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Abstract

An approach for the simulation of explosions of ‘‘energetic devices’’ is described. In this context, an energetic device is a metal con-
tainer filled with a high explosive (HE). Examples include bombs, mines, rocket motors or containers used in storage and transport of HE
material. Explosions may occur due to detonation or deflagration of the HE material, with initiation resulting from either mechanical or
thermal input. This approach is applicable to a wide range of fluid–structure interaction scenarios, the application to energetic devices is
chosen because it demonstrates the full capability of this methodology.

Simulations of this type are characterized by a number of interesting and challenging behaviors. These include the transformation of
the solid HE into highly pressurized gaseous products that initially occupy regions which formerly contained only solid material. This
rapid pressurization of the container leads to large deformations at high strain rates and eventual case rupture. Once the container breaks
apart, the highly pressurized product gas that escapes the failing container generates shock waves that propagate through the initially
quiescent surrounding fluid.

The approach, which uses a finite-volume, multi-material compressible CFD formulation, within which solid materials are repre-
sented using a particle method known as the Material Point Method, is described, including certain of the sub-grid models required
to close the governing equations. Results are first presented for ‘‘rate stick’’ and ‘‘cylinder test’’ scenarios, each of which involves det-
onating unconfined and confined HE material, respectively. Experimental data are available for these configurations and as such they
serve as validation tests. Finally, results from an unvalidated ‘‘fast cookoff’’ simulation in which the HE is initiated by thermal input,
which causes deflagration, are shown.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The work presented here describes a numerical
approach for ‘‘full physics’’ simulations of dynamic fluid
structure interactions involving large deformations and
material transformations (e.g., phase change). ‘‘Full phys-
ics’’ refers to problems involving strong interactions
between the fluid field and solid field temperatures and
velocities, with a full Navier–Stokes representation of fluid
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materials and the transient, nonlinear response of solid
materials. These interactions may include chemical or
physical transformation between the solid and fluid fields.

Approaches to fluid structure interaction (FSI) prob-
lems are typically divided into two classes. ‘‘Separated’’
approaches treat individual materials as occupying distinct
regions of space, with interactions occurring only at mate-
rial interfaces. The details of those interactions vary
between implementations, and are often a function of the
degree, or ‘‘strength’’ of the coupling between the fluid
and solid fields. Because of the separated nature of the
materials, only one set of state variables is needed at any
point in space, since only one material is allowed to exist
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at that point. ‘‘Averaged’’ model approaches allow all

materials to exist at any point in space with some probabil-
ity. Variables describing the material state vary continu-
ously throughout the computational domain, thus, the
state of every material is defined at every point in space.
Distinct material interfaces are not defined, rather the
interaction between materials is computed in an average
sense, and, as such, interactions among materials may take
place anywhere.

While both the separated and averaged model
approaches have their respective merits, the averaged
model, when carried out on an Eulerian grid, allows arbi-
trary distortion of materials and material interfaces. How-
ever, these distortions can be catastrophic for the solid
material, as the deformation history of the solid must be
transported through the Eulerian grid. This transport can
lead to non-physical stresses and the interface between
materials is also subject to diffusion. The latter problem
can be mitigated via surface tracking and the use of a single
valued velocity field [1,2], but this does not eliminate the
problems of stress transport.

The approach described here uses the averaged model
approach and addresses the issue of stress transport by
integrating the state of the solid field in the ‘‘material’’
frame of reference through use of the Material Point
Method (MPM) [3,4]. MPM is a particle method for solid
mechanics that allows the solid field to undergo arbitrary
distortion. Because the fluid state is integrated in the Eule-
rian frame, it can also undergo arbitrary distortion. MPM
uses a computational ‘‘scratchpad’’ grid to advance the
solution to the equations of motion, and by choosing to
use the same grid used in the Eulerian frame of reference,
interactions among the materials are facilitated on this
common computational framework. By choosing to use
an infinitely fast rate of momentum transfer between the
materials, the single velocity field limit is obtained, and
the interface between materials is limited to, at most, a
few cells. Thus, in the differential limit, the separated model
can be recovered. This means that with sufficient grid reso-
lution, the accuracy of the separated model and the robust-
ness of the averaged model can be enjoyed simultaneously.

The theoretical and algorithmic basis for the fluid struc-
ture interaction simulations presented here is based on a
body of work of several investigators at Los Alamos
National Laboratory, primarily Bryan Kashiwa, Rick
Rauenzahn and Matt Lewis. Several reports by these
researchers are publicly available and are cited herein. It
is largely through our personal interactions that we have
been able to bring these ideas to bear on the simulations
described herein.

An exposition of the governing equations is given in the
next section, followed by an algorithmic description of the
solution of those equations. This description is first done
separately for the materials in the Eulerian and Lagrangian
frames of reference, before details associated with the inte-
grated approach are given. Because this manuscript is
focused on explosions of energetic devices, some of the
models used to close the governing equations are described
briefly. Finally, results from three calculations are pre-
sented. The first two of these are intended to serve as vali-
dation of the general approach and the models used, while
the third is an unvalidated demonstration calculation. The
reader is encouraged to browse Section 5 at this point to
better appreciate the direction that the subsequent develop-
ment is headed.

2. Governing equations

The governing multi-material model equations are sta-
ted and described, but not developed, here. Their develop-
ment can be found in [5]. Here, our intent is to identify the
quantities of interest, of which there are 8, as well as those
equations (or closure models) which govern their behavior.
Consider a collection of N materials, and let the subscript r

signify one of the materials, such that r ¼ 1; 2; 3; . . . ;N . In
an arbitrary volume of space V ðx; tÞ, the averaged thermo-
dynamic state of a material is given by the vector
½Mr; ur; er; T r; vr; hr; rr; p�, the elements of which are the r-
material mass, velocity, internal energy, temperature, spe-
cific volume, volume fraction, stress, and the equilibration
pressure. The r-material averaged density is qr ¼ Mr=V .
The rate of change of the state in a volume moving with
the velocity of r-material is:

1

V
DrMr

Dt
¼
XN

s¼1

Crs ð1Þ

1

V
DrðMrurÞ

Dt
¼ hr$ � rþ $ � hrðrr � rÞ þ qrg

þ
XN

s¼1

frs þ
XN

s¼1

uþrsCrs ð2Þ

1

V
DrðMrerÞ

Dt
¼ �qrp

Drvr

Dt
þ hrsr : $ur � $ � jr

þ
XN

s¼1

qrs þ
XN

s¼1

hþrsCrs ð3Þ

Eqs. (1)–(3) are the averaged model equations for mass,
momentum, and internal energy of r-material, in which r

is the mean mixture stress, taken here to be isotropic, so
that r ¼ �pI in terms of the hydrodynamic pressure p.
The effects of turbulence have been explicitly omitted from
these equations, and the subsequent solution, for the sake
of simplicity. However, including the effects of turbulence
is not precluded by either the model or the solution method
used here.

In Eq. (2) the term
PN

s¼1frs signifies a model for the
momentum exchange among materials. This term results
from the deviation of the r-field stress from the mean stress,
averaged, and is typically modeled as a function of the rel-
ative velocity between materials at a point. (For a two mate-
rial problem this term might look like f12 ¼ K12h1h2ðu1 � u2Þ
where the coefficient K12 determines the rate at which
momentum is transferred between materials). Likewise, in
Eq. (3),

PN
s¼1qrs represents an exchange of heat energy
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among materials. For a two material problem q12 ¼
H 12h1h2ðT 2 � T 1Þ where Tr is the r-material temperature
and the coefficient Hrs is analogous to a convective heat
transfer rate coefficient. The heat flux is jr ¼ �qrbr$T r

where the thermal diffusion coefficient br includes both
molecular and turbulent effects (when the turbulence is
included).

In Eqs. (1)–(3) the term Crs is the rate of mass conversion
from s-material into r-material, for example, the burning of
a solid reactant into gaseous products. The rate at which
mass conversion occurs is governed by a reaction model,
two examples of which are given in Section 4.1. In Eqs. (2)
and (3), the velocity uþrs and the enthalpy hþrs are those of
the s-material that is converted into r-material. These are
simply the mean values associated with the donor material.

The temperature Tr, specific volume vr, volume fraction
hr, and hydrodynamic pressure p are related to the r-mate-
rial mass density, qr, and specific internal energy, er, by way
of equations of state. The four relations for the four quan-
tities ðT r; vr; hr; pÞ are:

er ¼ erðvr; T rÞ ð4Þ
vr ¼ vrðp; T rÞ ð5Þ
hr ¼ qrvr ð6Þ

0 ¼ 1�
XN

s¼1

qsvs ð7Þ

Eqs. (4) and (5) are, respectively, the caloric and thermal
equations of state. Eq. (6) defines the volume fraction, h,
as the volume of r-material per total material volume, and
with that definition, Eq. (7), referred to as the multi-mate-
rial equation of state, follows. It defines the unique value
of the hydrodynamic pressure p that allows arbitrary masses
of the multiple materials to identically fill the volume V.
This pressure is called the ‘‘equilibration’’ pressure, peq [6].

A closure relation is still needed for the material stress
rr. For a fluid rr ¼ �pIþ sr where the deviatoric stress is
well known for Newtonian fluids. For a solid, the material
stress is the Cauchy stress. The Cauchy stress is computed
using a solid constitutive model and may depend on the
rate of deformation, the current state of deformation (E),
the temperature, and possibly a number of history vari-
ables. Such a relationship may be expressed as:

rr � rrð$ur;Er; T r; . . .Þ ð8Þ

The approach described here imposes no restrictions on the
types of constitutive relations that can be considered. More
specific discussion of some of the models used in this work
is found in Section 4.

Eqs. (1)–(8) form a set of eight equations for the eight-
element state vector ½Mr; ur; er; T r; vr; hr; rr; p�, for any arbi-
trary volume of space V moving with the r-material veloc-
ity. The approach described here uses the reference frame
most suitable for a particular material type. As such, there
is no guarantee that arbitrary volumes will remain coinci-
dent for materials described in different reference frames.
This problem is addressed by treating the specific volume
as a dynamic variable of the material state which is inte-
grated forward in time from initial conditions. In so doing,
at any time, the total volume associated with all of the
materials is given by:

V t ¼
XN

r¼1

Mrvr ð9Þ

so the volume fraction is hr ¼ Mrvr=V t (which sums to one
by definition). An evolution equation for the r-material
specific volume, derived from the time variation of Eqs.
(4)–(7), has been developed in [5]. It is stated here as:

1

V
DrðMrvrÞ

Dt
¼ f h

r $ � uþ vrCr � f h
r

XN

s¼1

vsCs

" #

þ hrbr
DrT r

Dt
� f h

r

XN

s¼1

hsbs
DsT s

Dt

" #
ð10Þ

where f h
r ¼ hrjrPN

s¼1
hsjs

, b is the constant pressure thermal

expansivity, and jr is the r-material bulk compressibility.

The evaluation of the multi-material equation of state
(Eq. (7)) is still required in order to determine an equilib-
rium pressure that results in a common value for the pres-
sure, as well as specific volumes that fill the total volume
identically.

3. Numerical implementation

A description of the means by which numerical solutions
to the equations in Section 2 are found is presented next.
This begins with separate, brief, overviews of the method-
ologies used for the Eulerian and Lagrangian reference
frames. The algorithmic details necessary for integrating
them to achieve a tightly coupled fluid–structure interac-
tion capability is provided in Section 3.3.

3.1. Eulerian multi-material method

The Eulerian method implemented here is a cell-cen-
tered, finite-volume, multi-material version of the ICE
(for Implicit, Continuous fluid, Eulerian) method [7] devel-
oped by Kashiwa and others at Los Alamos National Lab-
oratory [8]. ‘‘Cell-centered’’ means that all elements of the
state are colocated at the grid cell-center (in contrast to a
staggered grid, in which velocity components may be cen-
tered at the faces of grid cells, for example). This colocation
is particularly important in regions where a material mass
is vanishing. By using the same control volume for
mass and momentum it can be assured that as the material
mass goes to zero, the momentum also goes to zero at the
same rate, leaving a well defined velocity. The technique is
fully compressible, allowing wide generality in the types of
problems that can be addressed.

Our use of the cell-centered ICE method employs time
splitting: first, a Lagrangian step updates the state due to
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the physics of the conservation laws (i.e., right hand side of
Eqs. (1)–(3)); this is followed by an Eulerian step, in which
the change due to advection is evaluated. For solutions in
the Eulerian frame, the method is well developed and
described in [8].

In the mixed frame approach used here, a modification to
the multi-material equation of state is needed. Eq. (7) is
unambiguous when all materials are fluids or in cases of a
flow consisting of dispersed solid grains in a carrier fluid.
However in fluid–structure problems the stress state of a
submerged structure may be strongly directional, and the
isotropic part of the stress has nothing to do with the hydro-
dynamic (equilibration) pressure peq. The equilibrium that
typically exists between a fluid and a solid is at the interface
between the two materials: there the normal part of the trac-
tion equals the pressure exerted by the fluid on the solid
over the interface. Because the orientation of the interface
is not explicitly known at any point (it is effectively lost in
the averaging) such an equilibrium cannot be computed.

The difficulty, and the modification that resolves it, can
be understood by considering a solid material in tension
coexisting with a gas. For solid materials, the equation of
state is the bulk part of the constitutive response (that is,
the isotropic part of the Cauchy stress vs. specific volume
and temperature). If one attempts to equate the isotropic
part of the stress with the fluid pressure, there exist regions
in pressure–volume space for which Eq. (7) has no physical
solutions (because the gas pressure is only positive). This
can be seen schematically in Fig. 1, which sketches equa-
tions of state for a gas and a solid, at an arbitrary
temperature.

Recall that the isothermal compressiblity is the negative
slope of the specific volume vs. pressure. Embedded struc-
v
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Fig. 1. Specific volume vs. pressure for a gas phase material and a solid
phase material. Light dashed line reflects an altered solid phase equation
of state to keep all materials in positive equilibration pressure space.
tures considered here are solids and, at low pressure, pos-
sess a much smaller compressibility than the gasses in
which they are submerged. Nevertheless the variation of
condensed phase specific volume can be important at very
high pressures, where the compressibilities of the gas and
condensed phase materials can become comparable (as in
a detonation wave, for example). Because the speed of
shock waves in materials is determined by their equations
of state, obtaining accurate high pressure behavior is an
important goal of our FSI studies.

To compensate for the lack of directional information
for the embedded surfaces, we evaluate the solid phase
equations of state in two parts. Above a specified positive
threshold pressure (typically 1 atmosphere), the full
equation of state is respected; below that threshold pressure,
the solid phase pressure follows a polynomial chosen to be
C1 continuous at the threshold value and which approaches
zero as the specific volume becomes large. The effect is to
decouple the solid phase specific volume from the stress
when the isotropic part of the stress falls below a threshold
value. In regions of coexistence at states below the threshold
pressure, p tends to behave according to the fluid equation
of state (due to the greater compressibility) while in regions
of pure condensed phase material p tends rapidly toward
zero and the full material stress dominates the dynamics
as it should.

3.2. The Material Point Method

Solid materials with history dependent constitutive rela-
tions are more conveniently treated in the Lagrangian
frame. Here we briefly describe a particle method known
as the Material Point Method (MPM) which is used to
evolve the equations of motion for the solid phase materi-
als. MPM is a powerful technique for computational solid
mechanics, and has found favor in applications involving
complex geometries [9], large deformations [10] and frac-
ture [11], to name a few. After the description of MPM,
its incorporation within the multi-material solution is
described in Section 3.3.

Originally described by Sulsky et al. [3,4], MPM is a par-
ticle method for structural mechanics simulations. MPM is
an extension to solid mechanics of FLIP [12], which is a
particle-in-cell (PIC) method for fluid flow simulation.
The method typically uses a cartesian grid as a computa-
tional scratchpad for computing spatial gradients. This
same grid also functions as an updated Lagrangian grid
that moves with the particles during advection and thus
eliminates the diffusion problems associated with advection
on an Eulerian grid. At the end of a timestep, the grid is
reset to the original, regularly ordered, position.

In explicit MPM, the equations of motion are cast in the
form [4]:

ma ¼ Fext � Fint ð11Þ
where m is the mass matrix, a is the acceleration vector, Fext

is the external force vector (sum of the body forces and
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tractions), and Fint is the internal force vector resulting
from the divergence of the material stresses.

The solution procedure begins by projecting the particle
state to the nodes of the computational grid, to form the
mass matrix m and to find the nodal external forces Fext,
and velocities, v. In practice, a lumped mass matrix is usu-
ally used. These quantities are calculated at individual
nodes by the following equations, where the

P
p represents

a summation over all particles:

mi ¼
X

p

Sipmp; vi ¼
P

pSipmpvp

mi
; Fext

i ¼
X

p

SipFext
p ð12Þ

and i refers to individual nodes of the grid. mp is the parti-
cle mass, vp is the particle velocity, and Fext

p is the external
force on the particle. Sip is the shape function of the ith
node evaluated at xp. Traditionally, standard tri-linear
shape functions are used, but recently smoother interpo-
lants, as described in [13], have yielded improved results.

A velocity gradient, $vp is computed at the particles
using the velocities projected to the grid:

$vp ¼
X

i

Gipvi ð13Þ

where Gip is the gradient of the shape function of the ith
node evaluated at xp.

This is used as input to a constitutive model which is
evaluated on a per particle basis, the result of which is the
Cauchy stress at each particle, rp. With this, the internal
force due to the divergence of the stress is calculated via:

Fint
i ¼

X
p

GiprpV p ð14Þ

where Vp is the particle volume.
Eq. (11) can then be solved for a. An explicit forward

Euler method is used for the time integration:

vL ¼ vþ aDt ð15Þ
and the particle position and velocity are explicitly updated
by:

vpðt þ DtÞ ¼ vpðtÞ þ
X

i

SipaiDt ð16Þ

xpðt þ DtÞ ¼ xpðtÞ þ
X

i

SipvL
i Dt ð17Þ

This completes one timestep.
By describing and implementing MPM in an indepen-

dent fashion, validation of the method itself as well as sub-
models (e.g., constitutive models and contact) is simplified.
However, we emphasize that its use here is for selected
material field description within the general multi-material
formulation. This integration is described next.

3.3. Integration of MPM within the Eulerian multi-material

formulation

An important feature of this work is the ability to repre-
sent a material in either the Lagrangian or Eulerian frame.
This allows treating specific phases in their traditionally
preferred frame of reference. The Material Point Method,
is used to time advance solid materials that are best
described in a Lagrangian reference frame. By choosing
the background grid used to update the solid materials to
be the same grid used in the multi-material Eulerian
description, all interactions among materials can be com-
puted in the common framework, according to the momen-
tum and heat exchange terms in Eqs. (2) and (3). This
results in a robust and tightly coupled solution for interact-
ing materials with very different responses.

To illustrate how the integration is accomplished in an
algorithmic fashion the explicit steps for advancing a
fluid–structure interaction problem from time t to time
t þ Dt are described below.

(1) Project particle state to grid: A simulation timestep
begins by interpolating the particle description of
the solid to the grid. This starts with a projection of
particle data to grid vertices, or nodes, as described
in Eq. (12), and is followed by a subsequent projec-
tion from the nodes to the cell-centers, given by (for
velocity):
uj ¼
PN

i¼1wijmiuiPN
i¼1wijmi

ð18Þ

Since our work uses a cartesian grid, N ¼ 8. wij ¼ 1
8
,

except for those nodes at symmetry boundaries where
the weight of those nodes must be doubled in order to
achieve the desired effect.
(2) Compute the equilibration pressure: While Eq. (7) and
the surrounding discussion describes the basic pro-
cess, one specific point warrants further explanation.
In particular, the manner in which each material’s
volume fraction is computed is crucial. Because the
solid and fluid materials are evolved in different
frames of reference, the total volume of material in
a cell is not necessarily equal to the volume of a com-
putational cell. Material volume is tracked by evolv-
ing the specific volume for each material according
to Eq. (10). The details of this are further described
in step 11.
With the materials’ masses and specific volumes,
material volume can be computed (V r ¼ Mrvr) and
summed to find the total material volume. The vol-
ume fraction hr is then computed as the volume of
r-material per total material volume. With this, the
solution of Eq. (7) can be carried out at each cell
using a Newton–Raphson technique [14], which
results in new values for the equilibrium pressure,
peq, volume fraction, hr and specific volume, vr.

(3) Compute face-centered velocities, u�r , for the Eulerian

advection: At this point, fluxing velocities are com-
puted at each cell face. The expression for this is
based on a time advanced estimate for the cell-cen-
tered velocity. A full development can be found in
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[8,5] but here, only the result is given. The following
expression gives the face normal velocity component
based on adjacent cell values:
u�r ¼
qrL

urL
þ qrR

urR

qrL
þ qrR

� 2vrL
vrR

Dt
vrL
þ vrR

� �
peqR
� peqL

Dx

� �
þ gDt

ð19Þ

The first term above is a mass weighted average of the
logically left and right cell-centered velocities, the sec-
ond is a pressure gradient acceleration term, and the
third is acceleration due to the component of gravity
in the face normal direction. Not shown explicitly is
the necessary momentum exchange at the face-cen-
ters. This is done on the faces in the same manner
as described subsequently in step 10 for the cell-cen-
tered momentum exchange.
(4) Multiphase chemistry: Compute sources of mass,
momentum, energy and specific volume as a result
of phase changing chemical reactions for each r-mate-
rial, Cr; urCr; erCr and vrCr. Specifics of the calcula-
tion of Cr are model dependent, and examples are
given in Section 4.1. Care must be taken to reduce
the momentum, internal energy and volume of the
reactant by an amount proportional to the mass con-
sumed each timestep, so that those quantities are
depleted at the same rate as the mass. When the reac-
tant material is described by particles, decrementing
the particle mass automatically decreases the momen-
tum and internal energy of that particle by the appro-
priate amount. This mass, momentum and internal
energy is transferred to the product material’s state,
and the volume fraction for the reactant and product
materials is recomputed.

(5) Compute an estimate of the time advanced pressure, p:
Based on the volume of material being added to (or
subtracted from) a cell in a given timestep, an incre-
ment to the cell-centered pressure is computed using:P P

Dp ¼ Dt

N
r¼1vrCr � N

r¼1$ � ðh
�
r u�r ÞPN

r¼1hrjr

ð20Þ

p ¼ peq þ Dp ð21Þ

where jr is the r-material bulk compressibility. The
first term in the numerator of Eq. (20) represents
the change in volume due to reaction, i.e., a given
amount of mass would tend to occupy more volume
in the gas phase than the solid phase, leading to an
increase in pressure. The second term in the numera-
tor represents the net change in volume of material in
a cell due to flow into or out of the cell. The denom-
inator is essentially the mean compressibility of the
mixture of materials within that cell. This increment
in pressure is added to the equilibrium pressure com-
puted in step 2 and is the pressure used for the
remainder of the current timestep. Again, the details
leading to this equation can be found in [8].
(6) Face centered pressure p*: The calculation of p* is dis-
cussed at length in [5]. For this work, it is computed
using the updated pressure by:
p� ¼ pL

qL

þ pR

qR

� ��
1

qL

þ 1

qR

� �
ð22Þ

where the subscripts L and R refer to the logically left
and right cell-centered values, respectively, and q is
the sum of all materials’ densities in that cell. This
will be used subsequently for the computation of
the pressure gradient, $p�.
(7) Material stresses: For the solid, we calculate the
velocity gradient at each particle based on the grid
velocity (Eq. (13)) for use in a constitutive model to
compute particle stress. Fluid stresses are computed
on cell faces based on cell-centered velocities.

(8) Accumulate sources of mass, momentum and energy at

cell-centers: These terms are of the form:
DðmÞr ¼ DtV
XN

s¼1;s 6¼r

Cs ð23Þ

DðmuÞr ¼ �DtV hr$p� þ $ � hrðrr � rÞ þ
XN

s¼1;s 6¼r

usCs

" #

ð24Þ

DðmeÞr ¼ �DtV f h
r p
XN

s¼1
$ � ðh�r u�r Þ þ

XN

s¼1;s 6¼r
esCs

h i
ð25Þ

Note that the only source of internal energy being
considered here is that due to ‘‘flow work’’. This is re-
quired for the compressible flow formulation, but
other terms, such as heat conduction are at times
included.
(9) Compute Lagrangian phase quantities at cell-centers:
The increments in mass, momentum and energy com-
puted above are added to their time t counterparts to
get the Lagrangian values for these quantities. Note
that here, some Lagrangian quantities are denoted
by an L� superscript. This indicates that all physical
processes have been accounted for except for inter-
material exchange of momentum and heat which is
described in the following step.
ðmÞLr ¼ ðmÞ
t
r þ DðmÞr ð26Þ

ðmuÞL�r ¼ ðmuÞtr þ DðmuÞr ð27Þ
ðmeÞL�r ¼ ðmeÞtr þ DðmeÞr ð28Þ
(10) Momentum and heat exchange: The exchange of
momentum and heat between materials is computed
according to:
ðmuÞLr ¼ ðmuÞL�r þ Dtmr

XN

s¼1

hrhsKrsðuL
s � uL

r Þ ð29Þ

ðmeÞLr ¼ ðmeÞL�r þ Dtmrcvr

XN

s¼1

hrhsH rsðT L
s � T L

r Þ ð30Þ
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These equations are solved in a pointwise implicit
manner that allows arbitrarily large momentum
transfer to take place between materials. Typically,
in FSI solutions, very large (1015) values of K are
used, which results in driving contacting materials
to the same velocity. Inter-material heat exchange is
usually modeled at a lower rate. Again, note that
the same operation must be done following Step 3
above in the computation of the face-centered
velocities.
(11) Specific volume evolution: As discussed above in step 2,
in order to correctly compute the equilibrium pressure
and the volume fraction, it is necessary to keep an
accurate accounting of the specific volume for each
material. Here, we compute the evolution in specific
volume due to the changes in temperature and pres-
sure, as well as phase change, during the foregoing
Lagrangian portion of the calculation, according to:
DðmvÞr ¼ DtV vrCr þ f h
r $ �

XN

s¼1

h�s u�s þ hrbr
_T r � f h

r

XN

s¼1

hsbs
_T s

" #

ð31Þ
ðmvÞLr ¼ ðmvÞtr þ DðmvÞr ð32Þ

where b is the constant pressure thermal expansivity
and _T ¼ T L�T t

Dt is the rate of change of each material’s
temperature during the Lagrangian phase of the
computation.
(12) Advect fluids: For the fluid phase, use a suitable
advection scheme, such as that described in [15], to
transport mass, momentum, internal energy and spe-
cific volume. As this last item is an intensive quantity,
it is converted to material volume for advection, and
then reconstituted as specific volume for use in the
subsequent timestep’s equilibrium pressure calcu-
lation.

(13) Update nodal quantities for solid materials: Those
changes in solid material mass, momentum and inter-
nal energy that are computed at the cell-centers are
interpolated to the nodes as field quantities, e.g.,
changes in momentum are expressed as accelerations,
for use in Eq. (15).

(14) Advect solids: For the solid phase, interpolate the
time advanced grid velocity and the corresponding
velocity increment (acceleration) back to the parti-
cles, and use these to advance the particle’s position
and velocity, according to Eqs. (16) and (17).

This completes one timestep. In the preceding, the user
has a number of options in the implementation. The
approach taken here was to develop a working MPM code
and a separate working multi-material ICE code. In addi-
tion, some routines specific to the integration are required,
for example, to transfer data from grid nodes to cell-cen-
ters. We note, however, that the fluid structure interaction
methodology should not be looked at in the context of a
‘‘marriage’’ between an Eulerian CFD code and MPM.
The underlying theory is a multi-material description that
has the flexibility to incorporate different numerical
descriptions for solid and fluid fields within the overarching
solution process. To have flexibility in treating a widest
range of problems, it was our desire that in the integration
of the two algorithms, each of the components be able to
function independently. As described here, this method is
fully explicit in time. To make this implicit with respect
to the propagation of pressure waves, a Poisson equation
is solved in the calculation of Dp, which is in turn used to
iteratively update the face-centered velocities [8].

4. Models

The governing equations given in Section 2 are incom-
plete without closure equations for quantities such as pres-
sure, stress, and rate of exchange of mass between
materials. Equations of state, constitutive models and reac-
tion models provide the needed closure. Brief descriptions
of some of the models used in this work are given below.

4.1. High energy material reaction models

Two types of High Energy (HE) reaction models were
considered here. The first is a model for detonation, in
which the reaction front proceeds as a shock wave through
the solid reactant, leaving highly pressurized product gases
behind the shock. The second is a deflagration model, in
which the reaction proceeds more slowly through the reac-
tant in the form of a thermal burn. Each is described here.

4.1.1. The JWL++ detonation model

The detonation model used in two of the calculations
discussed in Section 5 is a reactive flow model known as
JWL++ [16]. JWL++ consists of equations of state for
the reactant and the products of reaction as well as a rate
equation governing the transformation from product to
reactant. In addition, the model consists of a ‘‘mixer’’
which is a rule for determining the pressure in a mixture
of product and reactant, as found in a partially reacted cell.
Because pressure equilibration among materials is already
part of the multi-material CFD formulation described in
Section 3, the mixer was not part of the current implemen-
tation. Lastly, two additional rules apply. The first is that
reaction begins in a cell when the pressure in that cell
exceeds 200 MPa. Finally, no more than 20% of the explo-
sive in a cell is allowed to react in a given timestep.

The Murnaghan equation of state [17] used for the solid
reactant material is given by:

p ¼ 1

nj
1

vn
� 1

� �
ð33Þ

where v ¼ q0=q, and n and j are material dependent model
parameters. Note that while the reactants are solid materi-
als, they are assumed to not support deviatoric stress. Since
a detonation propagates faster than shear waves, the
strength in shear of the reactants can be neglected. Since
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it is not necessary to track the deformation history of a par-
ticular material element, in this case, the reactant material
was tracked only in the Eulerian frame, i.e. not represented
by particles within MPM.

The JWL C-term form is the equation of state used for
products, and is given by:

p ¼ A expð�R1vÞ þ B expð�R2vÞ þ C
q0jvn�1

ð34Þ

where A, B, C, R1; R2; q0 and j are all material dependent
model parameters.

The rate equation governing the transformation of reac-
tant to product is given by:

dF
dt
¼ Gðp þ qÞbð1� F Þ ð35Þ

where G is a rate constant, and b indicates the power
dependence on pressure. q is an artificial viscosity, but
was not included in the current implementation of the
model. Lastly:

F ¼
qproduct

qreactant þ qproduct

ð36Þ

is the burn fraction in a cell. This can be differentiated and
solved for a mass burn rate in terms of dF:

C ¼ dF
dt
ðqreactant þ qproductÞ ð37Þ

This detonation model is empirically based and was de-
signed to be simple and efficient, and while it works well
for the geometries employed here, it may not be suitable
for all applications. Implementation of other models within
the algorithmic and computational framework described
here is straightforward.

4.1.2. Deflagration model

The rate of thermal burning, or deflagration, of a mono-
propellant solid explosive is typically assumed to behave
as:

D ¼ Apn ð38Þ

where D can be thought of as the velocity at which the burn
front propagates through the reactant (with units of length/
time) and p is the local pressure [18]. A and n are parame-
ters that are empirically determined for particular explo-
sives. Because deflagration is a surface phenomena, our
implementation requires the identification of the surface
of the explosive. The surface is assumed to lie within those
cells which have the highest gradient of mass density of the
reactant material. Within each surface cell, an estimate of
the surface area a is made based on the direction of the gra-
dient, and the rate D above is converted to a mass burn rate
by:

C ¼ aDqreactant ð39Þ

where qreactant is the local density of the explosive. While the
reaction rate is independent of temperature, initiation of
the burn depends on reaching a threshold temperature at
the surface.

Since the rate at which a deflagration propagates is
much slower than the shear wave speed in the reactant, it
is important to track its deformation as pressure builds
up within the container. This deformation may lead to
the formation of more surface area upon which the reac-
tion can take place, and the change to the shape of the
explosive can affect the eventual violence of the explosion.
Because of this, for deflagration cases, the explosive is rep-
resented by particles in the Lagrangian frame. The stress
response is treated by an implementation of ViscoSCRAM
[19], which includes representation of the material’s visco-
elastic response, and considers effects of micro-crack
growth within the granular composite material.

4.2. Constitutive model for container break-up

One of the unique features of the approach described
here is its ability to treat the interaction of fluid regions
that are initially separated by a solid material. Such a situ-
ation is found when gaseous products of reaction are con-
tained in a metal canister surrounded by air. When the
pressure within the container is sufficient, it will rupture
and the product material will be in direct contact with
the surrounding air. Given the ability to treat these situa-
tions, it is worthwhile to accurately describe the failure of
the container.

While a full exposition of metal plasticity and failure is
beyond the scope of this manuscript, a brief description of
the current implementation is given here. More details of
the models and algorithms, as well as validation of these
models against experimental data, can be found elsewhere
[20–22].

The Cauchy stress in the metal container was additively
decomposed into a volumetric component and a deviatoric
component. The deviatoric part of the stress is modeled
using hypoelasticity, while the pressure behaves according
to an equation of state. The Green–Naghdi stress rate
[23,32] is used to provide objectivity to the constitutive
equation. The assumption of an additive decomposition
of the rate of deformation into elastic and plastic parts
was made for this work, even though a multiplicative
decomposition as described by other investigators [25–29]
is likely more appropriate, and will be considered in future
works.

The volumetric stress is computed using a Mie–Grünei-
sen equation of state [30]:

p ¼
q0C2

0ðg� 1Þ g� C0

2
ðg� 1Þ

� �
g� Saðg� 1Þ½ �2

þ C0E; g ¼ q=q0 ð40Þ

where p is the pressure, C0 is the bulk speed of sound, C0 is
the Grüneisen’s gamma at the reference state, Sa is a linear
Hugoniot slope coefficient, E is the internal energy per unit
reference volume, q0 is the initial density, and q is the cur-
rent density,
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In the elastic domain, the deviatoric stress is computed
using a hypoelastic model with a constant shear modulus.
The von Mises yield condition is used to determine whether
the material is in the plastic domain. The flow stress (ry) is
computed using the Johnson–Cook model [31]:

ryð�p; _�p; T Þ ¼ r0 1þ B
r0

ð�pÞn
	 


1þ C lnð_��pÞ
h i

1� ðT �Þm½ �

ð41Þ

_��p ¼
_�p

_�p0

; T � ¼ ðT � T 0Þ
ðT m � T 0Þ

ð42Þ

where r0 is the yield stress at zero plastic strain, and
ðB;C; n;mÞ are material constants, �p is the equivalent plas-
tic strain, _�p is the plastic strain rate, _�p0 is a reference strain
rate, T0 is a reference temperature, and Tm is the melt
temperature.

The plastic strain and the deviatoric Cauchy stress in the
plastic domain are computed with a semi-implicit stress
update algorithm [24,23]. A portion of the plastic work is
converted into heat using a Taylor–Quinney coefficient of
0.9. The temperature of a material point is updated
accordingly.

Experiments show that metal containers fail both by
void nucleation and growth and by adiabatic shear band-
ing. We use three criteria to determine whether a material
point has failed.

(1) Melting: A material point is tagged as ‘‘failed’’ when
its temperature is greater than the melting point of
the material at the applied pressure.

(2) TEPLA-F failure condition: A material point is also
assumed to have failed when the TEPLA-F failure
criterion [33] is satisfied. This criterion can be written
as
ðf =fcÞ2 þ ð�p=�
f
pÞ

2 ¼ 1 ð43Þ

where f is the current porosity, fc is the maximum
allowable porosity, �p is the current plastic strain,
and �f

p is the plastic strain at fracture.The evolution
of porosity is given by [34,35]:

_f ¼ _f nucl þ _f grow ð44Þ
_f grow ¼ ð1� f ÞtrðDpÞ ð45Þ

_f nucl ¼
fn

ðsn

ffiffiffiffiffiffi
2p
p
Þ

exp � 1

2

ð�p � �nÞ2

s2
n

" #
_�p ð46Þ
where Dp is the rate of plastic deformation tensor, fn

is the volume fraction of void nucleating particles, �n
is the mean of the distribution of nucleation strains,
and sn is the standard deviation of the distribution.
A gaussian distribution of initial porosity is assumed.

The plastic strain at fracture is determined using
the Johnson–Cook damage model [36]:
�f
p ¼ D1 þ D2 exp

D3

3
r�

� �	 

1þ D4 lnð _�p

�Þ
� �

½1þ D5T ��;

r� ¼ trðrÞ
req

ð47Þ
where D1; D2; D3; D4; D5 are material constants, r

is the Cauchy stress, and T* is the homologous tem-
perature. We assume that the plastic strains at failure
are also distributed in a gaussian manner. The distri-
bution of fracture strains is simulated by evolving an
internal damage variable based on the plastic strain
and by initializing the damage variable to a non-zero
value at the beginning of the simulation.
(3) Loss of material stability: The third criterion that is
used to determine failure is the loss of material stabil-
ity of the solid. Since this condition is not sufficient to
determine failure, we check two conditions – the
Drucker stability condition [37] and the loss of
hyperbolicity of the governing equations (the deter-
minant of the acoustic tensor changes sign) [38,39].

Determination of the acoustic tensor requires a
search for a normal vector around the material point
and is therefore computationally expensive. A simpli-
fication of this criterion is a check which assumes that
the direction of instability lies in the plane of the
maximum and minimum principal stress [40]. In this
approach, we assume that the strain is localized in a
band with normal n, and the magnitude of the veloc-
ity difference across the band is g. Then the bifurca-
tion condition leads to the relation
Rijgj ¼ 0; Rij ¼ Mikjlnknl þMilkjnknl � riknjnk ð48Þ

where Mijkl are the components of the co-rotational
tangent modulus tensor and rij are the components
of the co-rotational stress tensor. If detðRijÞ 6 0, then
gj can be arbitrary and there is a possibility of strain
localization.

If this condition for the loss of hyperbolicity is
met, a material point deforms in an unstable manner
and failure is assumed to have occurred at that point.
After it has been determined that a material point has
failed, the stress at that point is set to zero – indicating that
a free surface has been created. As the simulation evolves,
cracks develop in the material around the failed particles
ultimately leading to the break-up of the container.
5. Numerical results

The simulation results presented here are intended to
serve two purposes, to validate the method presented
above, and to demonstrate its capabilities. While results
from some very basic validation tests, as well as an order
or accuracy study, can be found in [41,42], those presented
here are targeted toward exploding energetic devices. Addi-
tional validation tests of an intermediate degree of com-
plexity would be an ideal addition to what is presented



Fig. 2. Unconfined 12 mm ‘‘rate-stick’’. The mass density of the reactant
material is volume rendered, and shows evidence of the curvature of the
reaction front, and the compression of the reactant just ahead of the
reaction. Behind the detonation, most of the reactant material is
consumed.
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here, but the availability of theoretical solutions or experi-
mental data for such cases is not good. In contrast, exten-
sive experimental data have been collected for the first two
cases shown here, and these data are compared with simu-
lation results. The first test, detonation of a series of cylin-
ders of explosive, validates both the general multi-material
framework, including material transformation, as well as
the detonation model itself. In the second test, a cylinder
of explosive confined in a copper tube is detonated. There,
the confidence gained from the first test is built upon and
extended to include the interaction of the highly pressur-
ized product gases with the confining copper cylinder. Wall
velocity of the copper tube is compared with experimental
measurements.

For the last case, a steel cylinder filled with PBX-9501 is
heated to the critical temperature to commence a deflagra-
tion. The simulation continues through the rupture of the
case when product gases are free to interact with the sur-
rounding air. This simulation demonstrates a unique capa-
bility of this approach, in which initially separate fluid
regions are allowed to interact following the failure of the
steel container. While previous calculations give some con-
fidence in the validity of this calculation, it does make use
of models which have not been fully validated, and as such,
should be considered a prediction.

5.1. Rate stick simulations

A well known phenomenon of detonating solid high
explosives is the so-called ‘‘size effect’’. The size effect refers
to the change of the steady state detonation velocity of
explosives, Us with size R0 [16]. In order to validate our
implementation of the JWL++ detonation model within
our multi-material framework, a parameter study was
conducted for cylinders of Ammonium Nitrate Fuel Oil
(ANFO-K1) with length of 10 cm and radii ranging from
4 mm to 20 mm. In addition, a one-dimensional simulation
provided for the ‘‘infinite radius’’ case. In each of the finite
radius cases, the cylinder was initially surrounded by air.
Detonation was initiated by impacting the cylinder at
90 m/s against the boundary of the computational domain,
at which a zero velocity Dirichlet boundary condition was
imposed. This impact was sufficient to raise the pressure
within the cylinder to above the threshold for initiation
of reaction. The detonation velocity was determined by
comparing the arrival time of the detonation at two points
along the cylinder, sufficiently into the far field that the
detonation had reached a steady state.

Material properties for these cases included the following:
The reactant was described by a Murnaghan equation
of state with parameters n ¼ 7:4; j ¼ 3:9� 1011 Pa�1 and
q0 ¼ 1160:0 kg=m3. The products of reaction were
described by a JWL C-term form equation of state with
parameters A ¼ 2:9867� 1011 Pa; B ¼ 4:11706 � 109 Pa;
C ¼ 7:206147� 108 Pa; R1 ¼ 4:95; R2 ¼ 1:15; x ¼ :35 and
q0 ¼1160:0 kg=m3. The JWL++ parameters were taken as:
G ¼ 3:5083� 10�7 s�1 Pab; b ¼ 1:3; q0 ¼1160:0 kg=m3. In
all, this simulation included three materials; the reactant
material, the products of reaction and the surrounding air.

Simulations were carried out on uniform meshes with
cell sizes of 1.0 mm, 0.5 mm and 0.25 mm. A one-quarter
symmetry was assumed in all cases. A qualitative represen-
tation is shown in Fig. 2, which depicts a volume rendering
of the density of the reactant as the detonation has pro-
gressed about halfway into the material for the 12 mm
radius case at the finest resolution. The curvature of the
burn front and the elevated density just ahead of it are
evident in this view.

Fig. 3 is a plot of detonation velocity vs. the inverse of
the sample radius. Experimental data are represented by
open squares, while results of the simulations are shown
with filled circles (h = 1.0 mm), filled diamonds
(h = 0.5 mm) and filled triangles (h = 0.25 mm). Connect-
ing lines for the numerical data are in place to guide the
eyes of the reader. Evident from this plot is the convergence
of detonation velocities with grid resolution, and the gener-
ally good agreement between experimental and computed
detonation velocities at the finer grid resolutions, particu-
larly at the larger radii, where both the experimental data
and the model are considered more reliable. Better agree-
ment with data could likely have been achieved by ‘‘tun-
ing’’ the JWL++ parameters, a step which is commonly
done to calibrate the model with a particular hydrodynam-
ics code. That step was neglected here, as the radius at
which the subsequent test was carried out is within the
range at which good agreement exists for all resolutions.
Note that ‘‘goodness’’ of fit has been judged solely by
inspection, not by any analytical means.

Again, while this set of tests doesn’t validate the full
fluid–structure interaction approach, it does give credibility
to the underlying multi-material formulation, including the
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experiment, as well as convergence of detonation velocity with grid
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Fig. 4. Copper cylinder test simulation. The walls of the copper tube are
depicted as an isosurface of density of the copper material and are colored
by velocity magnitude. Pressure is represented by a volume rendering, and
indicates the progress of the detonation, as well as the interaction of the
pressurized products of reaction with the confining walls.
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Fig. 5. Copper cylinder test simulation. Experimental and computational
velocities of the cylinder vs. time. Data was collected at a point 25 cm from
the point of initiation of the detonation.
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pressure equilibration and the exchange of mass between
materials, in this case as governed by the JWL++ detona-
tion model, as well as momentum and energy.

5.2. Cylinder test simulation

The cylinder test is an experiment which is frequently
used to calibrate equations of state for detonation prod-
ucts of reaction [43]. In this case, the test consists of an
oxygen free, high conductivity (OFHC) copper tube with
an inner radius of 2.54 cm, an outer radius of 3.06 cm
and a length of 35 cm. The tube is filled with QM-100,
an Ammonium Nitrate emulsion, and a detonation is initi-
ated at one end of the tube. Measurements of the wall
velocity wall are made at individual points along the length
of the tube using Fabry–Perot interferometry or streak
cameras.

A simulation of this configuration was performed and
wall velocity data were collected at an axial location
25 cm from the point of initiation. The reactant was again
described by a Murnahan equation of state with parame-
ters n ¼ 7:0; j ¼ 1:02��9 Pa�1 and q0 ¼ 1260:0 kg=m3.
The products of reaction were described by a JWL C-term
form equation of state with parameters A ¼ 4:8702�
1011 Pa; B ¼ 2:54887� 109 Pa; C ¼ 5:06568� 108 Pa; R1 ¼
5:0; R2 ¼ 1:0; x ¼ :3 and q0 ¼ 1260:0 kg=m3. The
JWL++ parameters were taken as: G ¼ 9:1� 10�5 s�1

Pa; b ¼ 1:0; q0 ¼ 1260:0 kg=m3. The copper tube was
modeled as an elastic–plastic material with a density
of 8930.0 kg/m3, bulk and shear moduli of 117.0 GPa
and 43.8 GPa, respectively, and a yield stress of
70.0 MPa. The copper tube was surrounded by air. In all,
4 materials are present in this simulation, the reactant,
the products of reaction, the copper tube, and the sur-
rounding air.
Again, a one-quarter symmetry section of the full cylin-
der was modeled using a cell size of h = 0.5 mm and a total
domain size of 35 cm · 6 cm · 6 cm. Zero gradient condi-
tions described the exterior boundaries, which allowed
material to exit the domain.

Fig. 4 shows a snapshot of this test midway through the
simulation, at t ¼ 18:8 ls. The copper tube is depicted
using an iso-surface of the cell-centered mass density (the
two surfaces are the inner and outer walls of the tube) that
is colored by velocity. A volume rendering of the pressure
field is also present. Alternating bands of high and low
velocity of the tube wall are evidently due to the reflection



Table 1
Material constants for 4340 steel

q (kg/m3) K (GPa) l (GPa) T0 (K) Tm (K) C0 (m/s) C0 Sa

7830.0 173.3 80.0 294.0 1793.0 3574 1.69 1.92

A (MPa) B (MPa) C n m D1 D2 D3 D4 D5

792.0 510.0 0.014 0.26 1.03 0.05 3.44 �2.12 0.002 0.61
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of the impulse provided by the shock between the inner and
outer surfaces of the tube.

Velocity data was collected from those particles which
were both initially at an axial location of 25 cm, and upon
the exterior surface of the tube. The velocity from this col-
lection of particles was averaged over the circumference
and plotted vs. time in Fig. 5. In addition, experimental
results (LLNL, Shot No. K260-581) are also shown. Both
datasets are time shifted to coincide with the arrival of
the detonation. Visual inspection of the data indicates rea-
sonably good agreement between the experimental and
numerical data. There are some differences in the high fre-
quency component of the datasets, but without multiple
sets of experimental data against which to compare, it is
difficult to know how much of this deviation is due to
experimental uncertainty. Further analysis of both the
numerical and experimental data would be required to
deem this case fully validated, but these results provide
confidence in the ability of this approach to generate mean-
ingful results for scenarios such as this.
5.3. Fast cookoff simulation

Cookoff tests, generally speaking, refer to experiments in
which energetic material is heated until it reaches ignition.
The rate of heating typically differentiates these tests in to
‘‘fast’’ or ‘‘slow’’ cookoff. In slow cookoff tests, the temper-
ature is usually increased very slowly, perhaps a few
degrees per hour, so that the entire sample is able to equil-
ibrate and is nearly isothermal when ignition occurs. In fast
cookoff tests, heat is added to the system quickly, which is
likely to lead to relatively local ignition at the surface of the
sample. Fast cookoff is more likely to occur in an accident
scenario, where ordinance may be subject to heating by a
fire, as occurred on the USS Forrestal in 1967.

The scenario considered here consists of a cylindrical
4340 steel container with both inner diameter and length
of 10.16 cm, and wall thickness of 0.635 cm, filled with
PBX-9501. The temperature of the container was initialized
to be 1�K above the ignition temperature in the deflagra-
tion model for PBX-9501. In this way, the entire outer sur-
face of the explosive is ignited simultaneously. This is, of
course, somewhat unrealistic for an accident scenario, but
rather is an idealization. Additionally, while the deflagra-
tion model described in Section 4.1.2 is used throughout
the simulation, it is possible for deflagrations, also known
as thermal burns, to transition to detonation (DDT). How-
ever, the physics governing DDT are not yet well under-
stood, and good numerical models to describe the
phenomenon are not yet available.

Mechanical properties for PBX 9501 were obtained
from the literature [19], while the material constants used
in the modeling of 4340 steel are shown in Table 1. A tem-
perature-dependent specific heat model [44] was used to
compute the internal energy and the rate of temperature
increase in the material. We assumed an initial mean poros-
ity of 0.005 with a standard deviation of 0.001. The critical
porosity was 0.3. The mean strain at void nucleation was
assumed to be 0.3 with a standard deviation of 0.1. The
scalar damage variable was initialized with a mean of
0.005 and a standard deviation of 0.001.

Three planes of symmetry are assumed, which allows
modeling only 1/8th of the total geometry. Each dimension
of the computational domain was 9.0 cm discretized into
180 computational cells, for a grid spacing of h =
0.5 mm. Four materials were present, the steel container
and the PBX-9501, each of which are treated in the
Lagrangian frame of reference, as well as the air initially
surrounding the container, and the products of reaction
from the deflagration, both of which are represented in
the Eulerian frame of reference. Neumann zero gradient
boundary conditions were used on the exterior domain
boundaries to allow material to flow out of the domain,
as the explosion progressed.

Results from this simulation are shown in Fig. 6. In each
panel, the container and explosive are depicted by isosur-
faces, blue and red, respectively. In Fig. 6b–e, a volume
rendering of the mass density of the product material of
the reaction is also included. Fig. 6a shows the initial state
of the geometry, while the remaining panels show the pro-
gression of the simulation at the times indicated in the cap-
tions. The last two panels depict the same time, with the
product gas removed in the final panel, to more clearly
show the state of the container at that time. Close compar-
ison of the initial and final panels also reveals the reduction
in size of the explosive pellet, due to the reaction. Product
gas first begins to leave the container through a rupture
where the side and end of the container meet (Fig. 6c),
and ultimately also through a rupture in middle (Fig. 6e).
The formation of these openings is governed by material
localization as described in Section 4.2.

Since no surface tracking is required in this method,
there is no requirement to track the creation of the new sur-
faces that occur due to material failure. Gas is free to
escape through the openings simply because there is no
longer anything in those computational cells to prevent it
once the gap is sufficiently wide.



Fig. 6. Time series of a steel container (blue) filled with deflagrating plastic bonded explosive (red). A volume rendering of the mass density of the products
of reaction is also shown, except in the final 0 panel, where it is removed to more clearly show the regions where the container has failed. (a) t = 0 ms, (b)
t = .137 ms, (c) t = .203 ms, (d) t = .259 ms, (e) t = .312 ms, (f) t = .312 ms. (For interpretation of the references in color in this figure legend, the reader is
referred to the web version of this article.)
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6. Conclusions

An approach for solving full-physics fluid–structure
interaction scenarios has been presented which uses an
Eulerian frame description for fluids and a Lagrangian
frame description for solids. The equations governing the
behavior of these materials, including their interactions,
are based on an averaged model approach, which elimi-
nates the need to maintain a description of the interface
between the materials. In addition to allowing for arbitrary
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distortion of material interfaces, the treatment of solid to
gas phase reactions is also facilitated by this approach.

The validation calculations presented here give a high
degree of confidence in the quality of the solutions
obtained by this method, while the final demonstration cal-
culation indicates the complexity of the situations that can
be considered. It is important to point out, however, that in
the authors’ experience, this approach is best suited to high
deformation rate problems, and may do less well in situa-
tions where the solid is loaded more slowly. This is true
for two reasons. First, while making the algorithm implicit
in time with respect to pressure is relatively straightfor-
ward, doing so with respect to the stress waves in the solid
is less so. Implicit versions of MPM have been imple-
mented with success, but the strategy for incorporating
any of these within the integrated formulation is not obvi-
ous, and may require making the entire algorithm fully
implicit in time. Second, as a method for solid mechanics,
currently MPM is best suited for highly dynamic loading,
although improvements are continuously being made that
should improve its performance in quasi-static scenarios.

In order to improve the efficiency of calculations, a
structured adaptive mesh refinement (SAMR) strategy is
being pursued that will allow resources to be concentrated
on those parts of the domain where they are needed. The
current implementation allows for the solid materials
described using MPM to be advanced at a single level of
resolution, while those materials integrated in the Eulerian
frame are advanced on an arbitrary number of levels of res-
olution. Thus, in the final simulation shown here, the con-
tainer and solid explosive, which require the greatest degree
of resolution to accurately compute the phase transforma-
tion and material response, can be represented on the finest
level. Meanwhile the region away from the device can
advance at a lower spatial resolution until container expan-
sion and rupture dictate the need for refinement. This strat-
egy enhances the range of simulations that can be
considered, reduces the required computational time and
lowers the requirement for the storage of data.
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