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Abstract

Computational modeling of the mechanics of cells and multicellular constructs with standard numerical discretization techniques

such as the finite element (FE) method is complicated by the complex geometry, material properties and boundary conditions that

are associated with such systems. The objectives of this research were to apply the material point method (MPM), a meshless

method, to the modeling of vascularized constructs by adapting the algorithm to accurately handle quasi-static, large deformation

mechanics, and to apply the modified MPM algorithm to large-scale simulations using a discretization that was obtained directly

from volumetric confocal image data. The standard implicit time integration algorithm for MPM was modified to allow the

background computational grid to remain fixed with respect to the spatial distribution of material points during the analysis. This

algorithm was used to simulate the 3D mechanics of a vascularized scaffold under tension, consisting of growing microvascular

fragments embedded in a collagen gel, by discretizing the construct with over 13.6 million material points. Baseline 3D simulations

demonstrated that the modified MPM algorithm was both more accurate and more robust than the standard MPM algorithm.

Scaling studies demonstrated the ability of the parallel code to scale to 200 processors. Optimal discretization was established for the

simulations of the mechanics of vascularized scaffolds by examining stress distributions and reaction forces. Sensitivity studies

demonstrated that the reaction force during simulated extension was highly sensitive to the modulus of the microvessels, despite the

fact that they comprised only 10.4% of the volume of the total sample. In contrast, the reaction force was relatively insensitive to the

effective Poisson’s ratio of the entire sample. These results suggest that the MPM simulations could form the basis for estimating the

modulus of the embedded microvessels through a parameter estimation scheme. Because of the generality and robustness of the

modified MPM algorithm, the relative ease of generating spatial discretizations from volumetric image data, and the ability of the

parallel computational implementation to scale to large processor counts, it is anticipated that this modeling approach may be

extended to many other applications, including the analysis of other multicellular constructs and investigations of cell mechanics.

r 2005 Elsevier Ltd. All rights reserved.
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UN1. Introduction

Cells exhibit a wide range of responses to mechanical
conditioning, including modification of the extracellular
63
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matrix (ECM) and alterations in cell adhesion and
cytoskeletal tension. Thus, the effects of globally applied
mechanical loads on local cell stresses and strains are a
topic of considerable interest in mechanobiology
(Brown, 2000). Globally applied mechanical loading
can result in highly inhomogeneous stress and strain
fields around cells (Guilak et al., 1999; Wu and Herzog,
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2000). Explicit microscale geometric and material
representations are needed to calculate the local state
of stress that results from globally applied strains and/or
forces.

Nearly all studies of the mechanics of cells have used
the finite element (FE) method to discretize the
governing equations of motion. Although some of the
earliest reports of computational modeling of the
mechanics of cells date back as far as 15 years (Cheng,
1987), most of the literature is relatively recent.
Applications have included the study of leukocyte
deformation (Dong and Skalak, 1992), cell–tissue
interactions (Barocas and Tranquillo, 1997), intracellu-
lar/extracellular fluid flow (Lei et al., 1999), chondrocyte
interaction with the pericellular matrix (Wu and Herzog,
2000) and micropipette aspiration (Drury and Dembo,
2001; Shao, 2002). Material parameter estimation with
the FE method has been applied at the cellular and
subcellular levels to determine material properties of the
cell nucleus (Caille et al., 2002) and cochlear outer hair
cells (Spector et al., 2002).

The main difficulty with application of the FE method
to simulations of the mechanics of cells and cellular
constructs is the representation of the highly complex
geometry by an unstructured mesh (Breuls et al., 2002).
Although geometric information can be obtained from
one of a variety of imaging techniques, the process of
converting this image data to a suitable unstructured
mesh is a time consuming process that requires
sophisticated software to first extract iso-surfaces and
then generate a robust mesh within each region.
Automation of the FE mesh generation process is
notoriously difficult and a significant portion of analysis
time is spent simply on mesh generation.

Additional complications arise when considering the
use of FE methods to study cellular constructs.
Examples of cellular constructs include three-dimen-
sional cell cultures (Baer et al., 2001; Cacou et al., 2000;
Fournier and Doillon, 1992; Korff and Augustin, 1999;
Prajapati et al., 2000; Wakatsuki et al., 2000) and tissue
cultures (Seliktar et al., 2000; Shepherd et al., 2004; Zhu
et al., 2000). For example, mesh generation for the
simulation of the mechanics of cells embedded in a real
or surrogate ECM material is especially difficult, since
ideally FE meshes should be compatible at material
interfaces. The representation of interface conditions
such as sliding contact between materials is difficult,
since explicit boundaries of the materials or structures
must be defined for FE contact algorithms. Also, the FE
method can suffer from issues of mesh entanglement
(i.e., element inversion) when local stresses/strains are
extremely large. This type of localization is to be
expected at the interface between highly deformable
materials with different material properties. These
difficulties make the use of the FE method for modeling
ED P
ROOF

cellular constructs difficult at best, and often completely
infeasible.

Meshless methods (e.g., (Belytschko et al., 1996a; Li
and Liu, 2002)) can circumvent all of these complica-
tions. In particular, since these methods generally
represent material geometry by a collection of particles,
they require much less sophisticated tools to generate a
geometric representation, and meshless methods are not
subject to deficiencies such as mesh entanglement and
hour glassing (Doblare et al., 2005). Lastly, since
knowledge of material type is carried on particles,
explicit knowledge of interface locations is not required
to model contact (Bardenhagen et al., 2001). While no
computational method is without its shortcomings,
meshless methods constitute a relatively new set of tools
that may circumvent problems encountered in tradi-
tional FE analysis of cell mechanics and multicellular
constructs. Although strategies such as adaptive mesh
refinement (AMR) have been developed within the FE
framework to alleviate some of these problems, these
strategies are relatively complicated, difficult to imple-
ment for parallel-distributed computation and often
introduce error into the solution.

The computational method employed in the current
study is the Material Point Method (MPM). MPM, as
first described by Sulsky (Sulsky et al., 1994; Sulsky et
al., 1995), is a particle-based method for simulations in
computational solid and fluid mechanics using explicit
time integration. In MPM, the principal variables all
exist on particles, (which are not explicitly connected),
while a background grid is used as a computational
‘‘scratchpad’’. The desire to study static and low-rate
dynamic loading conditions with MPM motivated the
development and implementation of an implicit time
integration strategy (Guilkey and Weiss, 2003). The
objectives of this research were: (1) to present the
implicit MPM and to describe a modification to
algorithm that improves its accuracy and robustness
for analysis of multicellular constructs, (2) to describe a
method to analyze specimen-specific mechanics of
multicellular constructs with MPM, using volumetric
image data as a source of geometry, (3) to demonstrate
the feasibility of this approach by applying it to study
the mechanics of vascularized constructs using parallel
distributed computing, and (4) to conduct convergence
and material sensitivity studies.
2. Materials and methods

2.1. Implicit MPM

MPM is a variant of particle-in-cell (PIC) methods
(Harlow, 1964) that represent materials as a collection
of particles (material points) instead of connected
elements. MPM differs from traditional PIC in that,
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Fig. 1. Illustration of the steps in the MPM algorithm for particles

occupying a single cell of the background grid. (1) A representation of

four material points (filled circles), overlayed with the computational

grid (solid lines). Arrows represent displacement vectors. (2) The

material point state vector (mass, volume, velocity etc.) is projected to

the nodes of the computational grid. (3) The discrete form of the

equations of motion is solved on the computational grid, resulting in

updated nodal velocities and positions. (4) The updated nodal

kinematics are interpolated back to the material points, and their

state is updated. (5a). In the standard MPM algorithm, the

computational grid is reset to its original configuration, and the

process is repeated, (5b) In the modification algorithm described

herein, the grid is not reset, but is allowed to move with the particles,

thereby retaining the optimal distribution of particles with respect to

the grid.
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rather than simply tracking the particle position and
mass, MPM particles carry the full physical state of the
material, including mass, volume, velocity, temperature,
stress, etc. A regular structured grid is used as a
computational scratchpad for integration and solution
of the weak form of the equations of motion. The
description below assumes quasi-static conditions and
elastic material behavior to simplify the presentation
and clarify its use in the context of the present analyses,
although it should be noted that our implementation
accommodates inertial effects and any constitutive
model can be easily implemented. For a complete
depiction of the algorithm including inertial effects
and for arbitrary constitutive models, see (Guilkey and
Weiss, 2003).

Although implicit time integration can be used for
any rate of loading, it is more efficient for analyses when
the relative rate of loading is slow with respect to the
wavespeed of the material. This class of problems
includes quasi-static and low-rate dynamic loading.
For faster rates of loading, explicit time integration is
computationally more efficient (Sulsky et al., 1994). In
implicit time integration, a ‘‘time step’’ represents either
an increment in loading for quasi-static analysis or an
increment in loading and/or time for a dynamic analysis.
For each time step, the increment in displacement on the
grid that minimizes the energy of the system is
determined via a nonlinear iterative solution procedure
based on Newton’s method or a quasi-Newton method,
and this increment in displacement is subsequently used
to update the particle positions. Assuming that a
converged solution is available at time t, the algorithm
to obtain a solution at time t+dt can be described by the
following steps (Fig. 1):

(1) Initialization phase: The incremental displacement
vector Du0gðtþ dtÞ is initially zero, unless displacements
are prescribed for part of the domain. The particle
external forces Fext pðtþ dtÞ are interpolated to the
computational grid to yield the external forces on the
grid, Fext g tþ dtð Þ (Fig. 1, panel 2). A grid node receives
contributions from particles that are currently residing
in grid cells that are constructed with that node,
projected via the standard linear FE style shape
functions Sgp:

Fext gðtþ dtÞ ¼
X
p

SgpFext pðtþ dtÞ. (1)

The subsequent steps take place iteratively until the
optimal incremental displacement vector Dukgðtþ dtÞ is
found, where the superscript k refers to the iteration
number.

(2) Compute the deformation gradient Fk
pðtþ dtÞ at

current particle locations xpðtÞ using Dukgðtþ dtÞ and the
deformation gradient from the previous timestep:
Fk
pðtþ dtÞ ¼ dFk

pðdtÞFpðtÞ ¼ ðGgpDukgðtþ dtÞ þ 1ÞFpðtÞ.

(2)

Here, Ggpis a matrix containing gradients of the shape
functions Sgp evaluated at current particle locations and
1 is the 2nd-order identity tensor. The Cauchy stress
skpðF

k
pðtþ dtÞÞ and spatial elasticity tensor Dk

pðF
k
pðtþ dtÞÞ

are then calculated from the constitutive model.
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(3) The internal force vector Fk
int pðtþ dtÞ and tangent

stiffness matrix KKk
gðtþ dtÞ are evaluated on the grid:

Fk
int gðtþ dtÞ ¼

X
e

Z
Oe

BT
Ls

k
p dv; (3)

KKk
gðtþ dtÞ ¼ Kk

mat gðtþ dtÞ þ Kk
geo gðtþ dtÞ, (4)

where

Kk
mat gðtþ dtÞ ¼

X
e

Z
Oe

BT
LD

k
pBL dv; (5)

Kk
geo gðtþ dtÞ ¼

X
e

Z
Oe

BT
NLs

k
pBNL dv: (6)

BL and BNL are the standard linear and nonlinear
strain-displacement matrices encountered in a nonlinear
FE formulation (Bathe, 1996) and Se represents
assembly of grid cells, processing contributions from
grid nodes into the global arrays. The integrals in Eqs.
(3)–(6) are computed as a discrete sum over particles.

(4) Solve the discrete equilibrium equations, linearized
about the configuration at time t, iteratively for the
incremental displacements dukg using Newton’s method:

KKk
gðtþ dtÞdukg ¼ F ext gðtþ dtÞ � Fk

int gðtþ dtÞ. (7)

In the present research, the solution of the linear
system in Eq. (7) for the vector dukg was performed using
a conjugate gradient solver with a Jacobi preconditioner
(Balay et al., 2002). The nodal displacements are
accumulated each iteration by

Dukþ1
g ðtþ dtÞ ¼ Dukgðtþ dtÞ þ dukg , (8)

Steps 2–4 are repeated iteratively until dukg satisfies the
convergence criteria:

dukg

���
���

dumax
g

���
���o�d and

dukgQ
k
g

���
���

du0gQ
0
g

���
���o�e, (9)

whereQk
g is the right hand side of Eq. (7) and �dand�e are

user-defined tolerances on the displacement and energy
norms, respectively.

(5) Upon convergence, Fkþ1
p ðtþ dtÞ;Fkþ1

int gðtþ

dtÞ and KKkþ1
g ðtþ dtÞ are saved and the particle kine-

matics are updated (Fig. 1, panel 4):

upðtþ dtÞ ¼ upðtÞ þ
X
g

SgpDug, (10)

xpðtþ dtÞ ¼ xpðtÞ þ
X
g

SgpDug. (11)

(6) The grid is reset to its original (typically recti-
linear) configuration (Fig. 1, panel 5a).

(7) Continue to the next time step: This algorithm was
implemented in the Uintah Computational Framework
(UCF) (Parker, 2002), an infrastructure for large scale
parallel scientific computing on structured Cartesian
ED P
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grids. The UCF uses domain decomposition and the
Message Passing Interface (MPI) (Gropp et al., 1996) to
achieve parallelism on distributed memory clusters.
Because the interactions of the particles with the
computational grid are local, and due to the simple
rectilinear structure of the background grid, parallelism
of MPM is simplified. Specifically, the computational
grid is easily decomposed spatially into subdomains of
grid cells, with each processor performing calculations
for a subdomain. In contrast, the solution of the system
of linear equations in Eq. (7) is a global operation. For
this research, the PETSc suite of linear solvers (Balay et
al., 2001) was used to perform the distributed parallel
solution of these equations.

2.2. Modified MPM algorithm

The algorithm described above can result in an
artifact when particles cross the boundaries of grid cells
(Zhou, 1998), which can be especially troublesome for
quasi-static simulations since there are no inertial forces.
In this research, a modified algorithm was developed
and implemented in which the background grid geome-
try is not reset after each MPM computational cycle
(Fig. 1, panel 5b). The goal of this change was to
maintain the initial spatial distribution of particles
relative to cells in the computational grid. Typically, a
computational grid is chosen so that each cell contains
the same number of particles. The locations of the
particles with respect to the grid nodes do not change
when the grid is not reset. In this case, it is not necessary
to track the deformation of both the particles and the
grid. Rather, by carrying and correctly updating the
deformation gradient and the displacement of the
particles, the deformed grid can be regenerated at any
time. At any point during the simulation, the analyst
may choose to reset the grid, either to its original
configuration, or to another configuration determined to
be optimal. Note that by choosing not to reset the grid,
the analyst is making a tradeoff and may encounter
problems related to a severely distorted mesh, similar to
the types of problems that MPM was created to avoid.
The benefits of this modification are demonstrated in the
Section 3.

2.3. Example application—in vitro angiogenesis system

The motivation for this research was provided by
studies of the interaction of angiogenic microvessels
with the ECM and the effects of mechanical condition-
ing on capillary sprouting using an in vitro model of
angiogenesis (Hoying et al., 1996). Vascular endothelial
cells are highly sensitive to mechanical loading, which
may be generated via flow through blood vessels or
through mechanical deformation of the ECM. To
examine the mechanical stimuli that promote and inhibit
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Fig. 2. Phase micrographs of microvessel fragments cultured in 3D

collagen gels. Top—typical microvessel fragment at day 1 of culture.

Middle, Bottom—formation and branching of microvascular network

at days 6 and 10 of culture. Note that the microvessel shown in the top

panel is not the same field as shown in the middle and bottom panels.
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capillary sprouting and to study the biochemical events
associated with mechanotransduction, the relationship
between globally applied mechanical strain and the
mechanical environment at the capillary sprout must be
quantified. Further, angiogenic microvessels modify the
material properties of the ECM by expression of matrix
proteases, and thus changes to the global mechanical
response of vascularized constructs reflect the local
activity of endothelial cells on the ECM.

The in vitro angiogenesis system involves the culture
of intact microvessel elements (specifically, small arter-
ioles and capillaries) isolated from rat adipose, in a
three-dimensional collagen gel. Isolated vessel elements
contain associated perivascular cells and spontaneously
grow as patent tubes through the elaboration of
numerous vessel ‘‘sprouts’’. These vessels continue to
grow into a new vascular network that ultimately fills
the gel space (Fig. 2). Angiogenesis begins, predictably,
at day 4 of culture and a uniform vascular network
forms by day 14. Based on morphological and
immunostaining data, the isolated vessel fragments
include the full spectrum of vessel elements in the
microvasculature, namely arterioles, capillaries and
venules (Hoying et al., 1996). The new and parent
vessels retain the ability to form a functional vascular
tree following implantation of the vascularized construct
(Shepherd et al., 2004), supporting the notion that the
microvessels are healthy, normal and functional.

2.4. Confocal imaging and particle generation

A vascularized construct was harvested after 10 days
of culture and stained en bloc with endothelial cell-
specific lectin GS-1, directly bound to fluorescein. A
volumetric confocal image dataset
(512(x)� 512(y)� 52(z), x–y dimensions
537.6� 537.6 mm, section thickness 1.0 mm) was ob-
tained with a Bio-Rad MRC-1024ES confocal laser
scanning microscope using a 40X objective (Fig. 3, left
panel). The z plane thickness of CLSM images was
calibrated using 6 and 15 mm FocalCheck microspheres
(Molecular Probes Inc.).

A 3D hysteresis-thresholding algorithm was used to
segment the microvessels in the confocal image dataset.
Each voxel was represented by one material point, and
material type (either microvessel or collagen) was
assigned to each material point based on its fluorescent
intensity relative to the threshold value. This resulted in
13.6 million material points to represent the 3D volume
of the confocal image (Fig. 3, middle panel). The
background grid was constructed so that each grid cell
contained (4� 4� 2) material points, resulting in
426,984 grid cells, 449,307 nodes for the background
grid and 1.3 million unknowns (degrees of freedom,
DOFs) in the linear system defined by Eq. (7).
Microvessel volume fraction was 10.4% for this sample.
2.5. Constitutive model and baseline material properties

The material properties of collagen gels are nonlinear
and viscoelastic (Krishnan et al., 2004), while there are
no data available for the material properties of
individual microvessel fragments. As a first order
approximation, an uncoupled compressible neo-Hoo-
kean hyperelastic constitutive model was used to
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Fig. 3. Left—volume rendering of segmented confocal microscopy data, showing a typical microvascular construct in collagen at day 10 of culture.

Dashed red lines indicate approximate boundaries of parent vessels. Middle—initial distribution of material points (collagen material points not

shown for clarity), consisting of 13 million particles. Direction of tensile loading is vertical. Right—Distribution of von Mises stress (Pa) for the

baseline 3D model under 10% axial extension. Note the highly inhomogeneous stress distribution and the vertical channeling of stresses through the

microvessels.
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represent both the collagen and the microvessels, with
strain energy W (Simo and Hughes, 1998)

W ¼ UðJÞ þ ~W ð ~CÞ: (12)

Here ~W ð ~Cð¼Þm=2ÞðI1 � 3Þ, UðJÞ ¼ ðk=2Þ lnðJÞ½ �
2, J is the

volume ratio, m is the shear modulus, k is the bulk
modulus and ~I1 ¼ trð ~CÞis the 1st invariant of the
deviatoric right deformation tensor ~C. The shear
modulus of the collagen gel (mc ¼ 520.8 Pa) was based
on our experimental data (Krishnan et al., 2004). For
the baseline 3D analysis described below, the shear
modulus of the microvessels mv was assumed to be twice
the value of the collagen gel. The bulk modulus for both
the collagen and the microvessels was unknown and was
initially chosen to be twice the shear modulus, yielding
an effective Poisson’s ratio of n ¼ 0:29. Additional
analyses were performed with all particles assigned the
material properties of collagen for comparison.

2.6. Details of the 3d computational analysis

Ongoing experiments on the vascularized constructs
include endpoint viscoelastic tensile testing to assess the
effects of microvessel sprouting on ECM material
properties (Krishnan et al., 2003a, b) and mechanical
conditioning via tensile testing during the culture of the
constructs. To simulate axial extension of the vascular
construct, the bottom of the computational domain was
constrained and a vertical displacement was prescribed
to material points along the top of the computational
domain to achieve 10% global tensile strain. To assess
the ability of the execution time to scale with the number
of processors used, the three dimensional nonlinear
analysis was performed on 20, 40, 60, 80, 120, 160 and
ED P
RO200 processors of a 1024 processor distributed memory

Linux cluster (Opteron 240 CPUs, 1.4GHz), using MPI
to achieve parallelism. Results were processed to
determine reaction force at the clamped end and spatial
distribution of von Mises stress.

2.7. Effects of grid resolution

Because our research on the effects of mechanical
conditioning on vascularized constructs will eventually
require large numbers of specimen-specific 3D simula-
tions, the effects of grid resolution and particle
distribution on the quality of the simulation results
and the time needed to obtain a solution were examined.
To assess the quality of the solution, a convergence
study was performed to assess the effects of these factors
on the resulting reaction force and von Mises stress
distribution. These studies were performed in 2D using a
particle distribution that was based on one slice from the
3D confocal image dataset.

Each of the 2D simulations was carried out using the
same spatial distribution of particles, while the resolu-
tion of the background grid was varied (Fig. 4). Since
the equations of motion are solved on the background
grid, its resolution determines the spatial accuracy of the
solution. Further, because the grid resolution deter-
mines the size of the linear system, solution time
depends most strongly on grid resolution rather than
the number of particles. The 2D slice was discretized
using 642, 1282 and 2562 grid cells, corresponding to
particle distributions of 8� 8, 4� 4 and 2� 2 within
each cell, respectively. The number of particles for all
2D simulations was 250,000. For each discretization,
simulations were carried out using a sample that
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Fig. 5. Effect of number of processors used in simulation on execution

time for the 3D simulation. Dashed line represent ideal speedup, which

means that doubling the number of processors would result in halving

the execution time.
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consisted only of collagen, as well as the distribution of
collagen and microvessels indicated for the chosen slice
of the volumetric dataset. Each case was analyzed using
both the traditional MPM algorithm and the modified
algorithm described above. The 2D simulations were
performed using four processors and the time to
solution was recorded.

2.8. Sensitivity to material properties

In addition to the sensitivity to mesh resolution, it is
also important to understand how the MPM predictions
were affected by the assumed material properties of the
microvessel fragments. Simulations were performed for
several ratios of relative shear modulus of the collagen
mc to that of the vessel mv (mv ¼ qmc where q ¼ 0:5, 1.0,
2.0 and 5.0). For each case, the bulk modulus was
adjusted to maintain a Poisson’s ratio of 0.29. Another
set of simulations was performed in which the relative
shear moduli were maintained at mv ¼ 2mc, but the bulk
moduli were varied to obtain Poisson’s ratios of 0.13,
0.29, 0.45 and 0.48. Since the material properties of the
microvessels were unknown, these simulations were
intended to serve as a guide for designing simulations
and experiments in the future, in that they reveal the
sensitivity of the simulations to the material properties
of the constituents.
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3. Results

3.1. Three-dimensional analysis

The baseline 3D computation required 3.4 h of wall
clock time on 40 processors. Results indicated a highly
inhomogeneous stress distribution in which the micro-
vessels were subjected to a much higher stress than the
surrounding collagen (Fig. 3, right panel). This supports
ED P
R

the hypothesis that local stresses around cellular
constructs in a 3D matrix are inhomogeneous, even
for uniaxial tensile loading. The time for the simulation
scaled well with the number of processors (Fig. 5).
Efficiency for 60, 120 and 200 processors was 90%, 75%
and 50%, respectively, in comparison to the 20
processor analysis. The primary reason for the drop-
off in efficiency at larger processor counts is the small
amount of computation required of each processor in
comparison to communication overhead. For compar-
ison, simulations using 20 processors resulted in each
processor performing computations for 21,300 grid cells
per processor, while simulations using 200 processors
resulted in only 2,130 grid cells per processor.

3.2. Effects of computational algorithm

There were substantial visual differences in the spatial
distribution of von Mises stress between the simulations
that used the standard MPM algorithm versus those
that used the modified algorithm. The standard MPM
algorithm yielded a stress field that contained substan-
tial artifacts, resulting from particles crossing grid cells
when the computational grid was reset (Fig. 6, left
panel). The artifacts were of comparable magnitude as
the fluctuations in stress that arise due to the inhomo-
geneous nature of the materials, rendering the results
unacceptable. In contrast, with the modified algorithm,
the artifacts were absent and the highly inhomogeneous
nature of the stress distribution was apparent (Fig. 6,
right panel).
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Fig. 6. Effect of resetting the grid during the MPM solution process on the spatial distribution of von Mises stress (Pa). Left panel—standard MPM

algorithm resets the grid, resulting in significant artifacts in the stress field due to particles crossing grid boundaries. Right panel—results without

resetting the grid. Stress field artifact is eliminated and the resulting stress field is highly inhomogeneous based on the topography of microvessels.
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Quantitative evidence of the effectiveness of the

algorithmic modification can be found by examination
of the reaction force at the constrained end. When the
grid was reset after each timestep, the results were
extremely unpredictable and showed no signs of
convergence with increasing resolution (Fig. 7, left
panel). In fact, when the grid was reset for the finer
resolution cases, converged solutions at large deforma-
tions were, at times, not achieved. Thus the traditional
MPM algorithm was neither accurate nor robust. In
contrast, when the grid was not reset, convergent
behavior was observed and the reaction force increased
approximately linearly with the applied strain, consis-
tent with the quasilinear behavior of the neo-Hookean
constitutive model (Fig. 7, right panel).
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UN3.3. Effects of grid resolution

Using the modified MPM algorithm, the time to
solution for the 2D simulation at 10% strain was 0.3, 0.8
and 5.5 h for the three resolutions in Fig. 4 from coarsest
to finest, on 4 processors. Clearly, use of the highest
resolution in Fig. 4 came at a significant computational
cost, so a closer examination of the results was required
to indicate the overall value of high-resolution simula-
tions.
EDThe accuracy of the solutions can be compared by
examining the reaction force as a function of applied
tensile strain for the different resolutions (Fig. 7, right
panel). There was very little difference in the reaction
force between the three homogeneous cases or between
those cases containing both collagen and microvessel.
When the reaction force was compared for the homo-
geneous and inhomogeneous cases at the same resolu-
tions, the relative difference between the collagen only
cases and the collagen with vessel cases was 14.7%,
14.1% and 13.7% from the coarsest resolution to the
finest, respectively. The small difference between these
values suggests that all three resolutions were converged
in terms of prediction of reaction force.

Qualitatively, the differences in spatial distribution of
von Mises stress for the three mesh resolutions were
subtle (Fig. 8), although there was some evidence of a
homogenizing effect on the stress field when cells
contained a large number of particles, as in the coarsest
case. In all cases, it was evident that the microvessels
were subjected to significantly higher stresses. Quantita-
tively, the three solutions again indicated convergence as
the maximum stresses for the three cases were similar
(357, 384 and 380 Pa, from coarsest to finest).
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Fig. 7. Effects of solution algorithm, grid resolution and presence of

vessels on the reaction force (nN) at the clamped end. All data are for

the case of microvessels with a shear modulus that was twice as large as

that of the collagen. Left—results for standard MPM algorithm (reset).

Right—results for modified algorithm (no reset). Left graph shows

significant softening of the force-displacement behavior due to

particles crossing cell boundaries. This problem was somewhat

alleviated when the ratio of particles-per-cell to grid cell size was

maximized. Converged solutions could not be obtained for the cases

that used the 2.1mm grid past 2% axial strain, and for the 4.2 mm grid

for the ‘‘collagen+vessels’’ case past 5% axial strain. Right—all three

resolutions gave acceptable predictions of the force-displacement

behavior when the modified MPM algorithm was used. For the

analyses that used the modified algorithm, the presence of microvessels

increased the peak reaction force by approximately 14%.
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3.4. Sensitivity to material properties

There was a fairly strong dependence of the reaction
force on the stiffness of the microvessels (Table 1),
despite the fact that they comprised only 10.4% of the
volume of the total sample. The reaction force was less
sensitive to Poisson’s ratio of the entire sample than to
the stiffness of the microvessels (Table 2).
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4. Discussion

The approach that was used in this research to
convert volumetric image data to a particle representa-
tion for use with MPM (or any meshless method) is
quite general. Image data may be provided by nearly
any type of imaging modality, including CT, MRI or
ultrasound. Depending on the image quality, additional
image processing may be necessary to distinguish
regions of different materials. The quality of the
confocal image dataset used in the current study allowed
the use of a simple thresholding technique; all materials
were classified as either collagen or vessel. However, by
using multiple fluorophores, each of which binds to a
different protein, it is possible to further refine the
material classification to include multiple types of cells
or cellular organelles, depending on the physical scale of
the simulation. In the context of the confocal image data
of the vascularized constructs, we have already suc-
ceeded in using two fluorophores to distinguish en-
dothelial cells from smooth muscle cells (Shepherd et al.,
2004). Furthermore, additional refinements to the
material point distribution may be made based on
further processing of the image data. For instance, large
gradients in the image intensity indicate material
boundaries, and thus the gradient information could
be used to provide a denser distribution of material
points near these locations to better resolve material
interfaces.

Given the relatively small wall clock time that was
required for the 3D simulation (3.4 h on 40 processors)
in comparison to the resources that are available, both
at our site and at national supercomputing centers,
simulations that encompass much larger 3D geometries
will be possible with implicit MPM. Good scaling was
achieved, and at this time, no barriers are evident to
inhibit scaling to a larger set of resources. In the context
of simulations of the mechanics of vascular constructs,
increasing the size of the geometry that is simulated will
better reflect the physical tensile experiments that are
being performed on the constructs. Also, the ability to
address larger geometries increases the range of system
types that can be studied with this approach.

When using the traditional MPM algorithm, the cases
with higher spatial refinement failed to converge at
lower levels of global strain than the less refined cases
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Fig. 8. Effects of grid resolution on von Mises stress distribution. The salient features of the stress field are apparent for even the most coarse

resolution case. Namely, stress channeling through the stiff material and the low stress ‘‘shadows’’ that surround these regions are more sharply

defined in the higher resolution cases, but the improvement in solution at the highest resolution is marginal and not sufficient to warrant the

additional computational cost.

Table 1

Effect of the ratio of the shear modulus of the microvessels (mv) to that

of the collagen gel (mc) on reaction force at 10% tensile strain

mv/mc Reaction Force (nN)

0.5 65.0

1.0 74.7

2.0 85.2

5.0 101.4

The bulk moduli of both materials were varied to keep the Poisson’s

ratio of both materials the same (0.29).

Table 2

Effect of the Poisson’s ratio of both the vessels and collagen on the

reaction force at 10% strain

Poisson’s ratio Reaction Force (nN)

0.13 73.9

0.29 85.2

0.45 97.7

0.48 99.7

Results indicate a substantially lower degree of sensitivity to this

variable than to the shear modulus of the vessels.
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U(Fig. 7, left panel). This may seem paradoxical at first;
however, the failure of those simulations is due to
particles crossing from one cell to another. MPM uses
linear shape functions on the background grid, the
gradients of which are constant (in 1D). These gradients
constitute the entries of the strain-displacement matrix
in Eq. (3). For the case of a quasi-static loading scenario
that should generate a homogeneous stress state for all
ED P
ROparticles, a uniform distribution of particles will lead to

the desired result that the internal force (Fint) vanishes
on the interior nodes (the sign of the shape function
gradient changes when moving from one cell to another,
causing the contributions from particles in the adjacent
cells to cancel out). When the particle distribution is
non-uniform, in order to achieve a zero internal force
(necessary to achieve convergence) a non-uniform stress
results in the material. An excellent description of this
phenomenon is given in (Zhou, 1998). For the cases that
used a higher resolution for the background grid, the
migration of particles from one grid cell to another
occurs more quickly during tensile extension. Further-
more, the associated deleterious impact of particle
migration is more severe when there are fewer particles
in each grid cell. In the most refined cases, there were
four particles in each cell, while in the least resolved
cases, there were 64 particles in each cell. The
advantages of the modified MPM algorithm are clearly
demonstrated by the elimination of artifacts in the stress
field (Fig. 6) and the fact that converged solutions were
obtained for all grid resolutions (Fig. 7, right panel).

When all results are considered, the medium resolu-
tion grid (Fig. 4, middle panel) provided the best
compromise between reasonable time to solution and
the degree to which the overall solution has converged.
Given the significantly higher computational cost of
carrying out these simulations at the highest resolution,
along with the very modest increase in the quality of the
results, use of the highest resolution is unjustified and
unnecessary. A small improvement in performance may
be obtained for all resolutions by using fewer particles
while maintaining the same mesh resolution. However,
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as the mesh resolution is the major determinant of
solution time, any reduction would be modest.

The results in Table 1 indicate a strong dependence of
the reaction force on the vessel shear modulus, despite
the fact that the vessels comprised only about 10% of
the total volume of the sample. This suggests that the
MPM simulations could form the basis for estimating
the effective shear modulus of the microvessels via a
parameter estimation strategy. By first performing
tensile tests on specimens of vascularized collagen gels,
the load-elongation data could be used, along with the
known properties of pure collagen, as inputs to a
parameter optimization scheme in which numerical
simulations of the experiment are performed with
varying parameters, to match, as closely as possible,
the experimental results. The parameters to be opti-
mized are the material properties of the microvessels.
The finding of the strong sensitivity of the reaction
forces to the assumed modulus of the vessels provides
encouragement to the prospects for success of such an
endeavor.

Although a detailed exposition on the strengths and
weakness of meshless and quasi-meshless methods in
general is beyond the scope of this work (for a review,
see (Belytschko et al., 1996b)), it is instructive to
consider the algorithmic advantages and disadvantages
of MPM in particular in comparison to the FE method
for the presently considered application. As demon-
strated, MPM provides an extremely straightforward
method to discretize complex geometry with multiple
material types that is highly amenable to use with
volumetric image data. The standard MPM algorithm
eliminates element inversion by using a computational
grid that is reset after each timestep. In the case of the
modified MPM algorithm, the improvements gained
from the algorithmic modification come at the cost of
losing some of the robustness at high levels of
deformation. Specifically, since the background grid is
not reset, it is possible to invert elements of the
background grid under extreme deformation. For the
application described herein, this problem was never
encountered and thus the modified algorithm provides a
favorable tradeoff. If the deformed state of the back-
ground grid becomes such that it impedes the procession
of the solution, it is straightforward to switch from the
modified to the traditional algorithm (and back)
Further, since the initial computational grid is recti-
linear and all grid elements initially have 901 corners, it
is often possible to achieve larger deformations before
element inversion than can be achieved with a conform-
ing FE mesh. In the case of the standard FE method,
mesh inversion can be mitigated by using (AMR, or ‘‘h-
refinement’’—e.g., (de Cougny and Shephard, 1999)).
However, AMR introduces additional difficulties since
an optimal new mesh is ill-defined and interpolation
errors are introduced when projecting to a new mesh.
ED P
ROOF

For complex geometries such as those considered herein,
the process of generating the new mesh is plagued by the
same difficulties as generating the initial mesh, and this
process is especially difficult in three dimensions. When
compared to generating an entirely new FE mesh for use
with AMR, the process of resetting the MPM back-
ground grid is trivial.

From the point of view of computational efficiency,
MPM requires additional computational steps for
interpolations to and from particles that are not
required with FE methods, as shown in Eqs. (1), (10)
and (11). However, the cost of these additional
computations is more than made up for by ease of
parallelization of the MPM algorithm. The MPM
algorithm is easily programmed for parallel, distribu-
ted-memory computers by partitioning particle-based
and grid-based calculations through decomposition of
the computational domain. In contrast, the initial
partitioning of a FE mesh is considerably more
complicated and requires careful construction to ensure
load balancing between processors. The use of AMR
with the FE method requires repartitioning for parallel
computations and leads to memory fragmentation
(Feng et al., 2005; Wissink et al., 2003).

There are several assumptions and limitations asso-
ciated with the present work that merit discussion. The
discretization and assignment of material properties to
the collagen and microvessels assumed uniform micro-
vessel material properties, elastic material behavior for
both materials and represented the interface between the
microvessels and the collagen as perfectly bonded.
Clearly, the effective mechanical behavior of the
vascularized constructs will depend on the local inter-
face conditions, which are considerably more compli-
cated and include interactions between the ECM and
cell surface integrins. Further, it is likely that the
material properties of the microvessel fragments are a
function of the specific vessel and its state of prolifera-
tion. Additionally, the effects of vascular smooth muscle
cells, which are present in the cultures, were not
considered. Finally, as smaller length scales are con-
sidered, it is important to recognize that the approach
described here is based upon the assumption that the
materials constitute a continuum. The exploration of
phenomena at sub-continuum length scales would
require the use of additional discretization approaches.
For instance, if one wishes to simulate the effects of
cytoskeletal components on cell mechanics, the forces
associated with passive and active cytoskeletal elements
must be included. Approaches to the integration of these
phenomena with MPM could follow one of at least two
successful strategies: (1) the representation and predic-
tion of the spatial concentration of the cytoskeletal
element(s), thus defining a swelling force that results in a
local pressure (Bottino et al., 2002), or (2) explicit
representation of cytoskeletal components as discrete
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elements capable of resisting tension and/or compres-
sion and capable of generating axial force (Coughlin and
Stamenovic, 2003; Karcher et al., 2003; Spector et al.,
2002; Volokh et al., 2002). In both cases, these forces
would enter into the discretized equations of motion
used in the MPM formulation through the internal force
vector in Eq. (3). Despite these assumptions and
limitations, the approach used in these simulations
provided a reasonable framework for testing the
applicability of MPM for large-scale simulations of
cellular constructs.

In summary, this study demonstrated the effectiveness
of a modified MPM algorithm for the large-scale
simulation of the mechanics of cellular constructs. The
presence of microvessels in the collagen construct
resulted in stress localization and channeling. Larger
simulations (i.e., using as many as 30 million material
points) should be very feasible on modern distributed
memory clusters. The computational framework that
was developed in this research is quite general, and it is
anticipated that extension to many other applications
will be possible, including the analysis of other multi-
cellular constructs and investigations of cell mechanics.
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