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The Generalized Interpolation Material Point M ethod

S. G. Bardenhagen® 2 and E. M. Kober®

Abstract:  The Material Point Method (MPM) discretdn computational solid mechanics the Finite Element
solution procedure for computational solid mechaniddethod (FEM) (see, e.g. [Johnson (1987)]) has been
is generalized using a variational form and a Petrowery successfully applied to a wide range of problems
Galerkin discretization scheme, resulting in a family afith good results. However, body fixed FEM meshes can
methods named the Generalized Interpolation Materia difficult and time consuming to generate for complex
Point (GIMP) methods. The generalization permits idetiiree—dimensional objects. Further, mesh distortion as-
tification with aspects of other point or node based diseciated with large deformations compromises solution
crete solution techniques which do not use a body—fixadcuracy, ultimately requiring re-meshing. These dif-
grid, i.e. the “meshless methods”. Similarities are notéidulties have spurred the development of alternate dis-
and some practical advantages relative to some of theegtization strategies which avoid mesh distortion by dis-
methods are identified. Examples are used to demaretizing at points and never maintaining a body—fixed
strate and explain numerical artifact noise which can beesh.

expected in MPM calculations. This noise resultsin NO@uite a number of “meshless methods” have been de-
physical local variations at the material points, whekgs|oped. Some of the ways in which the methods differ
constitutive response is evaluated. It is shown to destrgy|ude whether or not a temporary mesh is used in the
the explicit solution in one case, and seriously degrades§|ution procedure, whether the discretization procedure
in another. History dependent, inelastic constitutive lavsggins with the differential equations or a weak form, and
can be expected to evolve erroneously and report ing¢the construction and support of the point weighting
curate stress states because of noisy input. The noisgfctions. In a recent review article, [Belytschko, Kro-
due to the lack of smoothness of the interpolation fungyauz, Organ, Fleming, and Krysl (1996)], similarities
tions, and occurs due to material points crossing COmmstween Smooth Particle Hydrodynamics, Diffuse Ele-
tational grid boundaries. The next degree of smoothngggnt, Element Free Galerkin, and Reproducing Kernel
available in the GIMP methods is shown to be capable pfyticle methods are discussed, and it is found that for
eliminating cell crossing noise. certain cases all may considered particular examples of
the more general Partition of Unity Method, [Baia”

keyword: MPM, PIC, meshless methods, Petrovg,, Mellenk (1997)]. The partion of Unity[ method
Galerkin discretization. uses a variational form to specialize the discrete approx-
imation in regions of the problem domain using a stan-
dard Galerkin discretization scheme. This is in contrast

The past several decades have brought tremendoust@dbe development, from a variational form but using a
vances in computing power and provided fertile grourfgetrov—Galerkin discretization scheme, of methods such
for the development of the computational sciencedS Adaptive Characteristic Petrov—Galerkin Finite Ele-
ment, [Demkowicz and Oden (1986)], and Meshless Lo-
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velopments in particle—in—cell (PIC) methods. PIC metfihe derivation of the MPM algorithm has recently been
ods were originally used in computational fluid mechaast in variational, or weak form, [Sulsky, Chen, and
ics to model highly distorted fluid flow, [Harlow (1963)].Schreyer (1994); Sulsky, Zhou, and Schreyer (1995)],
Subsequent developments advanced the understangimyiding a standard setting for the discretization of the
of the algorithm and brought modifications to reducgoverning equations, [Johnson (1987)]. If drawing at-
numerical diffusion in the FLIP algorithm, [Brackbill,tention to the similarities between FEM and MPM by
Kothe, and Ruppel (1988); Burgess, Sulsky, and Bradkeriving MPM from a weak form enhances communi-
bill (1992)]. Fundamental aspects of PIC methods ination between research communities, it provides a valu-
clude the interpolation of information between a grid arable contribution. In addition, however, this setting pro-
particles, and precisely which solution variables are agdes a venue for generalizing the MPM discretization
cribed to the grid, and which to the particles. The getechnique, which has not been taken advantage of. PIC
eral trend has been toward keeping more properties mapthods were developed by considering particles to pro-
particles. This trend has been continued in the develde an alternate representation of solution variables on
opment of MPM, where the ability of the particles, othe grid. The particle representation was used to advect
“material points”, to advect naturally Lagrangian corthese variables through the grid, avoiding (in particular)
stitutive response state variables, has been exploitedifficulties associated with interface tracking. In order
application to computational solid mechanics, [Sulskihat grid and particle solutions have the appropriate cor-
Chen, and Schreyer (1994); Sulsky, Zhou, and Schreyespondence, the nature of transferring information be-
(1995)]. In MPM the grid may be viewed as a temporatyeen grid and particles had to be carefully attended to.
computational scratch pad, as the material points cakRgr example, both the MPM algorithm and its predeces-
the complete solution. sor FLIP, [Brackbill and Ruppel (1986)], conserve total

Particle methods are well suited for solid mechani#dass and momentum in interpolating from particles to
where it is natural to have a reference state and préid and back again. In fact, essentially the same govern-
erties which are a function of location in the referendBd equations presented in [Sulsky, Chen, and Schreyer
state. Material response is governed by continuum né994); Sulsky, Zhou, and Schreyer (1995)] may be de-
chanics constitutive models which generate stress ba&¥gd. without reference to a variational form, simply by
on both the history and current mechanical state. Thégsidering conservation of momentum on the compu-
models are often complex and require the calculati&¥ional grid, and conservation of mass and momentum
of “internal variables” representing the (history depef? the interpolation between grid and particle represen-
dent) material state. Lagrangian particles allow easy if@tions of the current solution, [Brackbill and Ruppel
plementation of these constitutive models, and straigHfL986)].

forward advection of internal variables through the contdere the full generality of the variational formulation
putational grid. MPM has found application in the sds exploited. The variational form of the governing
lution of a wide variety of problems in solid mechanequations provides a consistent framework for general-
ics, including mantle convection, [Lenardic, Moresi, anding the MPM discretization technique, and similarities
Muhlhaus (2000)], silo discharge, [Vdieowski, Youn, to other meshless methods, [Belytschko, Krongauz, Or-
and Yeon (1999)], membrane stretching, [York, Suffan, Fleming, and Krysl (1996); Batk& and Mellenk
sky, and Schreyer (1999)], landfill settlement, [Zho@1997); Demkowicz and Oden (1986); Atluri and Zhu
Stormont, and Chen (1999)], elastic vibrations, [SuW2000)], may be identified. The use of smoother repre-
sky, Chen, and Schreyer (1994)], collisions, [Bardesentations of discrete material point data allows an en-
hagen, Harstad, Maudlin, Gray, and Foster (1998); Stite family of methods to be developed. A significant
sky, Chen, and Schreyer (1994); Sulsky and Schreyesult of this generalization is smoother representation of
(1996); Sulsky, Zhou, and Schreyer (1995)], and the ngarticle data on the computational grid. This removes
sponse of granular material, [Bardenhagen and Brackhilhumerical artifact inherent in the MPM formulation,
(1998); Bardenhagen, Brackbill, and Sulsky (2000b,ayhich can develop when material points fail to regis-
Bardenhagen, Guilkey, Roessig, Brackbill, Witzel, artdr in a self-similar fashion on the computational grid.
Foster (2001)]. This situation can be expected to arise regularly in fi-
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nite deformation analyses, and is demonstrated to very
seriously degrade the accuracy of solutions obtained us-

ing MPM. The nature of the general derivation suggejspa.év dx+/ 0.3 v dx
denoting the family of Material Point Method discretiza<? Q

tion schemes developed here the Generalized Interpaela{ pb-dvdx+ [ T1-8vdS (1)
tion Material Point (GIMP) methods. It is hoped that the 72 90

generalization is more deserving of its acronym’s formal . o _
definition (an attractive trim) than its slang. Herep is the current mass densityis the acceleratiorg

, . . is the Cauchy stresb, is the specific body forca, is the
In the first section the GIMP methods are derived froBnoundary traction, andv is an admissible velocity field.

a variational form using a Petrov—Galerkin discretiza- . . .
: 2 . Qyw nd-
tion scheme. The specialization to the MPM algonthihe entire current volume is denoted ith bound

is shown. In the second section a GIMP algorithm is da 00, which is the union of that part of the boundary

. . . . : n which tractions are prescri , and that part on
veloped in which the interpolation functions aredrt (as \c/)vhich \(/:elcgc?':i:;(s)a?ea ?epscerist():eabnamT and that p
opposed to MPM, for which they are @°). Properties p. v _
of this version, denoted the contiguous particle GImphe essence of the discretization procedure is to repre-
method, and more general “fuzzy particle” discretizS€Nt @ solid material continuum as a collection of body
tions, are discussed. Next the performance of Mpii¥ed (Lagrangian) particles, or “material points™. The
and contiguous particle GIMP methods are compared §§yms particle and material point will be used inter-
considering the quasi—static compression of a continu&'?\angeat‘)‘ly throughout this manuscript. Pa,lrtlcles are de-
column, and stress wave propagation in the same barfined by “particle characteristic functionsfp(x). In

convergence study is reported. Finally, conclusions dtactice the particle characteristic functions are non zero
drawn. over a small volume. They define the space occupied,

perhaps only partially, by a given particle, and can be
thought of as the spatially varying volume fraction of that
particle. They are functions of current particle position

_ and, most generally, deformation state.
2 Derivation of the Discrete Equations

2.1 Initial Discretization
In the following derivation of the discrete equations, bol
face quantities indicate tensofs,is the gradient opera-
tor, and- and: are first order (vector) and second ord
tensor contractions, respectively. The subsgifstused
to index material_ point variak?les, andyrid vertex vari- ZXi =1 ¥ x. @)
ables. The notatioly , andy , is used to denote summa-4 P
tion over all material points, and over all grid vertices,
respectively. Where)(iIO denotes the particle characteristic functions re-

Of interest in solid mechanics is the deformation ariiricted to their initial positions and undeformed state.
material response of a continuous solid body under ptg-the simplest cases, particle characteristic functions are
scribed loads and initial conditions, as governed by cofken to be initially non—overlapping. However, nothing
servation of mass and momentum. Conservation of m&gcludes overlapping, or “fuzzy” particles, as discussed
is satisfied implicitly by leaving discrete particle massdg Section 3.3. Initial particle volumey,p, are defined
unchanged throughout a computation. Here we devel

the discrete version of conservation of momentum, which

permits evolution of particle momenta in time. We con- _

sider a deformable body acted upon by body forces aisi= o Xp(X) dx, 3)
subjected to either kinematic or traction boundary condi-

tions everywhere on its surface. The variational form faevhereQ' is the initial volume of the continuum body to
conservation of momentum may be written be discretized.

Iiihe particle characteristic functions are required to be a
é)rartition of unity in the initial configuration, i.e.
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In addition to initial particle volumes, the material poinparticle characteristic functions in the initial discretiza-
initial massesmip, momentapip, and stresseﬂip, must tion provides exact conservation of total mass and mo-
be defined. These properties may be assigned by inteentum between the continuous system and its discrete
grating properties of the continuum against the partictepresentation. However, it also results in the possibil-
characteristic functions, ity of particles near surfaces having scaled values of vol-
ume, mass and momentum relative to interior, or “bulk”
particles. In practice, particularly for non—overlapping

miIo =/ p (X)Xip(X) dx, (4) particle characteristic functions, it may be easier to ap-

o proximate the spatial extent of a continuous body as a

_ S _ union of the support of particle characteristic functions.
Pp= /Qi P (X)V'(X)Xp(x) dlx, (5) In that case, Eqn.s 7 and 8 only hold in the limit of infi-

_ nite spatial resolution, but the initialization integrals are
wherep' is the continuum body’s initial mass densitysimplified aSQimei - Qip A)
andV' the initial velocity. Note that these definitions re-
sult in reduced particle volumes, mass and momenta o  Discrete Solution Procedure
boundary particles whe®' ﬂQip < Q‘p, whereQ‘p de- H ) o _ o _
notes the support of particle characteristic functioim | e main .reascl)n to_expll_cnly detail 'Fhe initial discretiza-
the initial configuration. Particle densities are defined 48N technique is to identify connections to the represen-
the ratio of particle mass to particle volume. Note thigtion of m_aterlal pomt_data_ln the discrete solution pro-
using this definition, the initial densitp}, = m, /Vj), is c_edure. leen a _mate”"_"l .p_omt_prope.)rt)g,_ arepresenta-
consistent with the (volume averaged) continuum bod;}'gn consistent with the !nltlal_dlscretlzatlon procedure is
initial density everywhere, including on boundary partil€ SUM over the material points,
cles. Similarly, particle velocities are defined as the ratio
of particle momentum to particle mass, giving an initial
particle velocity,v}, = p},/m,, consistent with the con- FOX) =3 foXp(x). (9)
tinuum body’s. Initial values of particle Cauchy stresses, P
o, may be assigned The particle characteristic functions are used as a basis
for representing particle data throughout the computa-
LX) tional dom_ain aqd _determine the degree of smoothness
o, = A o' (x) S/i dx, (6) of the spatial variation.
p

Using Egn. 9 to develop a continuous representation of
the particle densityp,, stressgy,, and rate of change

i . . y . .
where g'(x) is the continuum body’s '”'“"?" Cauc_hyo momentum density) ,/Vp, splits the volume integrals
stress. The particle stresses are also consistent with ine

: L 0 sums of integrals over particles
volume averaged continuum initial stress everywhere.
Using Egn. 2, the following identities obtain

prp / .

——-dv dx OpXp.0 vdx =
%/me Vo +% QpNQ PXe

Z/ MoXep.gvdx+ [ T-ovdS

7 Jona Vp GloN

_ _ _ _ _ _ whereQ, denotes the current support of particle charac-
> Pp= Z/ip' (X' (X)Xp(x) dx = /i p'(x)V'(x) dx, teristic functionp, and the current particle volumes are
P P defined by

P [ [ _ [ (20)
Sh=3 [ P0oxpx) ax = [ pi0 ax )

p

i.e., the continuum body initial mass and momentum are q 11
conserved exactly in the discretization. Employing th\éP - /meQXp(X) X, (11)
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analogous to Egn. 3. fint — S 6p-0SpVp. (16)
The other fundamental aspect of PIC methods is the use P

of a computational grid. In MPM the grid serves as@ = Z mybSp, (17)
scratch pad for the solution of conservation of momen- 5

tum, from which particle states are updated. To complete
the discretization procedure, approximations to the dg—= [ TSu(x)dS (18)
missible velocity fields, or test functions, are introduced !

in terms of grid vertex quantities and grid shape funénd. for simplicity, the specific body force is assumed to
tions. This step is analogous to the development of FERE constant. Here the rate of change of momentum on the
discrete equations. However, use of both grid and parti€léd is denoted by,, the “internal force” due to stress is
basis functions to represent test functions and trial furfé@noted byf", and the forces due to body forces and
tions, respectively, is a Petrov—Galerkin method, [Johfurface tractions are denoted tyandf}, respectively,
son (1987)], and therefore more akin to some of tRed
meshless methods (in particular [Demkowicz and Oden
(1986); Atluri and Zhu (2000)]) than the FEM.

— 1
The continuous representatiay(x), of grid data,gy, is Svp = \Tp/g mQXp(X)Sv(X) dx, (19)
then P

1

T8 = g |, xe0)0S00 dx. (20)
g(x) = wS(x). (12) P

The functionsS,, and OS,p, will be referred to as the
HereS,(x) is a computational grid shape function, whickveighting, and gradient weighting, functions respec-
takes unit value at node and zero value at the othettively. Note that both are implicitly functions of grid ver-
nodes. Further, the shape functions are required totbr positiorx, and particle position , as emphasized by

a partition of unity, i.e. the subscripts. The weighting functions are also func-
tions of the integration domain, i.e. the current particle
volume.

gs,(x) =1V x (13) Grid mass,m,, and momentap, are interpolated from

the particles to initialize the grid using the weightin
As can be seen from Eqn.s 2, 9, 12 and 13, the grid Shﬁ!?ﬁ P 9 g gnting

: : - ) ) ctions, i.e.
functions and patrticle characteristic functions have simi-
lar requirements and serve analogous functions. An im-
portant difference is the continuity imposed in practice. =
While useful discrete equations can be developed us%: %mps,p,
distributions for particle characteristic functions, the grid
shape functions are typically @°. Py = Z PpSup: (22)
Substitution of the grid shape function representation for P

the admiSSibIe VeIOCity fleldS as in Eqn 12, and use Qﬁd gnd Velocities may then be deﬁned\QS: pv/rnv
the arbitral‘ineSS Of the admiSSible VeIOCity fieldS, yiel(gecause the gnd shape functions are a partition Of unity’

(21)

the discrete governing equations Eqgn. 13, and using the definition of particle volume,
Eqgn. 11, gives

p, ="+ + ), (14)

where SSp=1 Y XuXp, (23)
\"

(15) i.e. the weighting functions are also partitions of unity.

Pv= %S,ppp Using Egn. 23 it is easily shown that
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constructing a continuous approximation to the grid ve-
_ locity using grid shape functions, i.e. Eqn. 12. The strain
dmy=3% 5 mSp="3 m, (24) rate,¢, may then be calculated,
\Y vV p 4]

IPv=3 % PoSip = %pp- ) ) = % (OVe) +0v(x)T) = %(DSvVerVvDSv)v (29)

The general weighting functions preserve the propert

that mass and momentum are conserved (in total, as\/\)ihere a superscripl indicates the transpose. Particle

Eqn.s 7-8) in interpolating from particles to the grid. strain ratesgp, are determined using a volume weighted

. _ _ average over each particle
Eqn. 14 gives the acceleration of the computational grid,

ay = p,/m,. All that remains is to use this information to

update the particles. Because there may be more particles 4 _ 1, .
than grid vertices, a unique relationship between partiéie= - /Q mQXp(X)S(X) dx = Z > (DS/va+VvDS/p> .
and grid variables does not exist in general, i.e. Eqn. 15 " " v (30)
is not invertible. Rather, particle updates are defined by

Hence it can be seen from Eqn.s 16 and 30 that the gra-
) Py = _ dient weighting functionsl1S,, are used to interpolate
Xp = Z ES"P - EVVS"P’ (26) information to and from the particles. The MPM algo-
rithm, [Sulsky, Chen, and Schreyer (1994); Sulsky, Zhou,
. b _ and Schreyer (1995)], also uses the same functions to in-
Pp = Z m, Sip="p Z aSip, (27) terpolate gradients to and from the computational grid.

As emphasized using the above notation, particle Egn's 14 - 18, 21, 22, 26, 27, and 30 are identical in
c

sitions are updated using (grid) velocities, and parti grm to those presented for MPM, [Sulsky, Chen, and

velocities are updated using (grid) accelerations. Int chreyer (1994); Sulsky, Zhou, and Schreyer (1995)].

: : " o : he difference is that the weighting functions and gra-
polating changes in position and velocity in this W&¥ient weighting functions have been generalized. These
serves to reduce numerical diffusion, [Brackbill, Kothe ghting 9 '

and Ruppel (1988); Brackbill and Ruppel (1986)]. USin%eneralized weighting and gradient weighting functions

Eqn. 27, the total change in momentum is the same hay be calculated for any combination of particle charac-

both the particles and the grid as required by Eqgn. 15, _terlsticf_unctions a_nd grid sha_pe functions. !Ex_amples., us-
ing particular choices of particle characteristic functions
and grid shape functions, will be given in the following
_ B, _ _ section.
pr:ZRZmpSvp:pr (28)
H v H v 2.3 Observations

where Eqn. 21 was again used. From Eqn.s 15, 17, # general the weighting functions serve to smooth and
22, 26, and 27, it may be seen that the weighting fungsstribute data more than the particle or grid basis func-
tions, S,p, are used to interpolate information from grigion representations, Eqn. 9 or 12. This is a consequence
to particles and back again. Although derived differentlys integrating over particle volumes, which smoothes the
the MPM algorithm and its predecessors, [Brackbilyrid shape functions. The weighting functiofs,, have
Kothe, and Ruppel (1988); Sulsky, Chen, and Schreygfger support than the grid shape functions in general,
(1994); Sulsky, Zhou, and Schreyer (1995); Brackbiind, except for special cas&p|x,-x, < 1 . A conse-
and Ruppel (1986)], also use the same functions to {aence of the inequality is that a particle whose position
terpolate to and from the computational grid. is coincident with a grid vertex will not interpolate data
In addition to positions and momenta, particle constitexclusively to that vertex. It is precisely this property
tive response must be updated consistent with the defahich improves performance in handling finite deforma-
mation of the grid. Particle strain rates are calculated bigns, as demonstrated in Section 4. This property is
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also used in many other meshless methods, where, at hoyndaries and hence conserve interpolated quantities to
given spatial point, data from many particles is requirazhly these vertices.

to construct a spatially continuous representation of thejs also worth noting similarities with other particle
data there, [Belytschko, Krongauz, Organ, Fleming, aftbthods, not derived from a variation form, which have
Krysl (1996); Babska and Mellenk (1997); Demkow-peen especially successful in plasma simulations, [Bird-
icz and Oden (1986); Atluri and Zhu (2000)]. For thesgg)| and Langdon (1985)]. In these methods the utility
methods the same effect is desired, namely a smoothegmoother interpolation has also been recognized. Fur-
representation of particle data. However, in the absenggy, the construction of smoother weighting functions
of a regular grid, construction of the weighting functiongy integrating over particle volumes is well established,
is only achieved at considerable effort and computatior[piockney and Eastwood (1981)]. At this point, how-
cost. The construction of the GIMP weighting functiongyer, the similarities end, as once data has been collected
benefits substantially from the use of a regular grid. Thgy grid points finite difference approaches are used to
can be determined analytically for common particle chajp|ve the governing equations. Construction of a sen-
acteristic functions and grid shape functions. sible method requires a balance of interpolation errors,
Because the GIMP methods are particle methods deriVimite difference errors, and computational complexity.
using a Petrov—Galerkin discretization scheme, of all tiédobal conservation of important solution variables such
various meshless methods, they have the most in camass and momentum, as in Eqn.s 24 and 25, is obtained
mon with the Meshless Local Petrov—Galerkin (MLPQ)y imposing requirements on the interpolating functions.
Method introduced in [Atluri and Zhu (1998)] and deHowever local grid data errors due to particle disorder
scribed in more detail in [Atluri and Shen (2002b)]. Botlare only reduced, not eliminated, by using smoother in-
methods generate families of algorithms, the details t&frpolation functions.

which are determined by the specific choices of test afiflcontrast, GIMP methods can be easily constructed in
trial functions [Atluri and Shen (2002a)]. However, theyhich local grid data errors are eliminated completely in

MLPG method emphasizes the complete absence 0§tgeast one important situation. Consider the case of a
computational mesh, while the GIMP methods embraggiformly stressed body, i.@w,=0 Y p. Theinter-

the use of a (spatially fixed) mesh for the simplificationgy) force, from Eqn. 16 simplifies to
it provides.

Itis worth noting that if weighting functions with support L
beyond nearest neighbor vertices are introduced arbitf§l-= —o- Z OSvpVp. (31)
ily, difficulties can arise at the boundaries of the com- P

putational grid. Particles near the grid boundary may particle characteristic functions which are a partition
be required to interpolate information to ghost verticegt unity in the current configuration are chosen, i.e.
or different interpolation rules may be required there, in

order that the mass and momentum are conserved in in-

terpolating between particles and grid. Other meshle Xp(X) =1 V X, (32)
methods, [Belytschko, Krongauz, Organ, Fleming, an

Krysl (1996); Babska and Mellenk (1997); Deml.«)W'CZthen Eqgn. 31 may be further simplified, using the defini-
and Oden (1986); Atluri and Zhu (2000)], require SP€ion of [1S,p, Eqn. 20

cial treatment at boundaries on account of the support P T
of the interpolation functions overlapping the computa-
tional boundary. A notable exception are some MLPGy:
methods [Atluri and Shen (2002a)]. The shape function’s
derived for the GIMP methods require no special treat-
ment. Each particle only contributes to vertices who$€
shape functions overlap its characteristic function.
construction, contiguous particle characteristic functio
are completely contained within the computational gr

—o-/ 0S()=0 if QpnQ =0, (33)
QN0

. internal forces are identically zero at “internal” grid
rtices (away from the material boundary). This repre-

ents an important special case where, in the absence of
%ody forces, static equilibriumis maintained only if Eqn.
33 holds.
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MPM may be recovered from the more general formula-
tion presented here by appropriate selection of the parti-

cle characteristic functions. Specifically, for 0 X=X < —L,
1 — L —L —X% <0
S(X) = +(X—%y)/ <X—X <0, (35)
1-(x—x/)/L 0<x—x <L,
0 L < X—Xy.
Xp(X) = 8(X —Xp)Vp, (34) v

See also Fig. 1, wher¢ is the cell spacing. For

whered(x — X,) is the Dirac delta function, the formy-Simplification a uniform grid is assumed, i.eLy =
lation presented in [Sulsky, Chen, and Schreyer (199k); Y V. In more than one dimension, the shape
Sulsky, Zhou, and Schreyer (1995)] is recovered exaciiynctions are constructed as products of these (one-
For this case the integrals in Eqn.s 19 and 20 are trafg§nensional) tent functions, i.e. in three—dimensions
formed into evaluations at poinis,, i.e. Sp = Sy(xp) MX) = Su(x1)S2(x2)Sa(xs) wherex; are the compo-
and0S,p = 0S,(Xp). Note that the MPM discretization€Nts ofx in the grid directions. An analogous multi-
scheme represents a special case where grid shape iQlieative decomposition is available for the particle char-
tions are not smoothed in the construction of the weigrcteristic functions.

ing functions. Note also thahe particle characteristic

functions in Eqn. 34 are not a partition of unitiggn. 32. S,
Hence a uniform stress state on the particles can result in
non-zero internal forces on the computational grid. This 1

is examined in Section 4.

Finally, itis noted that the Petrov—Galerkin method gives

“lumped mass” governing equations directly (Eqn. 14).

This is a consequence of the consistent use of particle and

grid basis functions, for trial and test functions respec-_ .
tively. In the variational procedure presented in [Sulsky, —L 0 L x-x,
Chen, and Schreyer (1994); Sulsky, Zhou, and Schreyer

(1995)], a full mass matrix is derived. The full mass Majqure 1 : One dimensional “tent” grid shape function

trix is then diagonalized or “lumped” for computational,caq in all GIMP Methods presented here.
efficiency to give the discrete governing equations typi-

cally solved in practice. It is interesting that the Petrov—
Galerkin method avoids this additional step, which typ#/hile straight—forward conceptually, implementation of
ically lacks justification beyond computational tractabilsIMP methods with finite, deforming patrticles in three
ity. dimensions does suffer a practical complication. Per-
forming the integrations to determine the weighting func-
tions requires integration over the current support of the
3 Example GIMP Methods particle c.haracteristic functio.ns, as they de_form and ro-
tate relative to the computational grid. This may need
In this section examples will be given for several GIME® be done numerically in general. The investigation in
methods. Attention will be focused on the results ofii€ following section is performed in one—dimension for
tained for various selections of particle characteristmPlicity. In one-dimension the weighting functions
functionsy p. Grid shape functions, are identical for all can be determined analytically.
cases considered, and are chosen consistent with thesethis reason it is worth investigating the performance
used in practice in MPM, [Sulsky, Chen, and Schreyef approximate GIMP algorithms, where particle defor-
(1994); Sulsky, Zhou, and Schreyer (1995)]. In one diations are not tracked. For these algorithms all compli-
mension, the shape functions are the piecewise lingations associated with integrating over the current sup-
“tent” functions port of the particle characteristic functions are obviated
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and the weighting functions may be calculated analytiere 2, is the current particle size. The initial sizég,z
cally, but at the cost of errors associated with the partigedetermined by dividing the cell spacihdoy the num-
characteristic functions not forming a partition of unityber of particles per cell. This selection of particle charac-
The following section investigates the performance téristic functions defines “contiguous particles”, i.e. con-
MPM and contiguous particle GIMP algorithms with antiguous regions of non—overlapping sup@@rs. The par-
without tracking particle deformations. ticle characteristic functions may also be written,

3.1 Material Point Method

1 if xeQp,

As mentioned in the previous section the original MPMp(X) = . (37)
) . ) . 0 otherwise

discrete equations may be obtained from the principle of

virtual work by selecting the Dirac delta function for therhjs generalization is the simplest finite particle general-
particle characteristic functions as in Eqn. 34, [Sulskyation in the sense that it retains the grid shape functions
Chen, and Schreyer (1994); Sulsky, Zhou, and Schreyggq in the original implementation of MPM [Sulsky,
(1995)]. For this cas&p = S,(xp) andlS,p = 0S,(Xp). chen, and Schreyer (1994): Sulsky, Zhou, and Schreyer
Th-|s. formulation has_ the thge that is compgtatlonal_ltjlg%)], but replaces particle mass points with particle
efficient because a given particle interpolates informatigg| mes. It represents the very next degree of smooth-

only to the vertices of the grid cell it is contained in, andaqq ghtainable in the family of GIMP methods (with tent
a grid vertex interpolates information only to particlearid shape functions).

in adjacent cells. However, this also results in the inter- . I : .
: : : , te that for this case the weighting and gradient weight-
polation being strongly dependent on the registration 0 . LI
Ing functions, Egn.s 19 and 20, simplify to

the particles on the grid, potentially changing abruptly as
particles cross cells.

Because these particle characteristic functions are nagta 1 /*ptlp

partition of unity, they are not suitable for use in théve = Tp - S/(x) dx, (38)
initial discretization procedure presented in Section 2.1.

This is easily overcome by selecting other particle char-_ 1 et

acteristic functions for the initial discretization, or sim=~<p = Tp/xp_lp 0S,(x) dx, (39)

ply using another initial discretization procedure alto- _

gether. However, this situation points out an inconsi8ndOS,p(Xp) = 0S,p(Xp) /9%p, Where the dependence on
tency wherein the material points mass and volume dxarticle position is indicated explicitly. Specifically, us-

assigned as required by the initial mass density of thg the piecewise linear tent function for grid shape func-
continuum body on one hand, but then are assumedi@ S(x), Eqn. 35, gives from Eqn. 38,

represent infinitesimal points on the other. It is certainly

more intuitively appealing to use the same particle char-

acteristic functions to prescribe material point properties 0 Xp—Xy < —L—1Ip,
in the initial discretization, and as basis functions for the (Lt p+ (Xp—x))2 Ly < XX < L]
discrete solution procedure. o PR V= P
14+~ —L+lp <xXp—% < —lp,
. . — —Xy 2+|2
3.2 Contiguous Particles GIMP Method Sp=<¢1- % —lp <Xp—X <lp,
_ XX _ _
The simplest choice of particle characteristic functions :(LL—H _L(X a)? lp <Xp—x <L—lp.
(of finite extent) in one—dimension is the combination of % L—lp <Xp—X < L+1p,
step functionsH (x) (H(x) = 0if x< 0 andH (x) = 1 if 0 L+1p <Xp—X
x> 0), (40)

See also Fig. 2. The result is a weighting function with
Xp(X) = H(X—(Xp —1p)) —H(X— (Xp+1p)). (36) support in adjacent cells and in next nearest neighbor
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cells. This specialization has the advantage that it deviie form of the particle characteristic functions, but two
ops weighting functions i€* with a minimal amount of possibilities immediately present themselves. These are
additional complexity, both theoretically and computaHlustrated in Fig 3 for “tent” particle characteristic func-
tionally. It will be referred to as the “contiguous particléions in one—dimension, in the case where two particles
GIMP method”. The increased support does result in anitially occupy each cell. Note that for one particle per
increase in computational effort. The grid vertex quanell the two possibilities in Fig. 3 converge.

tities appearing in the governing equations (Eqn. 14) are
accumulated by summing over particles. The contribu- i
tion of a material point’s data to a grid vertex is deter-
mined by the distance between its centroid and the grid.......
vertex. In the contiguous particle GIMP method addi- .~
tional grid vertices to which a given material point con-
tributes data must be located.

1
1 (b)

S R L I I N KL RV Co—T . o
Py 0 LA4 L4 L X

Figure 2: Contiguous particle GIMP weighting function _ _ _ o
in one dimension. Figure 3 : Two possible fuzzy particle discretization

schemes illustrated in one—dimension for two particles
per cell. All particle characteristic functions which con-
An approximation to the exact weighting functionsyibute to the continuous representation of particle data
which provides considerable simplification in practicégr 0 < x < L are shown, with particle characteristic func-
is provided by not tracking current particle volumes, i.&ons centered between 0 ahdn bold.
Ip(t) = Ig, vV p,t. This is a good approximation for

small deformations. However, errors develop when par- . . . . . .
ticle volumes fail to remain contiguous, or overlap thaerzrhe first possibility, Fig. 3(a), is characterized by parti-

computational boundaries, during finite deforma‘tiongIeS only overlapping their nearest neighbors, and parti-

For example, when a particle’s (approximate) charact lrg characteristic functions uniquely representing the grid

istic function overlaps the computational grid boundar ata at one or more points. For these calseg) = fp in

the mass and momentum corresponding to the fractio n 9 anda;, < 2L. A second possibility is illustrated

in Fig. 3(b) and is characterized by particle characteristic

of the particle characteristic function which lies outsidferz] tion overlap with all neighbors initially within som
the grid are not interpolated to the grid. Hence errors jnetion overiap all neighbors initially some

conservation of mass and momentum between grid 4id > andf(xp) # fp. In Fig. 3(b) this case is illus-

particles are made. Examples are given in Section 4. trated forQ, = 2!" Th_|s possibility is akin to that gen
erally preferred in various meshless methods where ba-

sis function support is typically taken to be much larger
than particle spacings and hence many particles typically
While not examined in detail, some aspects and possibtntribute to continuous representation of particle data
merits of overlapping particle characteristic functions, @t any given spatial point, [Belytschko, Krongauz, Or-
“fuzzy particles”, are considered here. Eqn. 32 constraigesn, Fleming, and Krysl (1996); Baské and Mellenk

3.3 Fuzzy Particle GIMP Methods
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(1997); Demkowicz and Oden (1986); Atluri and Zha wave to propagate the length of the bar, or the “wave
(2000)]. transit time” isAp/c = .05. The explicit time stepping

Both overlapping particle scenarios are a natural extedg@orithm used in all numerical solutions is governed by
sion of the piecewise constant representation of particlé§ CFL stability condition which demands that for linear
(contiguous particle GIMP) to piecewise linear represefyStems the time step, satisfyAt < L/c= 103, For
tations. Nearest neighbor only overlap tends to locali2d (nonlinear) calculations presented here the time step
particle data while constant overlap tends to distribuiereduced by an additional factor of ten, if. = 107,

it. Further analysis/experimentation is needed to det&@th to assure numerical stability and to increase the ac-
mine the merits of each possibility. However, their confiracy of the computations.

plementary functionality is suggestive of utility in parti-Results are reported at specific stages in the deforma-
cle addition and deletion algorithms in conjunction wittion by plotting stresses at material points. Attention

computational grid refinement and coarsening. is focused on the appearance of computational artifacts
associated with particles crossing cell boundaries, and
4 Example Calculations the effect on material point stresses. While the resolu-

_ _ _ _ . _tion of the computation is commensurate with the grid
In this section numerical solution artifacts associateld size, constitutive response is computed on material
with the properties of the interpolation scheme usgfhints only. In order that inelastic constitutive response
to transfer information between particles and grid afg gccurately simulated, material point stresses must vary
demonstrated. Numerical solutions using two diﬁere@hoothly. In both cases examined here average defor-
particle characteristic functions, as detailed in the prejjations are small, but are sufficient to cause particles to
ous section, are compared. One solution is obtained Ugsss cell boundaries. Of course cell crossing artifacts
ing the MPM algorithm, where material points are takegyipited at this relatively coarse discretization occur at
as infinitesimal points. For this caSgp = S,(xp) Where et smaller strains if the spatial resolution is increased.

Si(X) is given by the piecewise linear tent function as iy is examined in more detail at the end of the section.
Eqgn. 35 or Fig. 1. This solution is labeled “MPM” in

Figs. 4, 5, 6, and 7. Another solution is obtained ug:1 Quasi—static Compaction

ing contiguous particle GIMP, where particle characte_lr_-h _ . . iUl h
istic functions are given by Eqn. 37, a&dy is given by e quasi—static compaction case simulates the response

Eqn. 40 or Fig. 2. This solution is label “GIMP” ForOf a column of material to a slowly increasing compres-

both of these solutions particle volumes are not tracket’® body fo-rce.zb (e.0. grayity). Th? mggnitude_of the
e Ip(t) = Iip v o pt. body force is increased linearly with time during the

T gi ional | ined. B computations. In order to obtain good quasi—static so-
Wo one-dimensional examples aré examined. bQ{flions the total simulation time is taken equal to 40

;lmulate _unlaxllal compression of a ba.r or column, tr\'ﬁave transit times. Results are depicted in Figs. 4 and 5,

first quasi—statically, thg §ep_ond dynamlcal_ly. In both ®here vertical lines indicate cell boundaries. Each mate-

gm_ples the bar has unit |n|t|<'_;1I mass densgty, and an al point position and stress is indicated with open trian-

initial Iength,Ao, O_f 50. Material response Is determlne8Ies for the solution obtained using MPM, and with open

by a one—dimensional hyperelastic model circles for contiguous particle GIMP. Dashed lines con-
necting the material points emphasize non—uniformity in
the numerical solutions.

o=E(F-1), (41) Analvii . . _ .

ytical solutions for static equilibrium at any given

whereF is the deformation gradient in one dimensior0dy force may be easily found. These solutions are

Young’s Modulus E, is taken to be 18, giving a wave

speed,c, of 1000. Any consistent set of units suffices. { \/

, : S . ) 2pob

For the first two subsections the bar is discretized usiogx) = E %(A— X)+1— 1} 0<x<A, (42)
50 computational celld, = 1, and two material points

per cell. The last two subsections consider variationswherex denotes position in the current configuration, and

cell size and the number of particles per cell. The time faris the current length of the column. This solution is
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plotted for guidance as a solid line in Figs. 4 and 5. The W = 10000 @
current position of each point may be calculated, in par-
ticular, the current length of the column is given by

_pgy POBA2
A=Np+ oE AG. (43)
This equation is used to select the magnitude of the fi-
nal body forceps, such that the end displacement is one

grid cell at the end of the simulation, i.& —Ag = —1.

Stress

For this caséos = —800. Results are reported at various 2000
column weights per unit cross—sectional area, W, defined 0 5 10 15 20 25 30 35 40 45 50
by Position
_ (b)
W = 12000
0
W = po|b|Ao. (44)

-2000

For the parameters chosen, the weight of the column at -4000 |
the end of the simulation M/ = 40,000.

Fig. 4(a) depicts solutions early in the deformation, be-
fore any material points have crossed cell boundaries.

Stress

-6000 |

-8000 |

For this case both numerical solutions and the analytical ~ -10000 ¢ MPM &
solution essentially overlie one another. Fig. 4(b) depicts 12000 & GIMP 9
the situation shortly after the first cell crossings. The ex- 0 5 10 15 20 25 30 35 40 45 50

Position

act solution predicts that at this column weight the left

particles initially in cells for whichx, > 30 will have

crossed their left cell boundaries, resulting in 3 matg-'gur_e 4 | Numerical _and analytlcgl solutions to the
rial points in the cell occupying 2@ x < 30. These cell guasi—static compression of a continuum bar due to a

crossings have substantially perturbed the MPM solutioﬂ?WIV_ Increasing body for(_:eb._ The MPM SOIUt_'On
both forx > 29, where the cell crossings have occurre@ate”al point stresses are indicated with open triangles

and in the remainder of the column, due to propagatighd the contiguous particle GIMP solution material point
of the cell crossing disturbances stresses with open circles. Vertical lines indicate cell

boundaries. The solid diagonal lines indicate analytical

It_|s hot (_1|ff|cult to understand c_eII crossing no'se'_corgolutions. Solutions are obtained at increasing column
sider uniformly stressed material, as discussed in S@\?éights

tion 2.3, but in only one dimension. Because of the dis-

continuous nature of the gradient of the weighting func-

tion used in MPM, a force imbalance develops when uni-

formly stressed material points register non—uniformffréss multiplied by the ratio of the gap or overlap volume
on the grid, i.e. different numbers of particles are in aéR the initial particle volume, and only develop when the
jacent cells. This force imbalance is proportional to tH#pPs or overlaps register non—uniformly on the grid.
particle stress multiplied by the difference between tigég. 5(a) depicts solutions for a still larger column
number of particles on each side of a grid vertex. Theeight. The MPM solution has degraded substantially.
contiguous particle GIMP gradient weighting function¥he spurious forces developed due to the low degree of
reduce these artificial force imbalances substantially. Asntinuity in interpolation are overwhelming the “phys-
gaps or overlaps in particle characteristic functions dieal” forces in the system and destroying the solution.
velop (as material points move relative to each other), thee GIMP solution remains smooth, although a slight
particle characteristic functions are no longer a partitiatifference between it and the analytical solution has de-
of unity and artificial force imbalances can still developeloped. In Fig. 5(b) only traces of the MPM solution
However, these force imbalances are proportional to tlegnain. The GIMP solution remains smooth, but fur-
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W = 30000 (@) In summary, the MPM algorithm can be very noisy.
0 Neighboring material points may experience computa-
-5000 | tional artifacts resulting in radically different deforma-
10000 | tion histories, compromising the accuracy of stress eval-
-15000 | uations, especially for history dependent, inelastic mate-
g 20000 | rials. Material point stress oscillations may even become
2 25000 | strong enough to overwhelm the physical forces in the
-30000 @@ﬁf system and destroy the solution, as seen in this example.
35000 |7 4 MPM &
40000 Lot SR 0. 4.2 Dynamic Compaction
0O 5 10 15 20 25 30 35 40 45 50

Position The second case of interest is the dynamic compaction

W = 40000 ®) of the same bar. For this case the bar is given an initial
velocity to the left, impacting a rigid wall (the compu-
tational boundary). The initial velocity, is taken to

be c/50. In this case, for the same end displacement,
A — Ng = —1, there isn’t time for stress equilibrium to
take place, rather the solution is a stress wave. The sim-
ulation is run for one wave transit time. A Richtmyer—

Stress
N
o
o
o
o

30000 o VonNeumann artificial viscosity term is added to smear
35000 é”f&“é o the shock over several computational cells, [VonNeu-
40000 LFinte GIME X, mann and Richtmyer (1950)], and a linear term is added

0 5 10 15 20 25 30 35 40 45 50

bostion to damp out ringing behind the shock. The general form
I

of the artificial viscosity pressureg, is

Figure 5 : As in Fig. 4, but for still higher column

weights. In (b), the Finite GIMP solution material point

stresses are indicated with x’s. _ JeapeleL| +cop(EL)? € <O, (45)
a 0 otherwise

ther under predicts the full weight of the column (thesherec; andc, are dimensionless coefficients. Analo-

stress ak = 0). Because the GIMP solution uses initiagous to the constitutive response, the artificial viscosity

particle widths throughout the computation, as a partiderm is evaluated at the particles. It is then used to aug-

approaches the boundary its characteristic function beent the particle stresses, i@, — 0, — gp. For the cal-

gins to overlap the edge of the computational grid. Thoellations presented here, coefficierits= .2 andc, = 2.0

overlapping portion information is not interpolated to thevere used.

grid. Therefore in the GIMP algorithm, the solution oftjgs. 6 and 7 show the stress state in the bar, as given
the grid is one for slightly reduced column mass/weigh{, hoth numerical solutions, at the same end displace-
as discussed in Section 3.2. ments as in the quasi—static example. Again each mate-
For this final weight one more numerical solution, ladal point position and stress is indicated with open tri-
beled “Finite GIMP” is presented in Fig. 5(b). The Finitangles for the solution obtained using MPM, and open
GIMP solution overlies the analytical one. In Finite (coreircles for GIMP. Vertical lines indicate cell boundaries.
tiguous particle) GIMP, particle widths are tracked arthe exact solution is a discontinuity propagating to the
used in the interpolation functior&,p. Hence the par- right with speect. In front of the shock the material is
ticle characteristic functions remain a partition of unituncompressed and stress free, while behind it material is
throughout the deformation. Particle characteristic fungniformly compressed. Behind the shock front the defor-
tion overlap at the boundary is eliminated and the futhation gradient is equal to the ratio of the current length
weight of the column is reflected in the solution. of compressed material to its initial length
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(@) (@)

t/(Wave Transit Time) = 0.25 t/(Wave Transit Time) = .75

0 — 0 e
MPM ~-~&- MPM v
GIMP o GIMP -0
-5000 | @ 1 -5000 r
@
» -10000 | : » -10000 |
1% I %]
5 & o
15000 | i 1 9 15000 |
&
-20000 j- : -20000
i
25000 : -25000 . ‘
5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Position Position
o (b) (b)
t/(Wave Transit Time) = 0.30 t/(Wave Transit Time) = 1
0 0 .
MPM 2
, GIMP ---0--- 2
-5000 | ; 1 5000 | ]
Aﬂ ?X
g -10000 ¢ 1 » -10000 | A 2
g m@ @ 1 A ;
= i AN i
? -15000 | P 15000 4 £ 0@
a ‘
-20000 && :
i
-25000 Lo
0 5 10 15 20 25 30 35 40 45 50 000 s 10 15 20 25 30 35 40 45 50
Position Position
Figure6: MPM and GIMP numerical and analytical so- Figure7: As in Fig. 6, but at later times
: . 6, .

lutions for the dynamic compaction of a continuum bar.

The MPM solution material point stresses are indicated

with open triangles and the contiguous particle GIMP so-

lution material point stresses with open circles. Vertient with the smeared shock front. Fig. 6(b) depicts the

cal lines indicate cell boundaries. The solid horizontgltuation shortly after the first cell crossing behind the

lines indicate the analytical solution for the stress behirgiock. Note that cell crossings ahead of the shock have

a sharp shock (a discontinuity). Solutions are obtainedr effect, because the stress is zero there. From Eqn. 46

various fractions of the wave transit time. it may be found that the first cell crossing occurs at the
vertexx, = 13 resulting in 3 material pointsin the cell oc-
cupying 12< x < 13. As in the quasi-—static case, the cell
crossing substantially perturbs the MPM solution, but not

—1-w/c. (46) the GIMP solution.

ct Fig. 7(a) depicts solutions after the shock has propagated
Using the selected material properties, and Eqn. 41, #eross 75% of the bar. The stress disturbance in the MPM
stress behind the shock may be calculated te- B@000. solution is locked in as required to maintain equilibrium
This value is indicated with the solid horizontal lines iron the grid for non—uniform particle registration. The
Figs. 6 and 7. GIMP solution is much smoother. In Fig. 7(b) the shock
Fig. 6(a) depicts solutions early in the deformation, b82s reached the end of the bar, resulting in another cell
fore any material points have crossed cell boundari#gth three material points as evident in the MPM solu-
For this case both numerical solutions are similar. HoWon-
ever, close inspection reveals that stresses are unifdkmfor the quasi—static compression case presented ear-
within cells in the MPM solution, while in the GIMP so-lier, the Finite contiguous particle GIMP method may be
lution particle stress variation within cells is more consigpplied in this case to further improve the discrete solu-

ct—vot
F=— 2
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t(Wave Transit Time) = 1 evident that regardless of the number of particles used,
-16000 I the GIMP solutions result in much smoother variation of
Finite oMb 0 particle stresses. The MPM solutions suffer large vari-
17000 i ations in particle stresses due to cell crossings and con-
-18000 | dip sequent non—uniform registration of the particles on the
‘ grid. The frequency of these large particle stress vari-
ations is strongly dependent on the number of particles
used. This is expected and due to the direct relationship
between the number of particles used and the details of
their non—uniform registration on the grid. Although the
magnitude of the large variations in particle stresses is
slightly reduced by using more particles, the increase in
frequency of these variations results in a noisier solution

Figure8: Various GIMP numerical solutions for the dy-°verall

namic compaction of a continuum bar after the strelégs worth noting, from Eqn. 40, that dg, — 0, then
wave has reached the end of the bar. The contigudus— Su(Xp), i.e. the GIMP weighting functions tend to-
particle GIMP solution material point stresses are indiard the MPM ones as more particles are used. Shorter
cated with open circles, and the Finite contiguous partiokavelength noise consistent with this limiting behavior
GIMP solution material point stresses are indicated wig&n be seen in the GIMP solutions for 4 particles/cell in
x’s. Vertical lines indicate cell boundaries. The solid hoFig. 9(b). Because increasing the particle density is gen-
izontal line indicates the analytical solution for the stregally expected to increase solution smoothness in PIC
behind a sharp shock. methods, the result is unexpected. However, as it sug-
gests the use of fewer particles/cell is advantageous, it
is of significant practical importance. Computational ef-

tion. Fig. 8 depicts contiguous particle GIMP and FinitfP"t and storage requirements are, of course, strongly in-

contiguous particle GIMP (labeled “Finite GIMP”) solufluénced by the number of particles used, especially in

tions at the end of the simulations, when the compressitiee-dimensions.
wave has propagated across the entire bar. The range Quer
which stress is plotted is greatly reduced in order to allow
the difference between the solutions to be distinguishéd.order to gain further insight into the performance of

It is found that, as for the quasi—static compression cagige various algorithms investigated in this section, the
information is lost to the grid when finite deformationslependence of solution quality on grid spacing was also
are not accounted for. It should be noted that MPM doiwestigated. Because an exact solution is available for
not suffer from information loss to the grid unless a pathe case of a column quasi—statically compressed under
ticle leaves the computational domain. Tracking curregtavity, and the numerical solutions are not complicated

particle volumes corrects the MPM solutions as well, bby artificial viscosity, this case was chosen for further

-19000 r

Stress

-20000

-21000 r

-22000

0 5 10 15 20 25 30 35 40 45 50
Position

Convergence

does not alleviate cell crossing noise. study.
o _ . o Of continuing interest is the quality of the solution on the
4.3 Sensitivity to Particle Discrefization particles. An error measure was chosen which compares

To assess the effect of particle density used in the rRirticle stresses to the exact solution at current particle

merical simulations, the wave propagation example wgations. Specifically,

also run with 1 and 4 particles/cell initial discretiza-

tions for both MPM and contiguous particle GIMP algo- |0(Xp) — 0|2,

rithms. The results, along with the 2 particle/cell resul&Tor= > WAL (47)
presented in Section 4.2, are depicted in Fig. 9, at the P 0

end of the simulations. In comparing results for MPMyhereo(x) is the exact solution given by Eqn. 42, axgl

Fig. 9(a), and contiguous particle GIMP, Fig. 9(b), it is,, andl, are particle positions, stresses and dimensions,
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MPM @ ral discretization of the applied loading for all numerical
0 NI : simulations.
1 part/cell - - - - . . . .
2 partfcell wwwweeeeee 1 Errors are reported in Fig. 10, for cell sizes spanning
5000 1,4 particell 1 three orders of magnitude, for the MPM, GIMP and Fi-
L 10000 | f nite GIMP algorithms. The number of particles per cell
2 ; ! ﬂ in the initial configuration, labeled “p/c” in the figure’s
15000 | J (i o U ‘, “ legend, is varied between one and four. The dashed line
' N J J D indicates first—order convergence with cell size, and the
-20000 frerere fe con i SR solid line indicates second—order convergence (in this
norm, i.e. Eqgn. 47). It should be noted that the data
2000 e Tls 20 25 30 35 40 45 5o from Fig. 4(a) have been used in the error calculations,
Position resulting in the filled and open circles on the vertical line
®) corresponding to a cell size of 1 (both are clustered with
GIMP the majority of the data for this cell size and are diffi-
0 “1partcell - - - - ‘ cult to distinguish). This time, early in the computation
5000 - ﬁgg;ggg:: """""" f/ (W = 10000), was chosen because the solution quality
depicted in Fig. 4(a) looks good for both algorithms. As
» -10000 | discussed in Section 4.1, it corresponds to a time for this
g , cell size which is prior to any cell crossing events. For
@ .15000 | / cell sizes 25 and larger, there are no cell crossing events
R jj for any of the particle densities considered. Except for
-20000 & R two points, discussed specifically below, the errors for
25000 cell sizes of one or larger are all closely clustered, regard-
0 5 10 15 20 25 30 35 40 45 50 less of the algorithm or particle density. For cell sizes less
Position than one, the errors exhibit trends strongly dependent on

the numerical algorithm.
Figure 9: MPM (a) and contiguous particle GIMP (b)
solutions of the dynamic compaction of a continuum bar
after the stress wave has reached the end of the bar. Dif-

ferent solutions have different numbers of particles/cell. 100« 4 e .
Vertical lines indicate cell boundaries. The lightly dashed w0l :
horizontal lines indicate the analytical solution for the N . )
stress behind a sharp shock. oxl H .

¥ o .

0.01

s °or - R XY
T o001 | lplcMPM W -
2p/cMPM ®
i i i i 0.0001 F 4plcMPM & -
respectively, from numerical simulations. The summa- LpCGIVP D
. . . . T : 2 GIMP O
tion is normalized by the weight of the column multiplied 05 . ég,ﬁg:mg A =
e e . . t X
by the initial length, to give a unitless error measure. le06 | X 2picFinite GIMP  + -
. X i 1607 ) ) 4 plc Finite GIMP_
Gravity was applied slowly to the system in the numer- 0.01 0.1 1 0
ical simulations, as described in Section 4.1, to obtain Cell Size

guasi—static results. However, because the numerical so-

lutions track the system’s dynamics, there will always Hagure 10 : Results of a convergence study for the MPM,
some variation relative to the analytical (static) solutiof!MP and Finite GIMP algorithms, for various particle
Eqn. 42, on account of stress waves. In order to get SirﬁﬁnSitieS. Error relative to the exact solution is pIOtted
lar contributions to the error calculations due to dynami@glainst computational cell size. The computation is of
for all cases considered, the same time step size was U§€dquasistatic compression of a column under gravity,
regardless of cell size. This results in the same tempdentical to that depicted in Fig. 4(a).
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The error calculations for the MPM algorithm are deexpected on account of dramatically reduced cell cross-
picted with filled symbols. In all cases examined thiag noise inherent in the contiguous particle GIMP algo-
error begins to increase with decreasing cell size aftéhm. Although difficult to discern in Fig 10, it is found
some minimum cell size is reached. This behavior is thigat one particle per cell computations have consistently
result of the excitation, by cell crossing noise, and subdess error than the other GIMP simulations. This resultis
guent unstable growth, of solution instabilities. Specitonsistentwith the fact that the GIMP interpolation func-
ically, PIC methods have been known to exhibit an inions are smoothest when only one particle is used per
stability, denoted the “finite grid instability”, which orig- cell, as discussed in the previous subsection. Ultimately
inates because the particles can support solution vatize error saturates with decreasing cell size, independent
tion wavelengths which are unresolvable on the compofthe particle density. The numerical results continue to
tational grid. This instability has been shown to deperabnverge, but to the solution for a column with slightly
on the degree of smoothness of the weighting functiomeduced mass, due to boundary effects, as discussed in
the Mach number of the problem, and the numerical inteenjunction with Fig. 4. For this algorithm the combina-
gration scheme used, [Brackbill (1988)]. The low speetiipn of smoother interpolation and reduced cell crossing
explicit calculations presented here would be expectedtoise prevents the finite grid instability from dominating
be very susceptible to the finite grid instability. The drahe quality of the calculations.

matic increase in error with decrease in cell size is due to
unstable growth of perturbations to the solution created

by cell crossing noise. Unfortunately, there is no way to 01 .
decouple the deleterious effect the finite grid instability
has on the solution from the positive effect decreasing %% |
the cell size has. The reason is simply that, for the same
deformation, decreasing the cell size results in increas-
ing the number of cell crossings and corresponding noiseS  0.0001
Increasing the resolution will always ultimately result in
cell crossings, no matter how small the deformation. An
example of a numerical solution in which cell crossing  1e-06 | n
noise has grown unstably, resultingin large error, may be e e x

seen in Fig. 4(c). 0.01 01 1 10
Cell Size

Finite GIMP convergence at W=10000

0.001 ¢

1e-05

X2
faster

X +

Further examination of Fig. 10 confirms that cell crossing
noise drives the MPM algorithm solution error. IncreaTQ_.-i

ing the particle density decreases the magnitude of P algorithm using one particle per cell, for various

cell €rossing noise. The MPM algor!thm data in Fig. 1oading rates. Error relative to the exact solution is plot-
are consistent with this, at least until the error becomgesd against computational cell size. Gravity is applied
large. Afte.r a m'”'m“m_ IS reach.ed (which depends %We times faster, and 4 times slower, than for the results
both cell size and particle density), error accumulates

more slowly with increased patrticle density. Further ev% Figs. 4 and 10.
dence for the importance of the role of cell crossing noise
is found in the unit cell size MPM algorithm error calcuT he Finite GIMP simulation errors are plotted with var-
lations. The four particle per cell calculation has sufus crossed-line symbols. This algorithm is found to
stantially more error than the one or two particle per c&Pnverge the most rapidly over the entire range of cell
calculations. It is the only MPM calculation which hagizes considered. Convergence rates are consistent with
had cell crossings at this column weight and grid resoltile smoothness of the weighting functions, which are
tion. qguadratic when only one particle is used per cell. The
The GIMP algorithm simulation errors are plotted Witﬁp_read b_etween one particl_e per cell rgsults and tho§e ob-
ined with more particles is most evident for cell sizes
£ss than or equal to one and again suggests that one par-
ticle per cell may be the optimal discretization scheme.

ure 11 : Results of a convergence study for the Finite

open symbols. This algorithm is found to be converge
over a larger range of cell sizes than MPM, as would
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Ultimately the error saturates with decreasing cell size@omplete breakdown of the solution, as illustrated in this
the one particle per cell Finite GIMP computations. Theanuscript for elastic materials. These artifacts will re-
numerical simulations resolve dynamic stress wave prauit in erroneous evolution of history variables in inelas-
agation in the column. Gravity is applied very slowly irtic constitutive models. If there is sufficient dissipation to
order to reduce the magnitudes of the stress waves, pragvent a complete breakdown, solution divergence may
they cannot be completely eliminated. Calculations go undetected. In MPM, material point stresses can be
which gravity was applied five time faster and four timestrongly perturbed in this manner when particles cross
more slowly resulted in the error saturating at larger awélls. For this reason, it is suggested that the MPM al-
smaller values, respectively, as seen in Fig. 11. This sggrithm only be used for infinitesimal deformation prob-
gests the primary contribution to the error at the finelms, defined in practice by the absence of cell cross-
grid sizes is the difference between the quasi—static rings. For finite deformation problems, greater continu-
merical solution and the exact (static) solution, i.e. thgy in interpolation between material points and the com-
error saturation is caused by resolving the dynamics. putational grid is required for accurate solutions. The
very next degree of smoothness available in the family
5 Conclusions of GIMP methods, dubbed the contiguous particle GIMP

method, is demonstrated to perform decidedly better.
A family of PIC methods has been derived from a

variational form using a Petrov—Galerkin discretizatiofcknowledgement:  The authors would like to ac-
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