  is given in Figure 7.  The original vp 

values are extended straight to the nodes (solid lines) and 

weighted according to the particles’ locations.  The 

extrapolated e
ip

v  extend to the nodes differently (dashed 

lines) and are also weighted by the particles’ locations. 

 

Figure 7: Extrapolated velocities 

Multi-dimensional forms of gradient-enhanced particles can 

be developed in an analogous manner.  The 2D equations are 

written here as: 
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where u and v are the x and y components of velocity, 

respectively.  These provide the extrapolated nodal velocities 

based on information from each particle.  The extrapolated 

velocity components can then be used in Eq. 4.2 to compute 

nodal velocities. 
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5  Results 

5.1    1D Velocity Projection 

Projection error is measured again using the gradient 

enhanced bilinear and GIMP trial functions and it is found 

that a linear function is projected exactly for any particle 

distribution; see Figure 8. 

 

 

Figure 8: Gradient Enhanced Projection for Linear 

Function 

Improved behavior is seen for higher-order functions as well 

where the grid refinement plateau is reached for very low 

PPC ratios.  The data from Figure 6 are re-plotted along with 

errors measured when using the gradient enhanced particles 

in Figure 9.  The low PPC value at which the plateau is 

reached has desirable implications for reducing 

computational effort required to reach a particular level of 

accuracy. 

 

 

Figure 9: Gradient Enhanced Projection for Quadratic 

Function 

To demonstrate the dependence of error on mesh refinement, 

the error is shown in Figure 10 for three meshes of different 

resolutions for Gradient-Enhanced GIMP. 

 

Figure 10: Dependence of Projection Error on Mesh Size 

using Gradient Enhancement 

5.2    1D MPM Simulations 

The benefit of using gradient enhancement is further 

explored with complete solutions using a 1D MPM code 

initialized with the non-ideal particle positions suggested by 

the “squeeze” test of Section 3. 

A linear elastic bar moving with uniform initial velocity vo 

has one end suddenly brought to rest at time zero.  The MPM 

solution is compared to an exact solution of the wave 

equation  

xxtt u)/E(u ρ=  (5.1) 

where 0t v)0,x(u =  and 0)t,0(u = . Density = area = bar 

length L = 1.  CFL = kc/h = 0.1 where k is the time step, c is 

the wave speed ρE , h is the cell size 1/40, and Young’s 

Modulus E = 10000.  The period and amplitude of the tip 

displacement are 4L/c and v0L/c, respectively, where v0 = 1. 

The exact solution for the displacement forms a series of 

clipped “saw-tooth” patterns.  Figure 11 shows the exact and 

numerical solutions at four locations along the bar. 
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Figure 11: Bar Displacement History 
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The maximum relative error is retained for every particle at 

every time step and is reported as the error for the solution: 


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The simulation is run for a range of global PPC values and 

the resulting pattern of error is plotted in Figure 12.  The 

initial velocity is chosen such that the maximum deformation 

of the bar is one percent of its initial length, resulting in a 

solution which is beyond infinitesimal yet which still largely 

agrees with the linear solution.  This provokes significant cell 

crossing of particles causing a few of the bilinear solutions to 

“crash” but GIMP handles the cell crossing without problem. 

 

 

Figure 12: 1D Solution Accuracy with Increasing PPC 

The power of the GIMP trial functions is made clear with this 

plot as they provide much more accuracy in the small PPC 

region and better reliability and consistency regardless of 

PPC. 

Good accuracy for low PPC ratios is important to keep MPM 

competitive in terms of computational expense. Generally 

speaking, the computational cost is roughly proportional to 

the number of particles used, while the overall accuracy 

depends largely on grid resolution.  Thus, the typical user of 

MPM cannot afford to use 100 or even 10 particles per cell in 

each dimension. 

Figure 12 omits solutions that use gradient enhancement with 

bilinear trial functions.  This is because they are 

pathologically unstable.  In reality the gradient enhancement 

technique works only if good quality gradients are provided.  

Poor estimates of the gradient may cause the solution to be 

worse with gradient enhancement than without it.  GIMP is 

superior to bilinear trial functions for providing reliably good 

gradients. 

Gradients of velocity are already present within the MPM 

algorithm; they are calculated in order to update strain and 

volume.  Instead of being discarded at the end of a cycle, the 

gradients can be saved and used as input for the next cycle at 

a very modest computational cost.  In this case gradient 

enhancement is able to reliably reduce error by about forty 

percent when used within the GIMP trial functions.   

Spatial convergence for the “saw-tooth” problem is only first 

order due to the sharp edges in the displacement and velocity 

fields.  Second order convergence can be obtained by solving 

the wave equation (4.1) for a smooth initial displacement 

u(x) = Asin(πx) for 0 < x < 1 and boundary conditions 

u(0,t)=0, u(1,t) = 0 which has the known solution u(x,t) = 

Asin(πx)cos(cπt) where A = 0.01.  The initial PPC ratio is 2, 

CFL = 0.2, and the time duration is a quarter period.  Figure 

13 depicts the spatial convergence with and without the use 

of gradient enhanced particles. 
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Figure 13: 1D Improvement due to Gradient 

Enhancement 

5.3 2D MPM Simulations 

Werner Soedel (2004) describes an exact solution for linear 

elastic in-plane plate vibration that is used to measure spatial 

convergence in 2D.  For a full description of the problem and 

its exact solution the reader is urged to consult Soedel but 

briefly put, particles in a square domain are initially at 

positions shown in Figure 14 (left) and are released at time 

zero, after which they oscillate between the initial positions 

and those shown in the panel on the right.  The displacements 

in the figure are exaggerated; the initial maximum 

displacement used in calculations was 0.004.  Plate width, 

length, and height = 1; Young’s Modulus = 1000; density = 

1; Poisson’s ratio = 0.3; PPC = 4.  Velocity boundary 

conditions are set on the sides of the domain such that 

particles can move normal to the side, but not tangentially. 
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Figure 14: In-plane Vibration - Initial and Final Solutions 

This problem is used to measure convergence in a 2D MPM 

code.  Particles are initially positioned in an ideal Cartesian 

manner and the mesh is refined, keeping the PPC constant.  

A single maximum relative error is found for a particular 

solution and plotted versus the mesh size h in Figure 15. 
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Figure 15: 2D Improvement due to Gradient 

Enhancement 

Convergence for the bilinear case is unreliable, particular 

once particle cell crossings become frequent.  GIMP 

maintains convergence to a higher level of resolution.  The 

use of gradient enhanced particles maintains the same 

convergence characteristics, but at a lower overall error. Two 

reasons for the tail off in convergence are suspected.  First, 

the 0.4% initial displacement simulation may depart from the 

conditions under which the infinitesimal exact solution is 

valid.  This is also true for the example in Figure 13.  

Secondly, the vast improvement of GIMP over bilinear trial 

functions (see Figure 12) is slightly degraded in multiple 

dimensions.  GIMP relies on exact tiling of space, which is 

significantly harder (bordering on intractable) for multiple 

dimensional simulations. An approximation that might 

improve this result by tracking particle corners is described 

by Ma, Lu, and Komanduri (2006), but was not implemented 

here.  Despite this limitation the GIMP trial functions 

continue to perform better in multiple dimensions than the 

bilinear functions. 

6 Conclusions 

A systematic investigation into the accuracy properties of the 

projection of particle field data to a computational grid has 

been carried out for both bilinear and (effective) GIMP trial 

functions.  It was demonstrated that the accuracy of this 

process is strongly dependent on particle density and 

location, as well as the resolution of the grid.  Projection 

error in MPM shows characteristics similar to PIC.  The error 

trends observed indicate a sum of two error terms; one 

dependent on the number of particles per cell, and one 

dependent on cell size.  Improvement in accuracy requires 

driving both terms toward zero. 

Velocity projection can be improved via re-use of existing 

gradient information at minimal cost.  However, good 

gradients are required as input; indeed, the gradient 

enhancement can destabilize a solution if the input gradients 

are poor.  Generally, the gradients provided by bilinear trial 

functions are not of sufficient quality to be of use. 

Fortunately, the use of GIMP trial functions provides 

gradients that are of high enough quality to result in a 

roughly 40% improvement in solution accuracy for each of 

the 3 cases investigated here. 

The GIMP method is commonly understood to be a solution 

to the problem of particle cell-crossing.  Here it was 

demonstrated that it is also considerably more accurate for 

field projection, particularly when used with the additional 

gradient information. GIMP also improved the accuracy and 

stability characteristics of full mechanics simulations as well. 
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