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Abstract: The Material Point Method (MPM), which
is a particle-based, meshless method that discretizes ma-
terial bodies into a collection of material points (the par-
ticles), is a new method for numerical analysis of dy-
namic solid mechanics problems. Recently, MPM has
been generalized to include dynamic stress analysis of
structures with explicit cracks. This paper considers eval-
uation of crack-tip parameters, such asJ-integral and
stress intensity factors, from MPM calculations involv-
ing explicit cracks. Examples for both static and dynamic
problems for pure modes I and II or mixed mode loading
show that MPM works well for calculation of fracture
parameters. The MPM results agree well with results ob-
tained by other numerical methods and with analytical
solutions.
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1 Introduction

Many experimental methods are available for investi-
gating the dynamic fracture properties of materials and
structures. Because of the very short time scales for
dynamic fracture events, it is difficult to directly mea-
sure physical fracture quantities such asJ-integral, en-
ergy release rates, or stress intensity factors, particu-
larly in opaque specimens or structures of practical in-
terest. Computational calculations have the potential to
overcome the difficulties associated with interpreting dy-
namic fracture mechanics experiments. The approach
would be to use calculations to evaluate physical fracture
quantities of a dynamic crack tip at any instant of time
during the experiment. The advancement of dynamic
fracture mechanics, therefore, relies heavily on advance-
ments of numerical fracture methods.

The numerical analysis of dynamic fracture is often con-
sidered as a package using various numerical methods,

but the problem actually partitions into three distinct
problems that can be solved independently:

1. Analysis of explicit cracks: The first problem is
to develop numerical methods that can evaluate
stresses and displacements around explicit cracks.

2. Calculation of fracture parameters: Once explicit
crack analysis is possible, each numerical method
needs techniques to evaluate key crack-tip parame-
ters such asJ integral, energy release rate, stress in-
tensity factors, or various other local crack-tip prop-
erties.

3. Prediction and inclusion of crack propagation:
Once crack tip parameters are available, the next
issue is to predict what conditions are required for
crack propagation and in what direction the crack
will propagate. This problem is a material science
problem and not dependent on the particular numer-
ical method chosen for analysis. For a particular nu-
merical method to be effective, however, it should
be capable of modeling crack propagation in arbi-
trary directions and continuing the analysis as the
crack grows.

One of the earliest applications of numerical methods to
dynamic fracture problems is the finite difference method
(FDM) developed by Chen and Wilkens (1977). Later, fi-
nite element analysis (FEA) became the preferred numer-
ical tool [Nishioka and Atluri (1983), Nishioka (1995),
Nishioka (1983), Nishioka (1997), Nishioka, Tokudome,
and Kinoshita (2001), Nishioka and Stan (2003)]. The
analysis of explicit cracks in FEA is easily handled by
introducing cracks in the mesh, but FEA can have diffi-
culty dealing with crack surface contact. FEA can evalu-
ate fracture parameters by methods such as crack closure
[Rybicki and Kanninen (1977)], but encounters difficul-
ties in coping with crack propagation, especially crack
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propagation in arbitrary directions [Nishioka, Tokudome,
and Kinoshita (2001)]. Another problem of FEA is dif-
ficulty with problems having large deformations or rota-
tions, where the finite element mesh could become dis-
torted requiring re-meshing methods and causing a great
decrease in calculation efficiency. A dual boundary inte-
gration method was developed to obtain dynamic stress
intensity factors [Wen, Aliabadi, and Rooke (1998)].
Because the crack opening displacements are used to
calculate stress intensity in this method, attention must
be paid, and some techniques have to be used, to im-
prove the accuracy of crack opening displacements near
crack tips before stress intensity factors are reliable. To
avoid mesh problems of FEA and to better handle crack
propagation in arbitrary directions, some meshless meth-
ods [Atluri and Shen (2002), Han and Atluri (2003b)]
have been developed for dynamic fracture analysis [Be-
lytschko, Lu, and Gu (1994), Organ, Fleming, and Be-
lytschko (1996), Batra and Ching (2002), Han and Atluri
(2003a)], as well as a cell method [Ferretti (2003)]. For
example, Batra and Ching (2002) extended the Meshless
Local Petrov-Galerkin (MLPG) method for inclusion of
cracks and evaluation of stress intensity factors (prob-
lems 1 and 2 above). As in other meshless methods,
however, the inclusion of cracks in MLPG required defi-
nition of particle “influence” zones near crack surfaces to
be able to handle explicit cracks. These influence zones
have to be evaluated by approximate node-visibility or
stress-diffraction rules [Organ, Fleming, and Belytschko
(1996), Batra and Ching (2002)]. Furthermore, it might
be hard to incorporate contact algorithms for handling
crack surface contact in MLPG.

A new particle-based method, called the material point
method (MPM), is developing into a new numerical tool
for solving dynamic solid mechanics problems [Sulsky,
Chen, and Schreyer (1994), Sulsky, Zhou, and Schreyer
(1995), Sulsky and Schreyer (1996), Nairn (2003), Bar-
denhagen, Guilkey, Roessig, Brackbill, Witzel, and Fos-
ter (2001), Bardenhagen and Kober (2004)]. In the mate-
rial point method, the object being analyzed is discretized
into a collection of particles or material points. As the
dynamic analysis proceeds, the solution is tracked on the
particles by updating all required properties such as po-
sition, velocity, acceleration, stress state,etc.. At each
time step, the equations of motion for the particles are
solved on a background grid; this solution is used to up-
date the particles and the background mesh can be dis-

carded or reused for the next time step in its initial, undis-
torted form. This combination of Lagrangian and Eule-
rian methods has proven useful for solving solid mechan-
ics problems, particularly for problems with large defor-
mations and rotations. Despite the use of a background
mesh, a recent derivation of a generalized MPM method
[Bardenhagen and Kober (2004)] shows that MPM is a
Petrov-Galerkin method having more in common with
other meshless methods than with finite element meth-
ods.

The standard derivation of MPM enforces continuous
displacements. Although such an analysis can handle
some fracture properties with special symmetries [Tan
and Nairn (2002)], it can not handle arbitrary explicit
cracks. Recently we have developed a new MPM algo-
rithm called CRAMP for cracks in material point calcula-
tions [Nairn (2003)]. This new algorithm solves the first
problem in numerical analysis of fracture on the analy-
sis of explicit cracks. It handles cracks naturally with
the full accuracy of MPM. In other words, it is compa-
rable to FEA in the ease of including explicit cracks and
has advantages over other meshless methods by not re-
quiring crack approximations such as node-visibility or
stress-diffraction rules [Organ, Fleming, and Belytschko
(1996), Batra and Ching (2002)]. CRAMP may also have
advantages over both FEA and other meshless methods
in its ability to fully model crack surface contact in-
cluding frictionless sliding, sliding with friction, or stick
conditions [Nairn (2003), Bardenhagen, Guilkey, Roes-
sig, Brackbill, Witzel, and Foster (2001), Bardenhagen,
Brackbill, and Sulsky (2000)].

Now that MPM/CRAMP can handle explicit cracks, the
goal of this paper was to address the second problem in
numerical analysis of fracture or to develop MPM meth-
ods for calculating fracture parameters and to verify that
MPM is suitable method for such calculations. We found
that MPM is well-suited to efficient and accurate calcula-
tion of J integral around cracks. By tracking crack open-
ing displacements, it was further possible to convertJ-
integral results into mode I and mode II stress intensity
factors. These results suggest that MPM is an excellent
candidate for the last fracture problem or the implemen-
tation of failure criteria to predict both crack growth and
growth direction. Because the MPM solution and the
crack definition are defined on particles, it is easy to im-
plement crack propagation in arbitrary directions. Per-
haps MPM will combine the algorithmic efficiencies of
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FEA for analysis of explicit cracks with the flexibility of
meshless methods for describing arbitrary crack paths.

2 Numerical Methods

2.1 MPM Calculations with Explicit Cracks

The material point method (MPM), as originally derived,
extrapolates particle information to a background grid
for solution of the equations of motion [Sulsky, Chen,
and Schreyer (1994), Sulsky, Zhou, and Schreyer (1995),
Sulsky and Schreyer (1996)]. Because this extrapolation
enforces continuous velocities on the grid, the original
method could not accommodate cracks which are math-
ematically described by velocity or displacement discon-
tinuities. To extend MPM to crack problems, we de-
veloped a new algorithm called CRAMP for cracks in
material point method calculations. This section gives a
brief review of the CRAMP algorithm; the detailed al-
gorithm is in Nairn (2003). The key difference in MPM
with cracks are:

1. To account for cracks, modify the MPM extrapo-
lation of particle information to the grid to allow
nodes near cracks to have multiple velocity fields.
The separate velocity fields contain information for
the solution on opposite sides of the cracks.

2. To determine which nodes need multiple velocity
fields, cracks are introduced in the problem by ad-
ditional mass-less particles. In 2D problems the ad-
ditional particles are connected by line segments to
define the crack path. In 3D problems, crack def-
inition requires defining a crack surface [Guo and
Nairn (2004)]. When extrapolating any particlep to
nodei, a line is drawn from the particle to the node
and each particle/node pair is assigned a field num-
berν(p, i) which isν(p, i) = 0 if the line crosses no
crack (i.e., conventional MPM),ν(p, i) = 1 if the
line crosses a crack and the particle is above the
crack, orν(p, i) = 2 if the line crosses the crack
and the particle is below the crack. The concept of
“above” or “below” the crack is relative to a coordi-
nate system with the crack tip at the origin and the
crack direction in the negativex direction (or crack
plane in the negativex-z plane in 3D problems).

3. Solve the equations of motion by conventional
MPM methods, but for cracks with multiple velocity

fields, solve the equations of motion for each veloc-
ity field separately.

4. To prevent non-physical overlap at displacement
discontinuities, implement contact rules at all nodes
with multiple velocity fields [Nairn (2003), Bar-
denhagen, Guilkey, Roessig, Brackbill, Witzel, and
Foster (2001)].

5. Using the nodal solutions, interpolate back to the
particles and update the solution on the particles
such as particle stress, strain, velocity, and displace-
ment. The interpolation back to the particles uses
the appropriate velocity field as determined in step
2.

6. Finally, update the crack position within the body.
In the previous paper [Nairn (2003)], this step up-
dated the position of all crack particles by using
the center-of-mass velocity field. In this work, we
added an extra update of crack information to track
crack surfaces or crack opening displacements (see
below).

2.2 CRAMP-Modified MPM Equations

Consider a solid body containing a crack subjected to
body force per unit volume~B and surface force~T which
has been resolved into forces applied directly to particles,
~Fp (see Fig. 1). The virtual work principle for the system
can be expressed by [Cook, Malkus, and Plesha (1989)]:Z

V
~B·δ~udV+∑

p

~Fp ·δ~u =
Z

V
~σ ·δ~εdV

+
Z

V
ρ

d2~u
dt2

·δ~udV+
Z

V
dk

d~u
dt
·δ~udV (1)

whereρ is density,dk is a damping coefficient,~u,~ε, and~σ
are the displacement, strain, and stress, respectively, and
t is time. The termδ~u denotes an arbitrary virtual dis-
placement that is allowed physically. In MPM, the body
is divided into a collection of particles each assigned a
mass ofmp consistent with the material density. All the
variables needed to solve the problem (e.g., position, ve-
locity, stress,etc.) are carried on the particles. To solve
the equations of motion for the particles, MPM uses a
background computational grid, as shown in Fig. 1. In-
terpolating particle properties and virtual displacement
to the grid and numerically evaluating the integrals using
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Figure 1 : Discretization of a solid object with a crack
into material points or particles. The grid is the back-
ground mesh for MPM calculations. The CRAMP algo-
rithm tracks the crack as mass-less particles connected
by line segments; it also tracks the top and bottom crack
surfaces to provide information about crack opening dis-
placement.

the particles as integration points, the virtual work equa-
tion reduces to separate equations for nodal accelerations
of each velocity field (~ai,ν(p,i)):

~ai,ν(p,i) =
~f tot

i,ν(p,i)

ML
i,ν(p,i)

(2)

where ~f tot
i are the total nodal forces, andML

i are the
lumped nodal masses. The second subscriptν(p, i) =
0, 1, or 2 corresponds to each of the three possible ve-
locity fields in the CRAMP algorithm. Although each
node has three potential velocity fields, only nodes near
cracks will have more than the singleν(p, i) = 0 field.
For the example, in Fig. 1 only the nodal points along the
crack plane will have multiple velocity fields. Further-
more, even nodes near cracks will have at most two ve-
locity fields that correspond to information extrapolated
from opposite sides of the crack near that node. (Note:
although the crack plane in Fig. 1 is shown along grid
lines, the crack particles will numerically reside on one
side or the other from the grid line. Although issues can
arise due to numerical round off, they can be avoided
by careful selection of the line-crossing algorithm [Nairn
(2003)].)

The remaining MPM equations [Sulsky, Chen, and

Schreyer (1994)] all need modification to account for the
possibility of multiple velocity fields. The lumped mass
matrix at a nodei is

ML
i,k = ∑

p
mpNi,pδk,ν(p,i) (k = 0,1,2) (3)

The total nodal forces are the sum of the external forces
and the internal forces:

~f tot
i,k = ~f ext

i,k +~f int
i,k (k = 0,1,2) (4)

where

~f ext
i,k = ∑

p

~FpNi,pδk,ν(p,i)−
dk

ρ ∑
p

mp~vpNi,pδk,ν(p,i) (5)

~f int
i,k = ∑

p
mp

(
~Bs

pNi,p−~σs
p ·∇Ni,p

)
δk,ν(p,i) (6)

for k = 0,1,2 and where superscripts denotes a specific
quantity,Ni,p = Ni(~xp) and∇Ni,p = ∇Ni(~xp) are the shape
function and its’ gradient for nodei at the position of
particle p (~xp), ~vp is the particle velocity, andδk,ν(p,i) is
Kronecker delta or 1 ifk = ν(p, i) and 0 otherwise.

Once nodal velocities have been updated, the nodal state
is interpolated back to the particles to update their ve-
locity, position, stress, strain,etc.. In CRAMP, the inter-
polation is done using the proper velocity field for each
particle near a crack [Nairn (2003)]. Finally, the center-
of-mass velocity for each particle in the definition of the
crack plane is used to update the crack position. A new
feature added to CRAMP in this work was to addition-
ally use the separate velocity fields to track the positions
of the crack surfaces. Initially the crack is assumed to
be closed. During each MPM time step, the separate
velocity fields near cracks are used to update the posi-
tions of the top and bottom surfaces of the crack. Figure
1 shows a crack “Plane” which is defined by a collec-
tion of massless particles connected by line segments.
The “Top” and “Bottom” crack surfaces are tracked as
displacements from that crack plane during the analysis.
The crack opening displacement information is useful in
partitioning the stress state into mode I and mode II stress
intensity factor.

An additional use for tracking crack opening displace-
ments might be to implement numerical methods for
detection of crack contact. Prior MPM methods for
detecting two-body or crack contact have been based
on surface velocities or on nodal volumes or on both
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[Nairn (2003), Bardenhagen, Guilkey, Roessig, Brack-
bill, Witzel, and Foster (2001), Bardenhagen, Brackbill,
and Sulsky (2000)]. Because contact detection is done
for grid nodes with multiple velocity fields while crack
opening displacements are tracked on the massless crack
particles, it is more efficient to use grid methods rather
than the new crack opening displacement information.
The calculations in this paper have thus continued to use
the grid- and volume-based method described in Nairn
(2003). By monitoring the crack opening displacement
on the crack particles, we could confirm that the grid-
based crack-contact detection algorithm worked well for
all examples in this paper. We have experimented with
displacement-based methods for crack-contact detection
that extrapolates displacements within the two velocity
fields to grid nodes and detects contact based on relative
normal displacements. This approach works well, but re-
quires an extra extrapolation for nodal displacement in-
formation.

In typical problems with cracks, only a few nodes near
cracks will actually have multiple velocity fields and thus
the CRAMP algorithm is very efficient. The computa-
tional overhead for cracks in 2D problems is typically
about 10% [Nairn (2003)]. Additionally, MPM with
cracks may have advantages over other particle-based or
meshless methods for inclusion of explicit cracks. The
CRAMP algorithm is anexactMPM representation of
cracks or displacement discontinuities analogous to the
fact that the addition of cracks to an FEA mesh provides
an exactFEA representation of discontinuities. In con-
trast, other meshless methods can only include displace-
ment discontinuities by approximate methods such as
node-visibility rules [Belytschko, Lu, and Gu (1994)] or
stress-diffraction parameters [Organ, Fleming, and Be-
lytschko (1996)].

3 J-integral and Stress Intensity Factor Calcula-
tions in MPM

The CRAMP algorithm modification to MPM has ex-
tended MPM to include explicit cracks and thereby de-
termine stress fields, displacements,etc., near crack tips.
To implement fracture mechanics models for crack prop-
agation, the next step is to calculate fracture parameters
for crack tips such as energy release rate and stress in-
tensity factors. This section describes MPM calculations
of J-integral around a crack tip and partitioning of the
results into mode I and mode II stress intensity factors.

The J-integral, as a key fracture parameter, was intro-
duced by Cherepanov (1967) and Rice (1968). Although
the first derivation ofJ-integral was for quasi-static prob-
lems with no kinetic energy, the concept can be ex-
tended to dynamic problems by including kinetic energy.
The definition of dynamic J-integral components (Jm for
m= 1,2) at a crack tip (see Fig. 2) is [Nishioka (1995),
Cherepanov (1979)],

Jm = lim
ε→0

Z
Γε

[(
W+K

)
nm−σi j n j

∂ui

∂xm

]
dΓ (7)

=
Z

Γ

[(
W+K

)
nm−σi j n j

∂ui

∂xm

]
dΓ

+
Z

A(Γ)
ρ
[

∂2ui

∂t2

∂ui

∂xm
− ∂ui

∂t
∂2ui

∂t∂xm

]
dA (8)

whereW andK are the stress-work density and kinetic
energy density, respectively,σi j are stresses,ui are dis-
placements (accordingly,∂ui/∂xm are the components of
displacement gradients,∂ui/∂t is velocity, and∂2ui/∂t2

is acceleration),nm are components of the unit normal
vector to theJ-integral contour (Γ or Γε), ρ is density,
and repeated indicesi and j are summed. The energy
terms are

W = σi j dεi j and K =
1
2

ρu̇i u̇i (9)

whereεi j are strains. TheΓ and Γε are line integrals
along contours around the crack tip. TheA(Γ) integral
is an integral over the area enclosed by the contour.

For static problems, the area integral drops out and the
result is path independent for any crack tip contour (Γ
or Γε) [Rice (1968)]. This path independence is lost for
dynamic problems because the transmission of energy to
different paths depends on the time stress waves reach the
path. There are two solutions to the problem as expressed
by the two results forJm above [Nishioka (1995)]. In the
first solution (Eq. 7),Jm is calculated in the limit of a
small contourΓε. In this limit the components of the
J-integral are well defined because theA(Γ) integral be-
comes negligible. The second solution (Eq. 8) can be
used for an arbitrary contour,Γ, provided an extra term,
which integrates the area enclosed byΓ or A(Γ), is in-
cluded. The two combined terms are independent ofΓ
[Nishioka (1995)], but the calculation ofJ is no longer
a single line integral. Most of the results in this paper
used the first equation by numerical integration over a
path close to the crack tip. The effect of path size, using
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Figure 2 : Nomenclature and coordinates for terms used
in theJ-integral calculation. The 1 and 2 axes are global
x andy axes. The 1′ and 2′ axes are aligned with the cur-
rent crack direction. The contourΓε starts on one crack
surface and proceeds counter-clockwise to the opposite
crack surface.

an example when the second term is needed, was also
investigated.

Once the components of theJ-integral are evaluated, the
total energy release rate for crack growth in elastic mate-
rials (linear or non-linear) is given by [Nishioka (1983)]:

G = J1cosθc +J2sinθc (10)

whereθc is the crack propagation angle measured from
x-axis in the global coordinates (see Fig. 2).J1 andJ2 are
components ofJ integral, as evaluated in Eq. 7.

Figure 3 shows two potentialJ-integral contours around
a crack tip. The curveΓ1 is a circular path centered on the
crack tip. The curveΓ2 is a rectangular path that follows
grid lines in the background MPM mesh; it is centered
on the node nearest to the crack tip. BecauseJ-integral is
path-independent in the limit of small path length or by
inclusion of the volume integral, theJ-integral contour
can be chosen arbitrarily. All calculations in this paper
were done with the rectangular path. By using a contour
that follows mesh lines in the background grid, the nu-
merical integration to findJ integral was more efficient.
Rectangular paths are denoted here asn×mpaths where
n andmare the distance from the central node to the con-

Γ1

Γ2

Figure 3 : Two possibleJ-integral contours around a
crack tip in MPM calculations. The calculations in this
paper all used the rectangular path for computational ef-
ficiency. This path is centered on the node nearest to the
crack tip and extends 2 cells in each direction from that
node.

tour in thex andy directions. All paths where chosen to
be square (n = m). The path in Fig. 3 is a 2×2 contour.

The numericalJ-integral calculations proceeded as fol-
lows. First, to get terms required for the contour integral,
all needed terms from the current particle states were ex-
trapolated to the nodes on the background mesh. The
nodal values were extrapolated by standard MPM meth-
ods using

fi,k =
∑pmp fpNi,pδk,ν(p,i)

ML
i,k

(k = 0,1,2) (11)

wheref represents any property;fi,k are the nodal values,
and fp are the values on the particles. The extrapolation
to get displacement gradients used particle strain (e.g.,
∂u1/∂x = εxx); to include cross-derivatives, the code sep-
arately tracked∂u1/∂y and ∂u2/∂x on particles rather
than just the sum or shear strainγxy. Importantly, the
extrapolation must preserve the multiple velocity fields
(k = 0,1,2) to provide information for the two sides of
the crack. Next, the node closest to the crack tip was lo-
cated and a rectangular path centered on that node was
calculated. For reasonably behaved cracks, this path will
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cross the crack once. That crossing point was located,
two nodes were placed at the cross-over point, and the
path was split to create a contour starting on one crack
surface and ending on the opposite crack surface. The
nodal values for stresses, energies, displacements,etc.,
for the two new nodes were found by interpolation be-
tween the two neighboring background mesh nodes on
the rectangular path. The neighboring nodes will always
have two velocity fields. The interpolation of these two
velocity fields gave two separate results resulting in one
new node that corresponded to the stress state on one sur-
face of the crack while the other one corresponded to the
stress state on the opposite side of the crack. Finally, as-
suming there werenJ nodes (ornJ−1 segments) along
the final J-integral contour, the components of theJ-
integral were numerically integrated using the midpoint
rule:

Jm =
nJ−1

∑
i=1

(
F(i)

m +F(i+1)
m

) ∆i

2
(m= 1,2) (12)

where∆i is the length of segmenti and the integrand at
each node,F(i)

m , is:

F(i)
m =

(
Wi,k +Ki,k

)
nm−~σi,kn̂·

∂~ui,k

∂xm
(13)

Here subscripti denotes nodal value while subscriptk de-
notes the appropriate velocity field. The integration starts
on one crack surface with the velocity field appropriate
for that crack surface (velocity field for particles above or
below the crack depending on crack orientation). When-
ever nodes have multiple velocity fields, the initial veloc-
ity field was used for the first half of the nodes while the
opposite velocity field was used for the later half of the
segments. In practice, nodes near the middle on the con-
tour had single velocity fields and there was never ambi-
guity of the appropriate velocity field.

For calculations using Eq. 8, the second term was evalu-
ated by numerical integration over the area enclosed by
the rectangular path. The particles enclosed by the path
were used as equally-weighted integration points. The
current particle properties for velocity, displacement gra-
dient, and acceleration were used to calculate the inte-
grand. The representation of the solution on the particles
does not have separate velocity fields, but, the particle
states automatically provide the proper result for the area
integration.

The energy release rate,G, was calculated by Eq. 10;
the angleθc for the calculation was found from the an-
gle of the line segment at the crack tip. To partition total
energy release rate,G, into mode I and mode II compo-
nents, theG results were converted into mode I and mode
II stress intensity factors —KI andKII . The calculation
of G is valid for any elastic material (linear or nonlin-
ear) and for heterogeneous materials. The conversion to
stress intensity factors, however, required an assumption
of linear-elastic, homogeneous materials. The formulae
are given by [Nishioka (1995), Nishioka, Murakami, and
Takemoto (1990)],

KI = δI

√
2µGβII

AI
(
δ2

I βII +δ2
II βI

) (14)

KII = δII

√
2µGβI

AII
(
δ2

I βII +δ2
II βI

) (15)

whereµ is the shear modulus,δI and δII denote crack
opening and shearing displacements near the crack tip,
andβI , βII , AI , andAII are parameters related to crack
propagation velocityC. They are given by,

βI =
√

1−C/C2
s and βII =

√
1−C/C2

d (16)

and

AI =
βI (1−β2

II )
4βI βII − (1+β2

II )2
(17)

AII =
βII (1−β2

II )
4βI βII − (1+β2

II )2
(18)

whereCs andCd are the shear and dilational wave speeds

C2
s =

µ
ρ

and C2
d =

(
κ+1
κ−1

)
µ
ρ

(19)

For a stationary crack withC = 0 (all examples in this
paper),βI = βII = 1 and

lim
C→0

AI = lim
C→0

AII =
κ+1

4
(20)

In the above equations,κ = (3− ν)/(1+ ν) for plane
stress andκ = 3− 4ν for plane strain, whereν is Pois-
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son’s ratio. These limits lead to

KI =
δI

δ
√

GE (plane stress)

=
δI

δ

√
GE

1−ν2 (plane strain) (21)

KII =
δII

δ
√

GE (plane stress)

=
δII

δ

√
GE

1−ν2 (plane strain) (22)

whereE is tensile modulus andδ is the magnitude of the
crack opening displacement.

The new MPM results needed for stress intensity factor
are the crack opening displacements,δI and δII . The
crack opening displacements were calculated from the
extension to CRAMP described in the previous section
for tracking positions of the crack surfaces. The crack
is discretized into a series of massless points connected
by segments. The last point defines the crack tip. The
last segment defines the crack orientation,θc. The crack
opening displacements were calculated using the crack
surface positions of the next to last point. These opening
displacements were resolved into displacement compo-
nents normal and transverse to the last crack segment to
provideδI andδII , respectively; the partitioning only de-
pends on the ratioδI/δII .

4 Results and Discussion

4.1 Static Results

TheJ-integral calculations and stress intensity factor par-
titioning were first verified by comparison to static re-
sults. Under static conditions, theJ-integral calculation
is path independent and it is easy to find analytical re-
sults for comparison. Figure 4 shows the analysis geom-
etry for two static beam specimens. The specimens were
loaded at time zero with loads per unit thickness,PT and
PB, applied to the top and bottom beams. This geometry
results in a pure mode I loading, double cantilever beam
specimen (DCB) whenPB =−PT or a pure mode II load-
ing, end-notch flexure specimen (ENF) whenPB = PT .
The material was assumed to be isotropic, linear elastic
with a modulus ofE = 2300MPa and a Poisson’s ratio
of ν = 0.33. The specimens were 100mm long, 24mm
high, and 1mm thick, and analyzed in plane-stress condi-
tions. All the specimens were clamped on the left edge.

2h=24
a=50

l = 100

P
T

P
B

P (N/mm)

t

P (N/mm)

t

PT = 4 X 10-4

PT = PB = 4 X 10-4

PB = -4 X 10-4

Mode I

Mode II

Figure 4 : The geometry of beam specimens used to
compare MPM results to static results. By varyingPT

andPB, this specimen can be pure mode I (DCB), pure
mode II (ENF), or mixed mode. The loads were applied
instantaneously at time zero and then held constant.

The mass density wasρ = 1.5g/cm3. In order to com-
pare the results of stress intensity evaluated by MPM
with static results, external damping was incorporated in
the computations and adjusted to make the dynamic vi-
brations damp out after a few oscillations. The damped
out results should converge to the static solution. The
damping coefficient in Eq. 1 for these specimens was set
to dk = 1000sec−1. To test convergence, the dimensions
of the background mesh cells for both the DCB and ENF
specimens were varied from 4×4mm down to 1×1mm.
For all meshes, there were 4 particles per cell. The ini-
tial spacing between particles thus varied from 2mm to
0.5mm or 4% to 1% of the crack length (50mm). The
J-integral contour was 2× 2 cells. The distance of the
contour to the crack tip thus varied from 8mm to 2mm
or 16% to 4% of the crack length.

Figures 5 and 6 compare the results of dynamic stress in-
tensity evaluated by MPM to the static results. For the
DCB specimen, the static stress intensity factors were
found using corrected beam theory [Kanninen (1973)]:

KIs = 2
√

3
PT(a+χh)

h3/2
and KIIs = 0 (23)

whereχ is a correction factor to account for crack-root
rotation effects andχ = 2/3 for isotropic materials. For
the ENF specimen, the static stress intensity factors were
found from [Carlsson, Gillespire, and Pipes (1986), Guo
and Tang (1993)]:

KIs = 0 and KIIs =
3PTa

h3/2

√
1+

2(1+ν)
5

(
h
a

)2

(24)
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Figure 5 : Comparison of the stress intensity factors,KI

andKII , for the DCB beam specimen calculated by MPM
analysis using three different cell sizes or by analytical
results (horizontal line). The dynamic MPM results had
damping such that they should converge to the static so-
lution.

For both the DCB and ENF specimens, the converged
MPM results oscillated around the analytical results and
converged to those results when damping was complete.
The mode I results converged for 2×2mm cells, while
the mode II results required smaller 1×1mm cells. The
correct partitioning of energy release rate intoKI and
KII is shown by the calculation ofKII = 0 for the DCB
specimen (Fig. 5) andKI = 0 for the ENF specimen
(Fig. 6). The partitioning was further verified by anal-
ysis of mixed-mode specimens such as usingPT = P and
PB = 0.

4.2 Dynamic Results

Three specimens were used to compare the results of
stress intensity factors evaluated by MPM throughJ-
integral to the results computed by other approaches. The
first two specimens were a central cracked tension (CCT)
specimen and a single edge notched tension (SENT)
specimen. Figures 7a and 7b show the geometry and the
axial Heaviside load boundary condition for these speci-
mens. They were analyzed under plane strain conditions.
The crack-tip loading was pure mode I. The material was
linear elastic with a modulus ofE = 200GPa and Pois-
son’s ratio ofν = 0.3. The mass density of the material
was set toρ = 5.0g/cm3. The dimensions of the speci-
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Figure 6 : Comparison of the stress intensity factors,KI

andKII , for the ENF beam specimen calculated by MPM
analysis using three different cell sizes or by analytical
results (horizontal line). The dynamic MPM results had
damping such that they should converge to the static so-
lution.

mens and the crack lengths are given in Fig. 7. The di-
mensions of background mesh cells were 0.5× 0.5mm
with 4 particles per cell. The particle spacing was thus
0.25mm which is 1.25% of the specimen width, 5.2% of
the CCT crack length, and 5% of the SENT crack length.
TheJ-integral contour was 2×2 cells.

Figures 8 and 9 compare the results of dynamic mode I
stress intensity factors of the CCT and SENT specimens
calculated by MPM to prior results calculated by the fi-
nite difference method [Chen and Wilkens (1977)]. In
the two figures, the stress intensity factors were normal-
ized by the static, infinite-sheet stress intensity factor of
KI0 = σ0

√
πa whereσ0 = 400MPa is the value of the ap-

plied stress, anda is 2.4mm and 5mm for the CCT and
SENT specimens, respectively. Figures 8 and 9 show that
the new results calculated by MPM agree well with prior
numerical results.

The third dynamic specimen analyzed was a double edge
notched plate (DENP) specimen dynamically loaded
in impact compression between the two notches (see
Fig. 7c). The DENP specimen has been used as an impact
specimen to study the dynamic fracture toughness under
shear or mode II loading [Kalthoff and Winkler (1987)].
Although analysis shows the loading is mostly mode II,
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Figure 7 : Specimen geometries for dynamic stress in-
tensity factor calculations. a. Center crack tension (CCT)
specimen. b. Single edge notched tension (SENT) spec-
imen. c. Double edge notched plate (DENP) specimen.
All specimens where loaded (as indicated by arrows) in-
stantaneously at time zero and then the stress was held
constant.
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Figure 8 : Comparison of the mode I stress intensity fac-
tor (KI ) for the CCT specimen calculated by MPM or
by finite difference method (FDM in Chen and Wilkens
(1977)).
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Figure 9 : Comparison of the mode I stress intensity fac-
tor (KI ) for the SENT specimen calculated by MPM or
by finite difference method (FDM in Chen and Wilkens
(1977)).

the mode I component is non-zero or the loading is actu-
ally mixed mode. The material was linear elastic with a
modulus ofE = 210GPa and Poisson’s ratio ofν = 0.29
and analyzed under plane-strain conditions. The impact
compression stress wasσ0 = 200MPa. The mass den-
sity of the material was set toρ = 7.833g/cm3. The
dimensions of the specimens and the crack lengths are
given in Fig. 7c. The dimensions of the background mesh
cells were 2×2mm with 4 particles per cell. The parti-
cle spacing was thus 1mm which is 1% of the specimen
width and 2% of the crack length. TheJ-integral contour
was 2× 2 cells. The MPM calculations used symme-
try and analyzed only the top half of the specimen. The
nodal velocities in they direction in the midplane of the
specimen were constrained to zero to define the symme-
try plane.

Figure 10 compares the results of mode I and mode II
stress intensity factors evaluated by MPM to prior re-
sults calculated by the Meshless Local Petrov-Galerkin
(MLPG) method [Batra and Ching (2002)]. The two
methods have similar results. The slight differences may
be a real difference because the MPM results and MLPG
results were for slightly different problems. The MLPG
analysis used highly refined particle density near the
crack tip in an attempt to resolve the effect of the ac-
tual machined crack tip with a radius of 0.15mm [Batra
and Ching (2002)]. The MPM analysis assumed a sharp
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Figure 10 : Comparison of the mode I and mode II stress
intensity factors (KI andKII ) for the DENP specimen cal-
culated by MPM or by Meshless Local Petrov Galerkin
(MLPG in Batra and Ching (2002)) method.

crack, although at the analyzed resolution, the MPM re-
sults would not distinguish crack radii less than the half
the inter-particle spacing (0.5mm). The MPM results
could be extended to higher resolution, but the similar-
ity of the results in Fig. 10 indicates the details on the
crack tip shape do not have a large effect provided the
crack is reasonably sharp (< 0.5mm).

4.3 Path Effects on DynamicJ Integral

The results in the previous section were for small rect-
angular paths (see Fig. 3) that extended 2 cells in thex
and y directions from the node nearest to the crack tip
(2× 2 cell paths). The distance from the crack tip to
these contours was 8% of the crack length for most spec-
imens, but was 20% of the crack length for the CCT and
DENP specimens. These contours were judged to be suf-
ficiently small (by comparison to other methods), that the
J-integral could be evaluated by Eq. 7. In other words,
J-integral was evaluated by the first term in Eq. 8 and
the second term was assumed to be negligible. The ad-
vantage of this approach is numerical efficiency because
the extrapolations and calculations needed for the second
term could be skipped. For calculations using larger con-
tours or for different problems with different dynamic ef-
fects, the second term might be needed. This section de-
scribes some calculations for a problem where the second
term is needed and shows it can be evaluated by MPM.

We repeated the DENP calculations for a rectangular
paths from 2×2 cells up to 10×10 cells. The later was
the largest square path that could be accommodated in
the DENP specimen and remain within the material when
using cells that were 2×2mm. For small contours (un-
der 5×5 cells), the second term in Eq. 8 was negligible
and thus Eq. 7 was accurate for calculating theJ-integral.
For larger paths, however, the differences became signifi-
cant. Figure 11 compares mode II stress intensity factors
calculated by the smallest and largest paths either with
or without the second term in Eq. 8. The lack of dif-
ference for the two 2× 2 cells path results verifies the
second term was negligible for that size path. In con-
trast, the second term has a large effect on the 10× 10
cells path results. When the second term was ignored,
the large path give poor results. The oscillations corre-
spond to stress waves passing through the contour. When
the second term was included, the large path calculation
agreed with the small path calculations for most times.
This result shows that MPM can evaluate the second term
and that analysis using both terms in Eq. 8 gives a path-
independent result.

There are discrepancies between the small path and the
two-term, large path results for times less than about 9µs.
This time corresponds to the time required for the stress
initiated by the impact loading to travel from the edge
of the specimen to the crack tip. Thus, the results for
times less than 9µs correspond to times for which stress
waves have reached theJ-integral contour, but have not
yet reached the crack tip. The results in this region are
probably more reliable with the smaller path. The rec-
ommendation is that all MPM calculations ofJ integral
should use a small path. The second term may be in-
cluded to insure path independence, but it will probably
be negligible for typical problems.

4.4 Effect of Background Mesh Size on Stress Inten-
sity Factor

The stress intensity factors were computed here by con-
vertingJ-integral results rather than by direct evaluation
from local crack-tip stresses and displacements. Because
theJ-integral calculations work well, even for relatively
crude meshes, it is reasonable to expect that the calcu-
lation of stress intensity in MPM can be accurate and
more computationally effective than in direct methods,
which might require finer meshes. In dynamic analysis,
computational efficiency is extremely important because
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Figure 11 : Calculation ofJ integral using a line integral
(one term or Eq. 7) or using a line and and area integrals
(two terms or Eq. 8). The calculations were for a small
contour (2×2cells) or for a large contour (10×10cells).
The results are for the mode II stress intensity factor (KII )
in a DENP specimen

an enormous number of time steps are often required for
typical problems. The use of a relatively coarse back-
ground mesh, while still obtaining goodJ-integral re-
sults, would save a great deal of computational time. This
section describes calculations to assess the computational
efficiency of dynamicJ-integral in MPM,i.e., to assess
the tolerance of the calculation to large background cell
sizes.

We repeated the SENT calculations (see Fig. 9), which
previously had cell size ofc = 0.5mm or 0.5 by 0.5mm
cells, with background meshes havingc = 0.25mm,c =
1.0mm, andc = 2.0mm. For a crack length of 5mm,
a specimen width of 20mm, and four particles per cell,
these cell sizes correspond to inter-particle spacings (s=
c/2) that are 2.5%, 5%, 10%, and 20% of the crack length
(a) and 0.625%, 1.25%, 2.5%, and 5% of the specimen
width (W). The J-integral contours were chosen along
grid line segments two cells away from the crack tip in
both thex andy directions. The normalized mode I stress
intensity factors for each cell size are plotted in Fig. 12.

The results in Fig. 12 show that theJ-integral results con-
verge for the relatively coarse mesh ofc = 1mm, which
corresponds to relative mesh size ofs/a = 10% and
s/W = 2.5%. The results for all finer meshes were nearly
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Figure 12 : Calculation of the mode I stress intensity fac-
tor (KI ) in an SENT specimen as a function of the back-
ground mesh density. All calculations used a rectangu-
lar path that extend two cells from the crack tip in each
direction. The background cells sizes, however, were
varied usingc = 0.25mm,c = 0.5mm, c = 1.0mm, or
c = 2.0mm.

identical. The results for the coarsest mesh (c = 2mm)
showed deviations or lost accuracy. The ability to obtain
accurateJ-integral results without the need for highly re-
fined crack-tip meshes is especially important in dynamic
problems because each factor of 2 in cell size leads to
a factor of 23 = 8 (in 2D or 24 = 16 in 3D) increase
in calculation time. There is a factor of two for each
dimension and another factor of two because smaller
meshes require proportionally smaller times steps in ex-
plicit solvers. The ability to find accurateJ-integral when
c = 1.0mm instead of needingc = 0.25mm provides a
factor 64 (in 2D) or 256 (in 3D) efficiency in crack prob-
lems.

5 Conclusions

The material point method is a new method that has inter-
esting potential for handling fracture problems involving
crack propagation. MPM has previously been extended
to allow analysis of problems with explicit cracks [Nairn
(2003)]. It can include explicit cracks with the ease of
finite element analysis while retaining the advantages of
meshless methods for the ease of handling crack propa-
gation in arbitrary directions. This paper has described
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new MPM algorithms for calculatingJ-integral and for
partitioning the total energy release rate into mode I and
mode II stress intensity factors. Several examples were
considered and all show that MPM results agree with
analytical solutions or with prior numerical results. Al-
though calculations of dynamicJ-integral, can usually be
calculated by Eq. 7 using a small path around the crack
tip, true path-independent results require the line inte-
gral to be supplemented with an area integral inside the
contour as in Eq. 8. MPM can findJ integral by either
approach and both have computational efficiency. The
area integral can be found by using the particles enclosed
in the contour as integration points. Finally, some con-
vergence tests suggest thatJ-integral calculations are ac-
curate even with fairly coarse meshes. The introduction
outlined three key problems to numerical analysis of dy-
namic fracture. The results in Nairn (2003) and the re-
sults in this paper show that MPM can solve the first two
problems. Future work should be aimed at the third prob-
lem or full MPM analysis of fracture problems including
crack propagation.
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