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Abstract: Contact between deformable bodies is a dif-
ficult problem in the analysis of engineering systems.
A new approach to contact has been implemented us-
ing the Material Point Method for solid mechanics, Bar-
denhagen, Brackbill, and Sulsky (2000a). Here two im-
provements to the algorithm are described. The first is
to include the normal traction in the contact logic to
more appropriately determine the free separation crite-
rion. The second is to provide numerical stability by
scaling the contact impulse when computational grid in-
formation is suspect, a condition which can be expected
to occur occasionally as material bodies move through
the computational grid. The modifications described
preserve important properties of the original algorithm,
namely conservation of momentum, and the use of global
quantities which obviate the need for neighbor searches
and result in the computational cost scaling linearly
with the number of contacting bodies. The algorithm is
demonstrated on several examples. Deformable body so-
lutions compare favorably with several problems which,
for rigid bodies, have analytical solutions. A much more
demanding simulation of stress propagation through ide-
alized granular material, for which high fidelity data has
been obtained, is examined in detail. Excellent quali-
tative agreement is found for a variety of contact con-
ditions. Important material parameters needed for more
quantitative comparisons are identified.
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1 Introduction

With continued growth of computational power, numer-
ical analysis techniques are being extensively applied to
engineering systems, rather than just individual compo-
nents. The promise of reducing costs during design and
testing is enticing, but remains difficult to realize in prac-
tice. Extensive effort has been expended to develop ac-
curate material models and solution techniques for com-
plex boundary value problems involving individual com-
ponents and pinned or welded structures. In the more
general arena of engineering systems, however, compo-
nents often contact and slide against one another. Contact
mechanics is remarkably difficult, both due to potentially
applicable physics, and mathematical complexities asso-
ciated with solution constraint inequalities, as discussed
in the review article by Barber and Ciavarella (2000).

When engineering systems function within designed op-
erating conditions severe contact is usually avoided, but
it is of paramount interest in evaluating system response
during severe loading and/or failure. Classic examples
include car crashes, aircraft engine fan blade contain-
ment, and earth penetrators. Contact and impact have re-
ceived substantial attention over the past several decades,
as witnessed by a review of the subject by Zhong and
Mackerie (1994), which lists nearly 500 papers. The
majority of these papers describe numerical modeling
approaches and/or applications using the finite element
method. The problem is a very difficult one, as contact
must be sensed, surface normals constructed, and inter-
action forces imposed to prevent interpenetration with-
out making the system of equations to be solved ill–
conditioned.

For large scale engineering simulations contact is fre-
quently the aspect which must be tweaked by the ana-
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lyst, using various loosely physical parameters, just to
get the simulation to run. In addition the algorithms are
traditionally expensive. Effective numerical simulation
of engineering systems is in need of further develop-
ment of accurate, efficient contact algorithms. Here we
describe an alternate approach using a particle–in–cell
(PIC) numerical technique for solid mechanics, the Ma-
terial Point Method, Sulsky, Chen, and Schreyer (1994);
Sulsky, Zhou, and Schreyer (1995); Sulsky and Schreyer
(1996).

The Material Point Method (MPM) is one of the lat-
est developments in several decades of particle–in–cell
methods, originally used to model highly distorted fluid
flow, Harlow (1963). Subsequent developments ad-
vanced the understanding of the algorithm and brought
modifications to reduce numerical diffusion, Brackbill,
Kothe, and Ruppel (1988); Burgess, Sulsky, and Brack-
bill (1992). Fundamental aspects of PIC methods in-
clude the interpolation of information between grid and
particles, and precisely which solution variables will be
ascribed to the grid, and which to the particles. Sev-
eral variants have been tried, with a general trend toward
keeping more properties on particles. Most recently, the
method has been applied to solid mechanics, where the
ability of the particles, or “material points”, to advect nat-
urally Lagrangian state variables, has been exploited in
MPM.
Recently a new approach to material contact has been
developed and used with MPM, Bardenhagen, Brack-
bill, and Sulsky (2000a). This approach takes advan-
tage of the Arbitrary Lagrangian/Eulerian (ALE) formu-
lation of MPM which tracks Lagrangian particle motion
through an Eulerian grid. Coulomb friction contact con-
ditions are applied via the grid. The approach has been
demonstrated using two–dimensional calculations of col-
lisions and the shearing of granular material, Barden-
hagen, Brackbill, and Sulsky (2000a,b,c). Here an es-
sential modification to the physics of the algorithm is de-
scribed, as well as a modification for numerical stabil-
ity. The algorithm is demonstrated on simple problems
in three–dimensions with analytical solutions. Finally it
is applied to stress wave propagation in simple granular
materials.

2 Approach

MPM is briefly reviewed here for completeness. La-
grangian bodies are discretized into material points,

which carry all information required to specify the cur-
rent state and advance the solution. This information in-
cludes constitutive parameters (such as moduli and in-
ternal variables), stress, strain, velocity and temperature.
The MPM algorithm also uses a computational grid. The
governing equations are solved on the grid, providing a
computational savings and as well as a regular, structured
grid on which to apply solution techniques. See Fig. 1
for an example of the discrete representation of a disk,
where material points and mesh are shown. The cou-
pling between the material points and the mesh is a key
ingredient in the solution algorithm. Quantities are inter-
polated between the mesh and the material points such
that total mass and momentum are conserved. Advan-
tages of the MPM algorithm include the absence of mesh
tangling problems, error–free advection of material prop-
erties (internal variables in particular) via the motion of
the material points, and an efficient setting for the imple-
mentation of material contact.

Figure 1 : Simple example of a material point discretiza-
tion of a disk.

Bodies deform according to continuum mechanics con-
stitutive models and conservation laws. If ρ � x � t � is the
mass density at point x at time t, and v � x � t � is the veloc-
ity field, then conservation of mass is

dρ
dt ��� ρ∇ � v � (1)

in which the time derivative is the material derivative

d
dt � ∂

∂t
	 v � ∇ 
 (2)
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Conservation of mass is satisfied implicitly in MPM. Ma-
terial points are assigned fixed masses during the initial
discretization, and grid masses are determined using an
interpolation scheme which conserves mass. Conserva-
tion of momentum is

ρ
dv
dt � ∇ � σσσ  (3)

where σσσ is the Cauchy stress tensor. Different mate-
rials are modeled via constitutive equations that gen-
erate stress based on both the history and current me-
chanical state. Versions of hyperelasticity, hypoelastic-
ity, plasticity and viscoelasticity have been implemented,
Sulsky, Chen, and Schreyer (1994); Sulsky, Zhou, and
Schreyer (1995); Sulsky and Schreyer (1996); Barden-
hagen, Brackbill, and Sulsky (2000b); Bardenhagen and
Brackbill (1998); Bardenhagen, Harstad, Maudlin, Gray,
and Foster (1998). Conservation of momentum is solved
on the grid and changes are interpolated to the material
points such that the change in momentum is the same
on the grid and on the material points. Interpolating
only changes in momentum reduces numerical diffusion,
Brackbill, Kothe, and Ruppel (1988). Energy conser-
vation errors are proportional to the square of the time
step, Brackbill and Ruppel (1986); Bardenhagen (2001).
Details of the explicit computational algorithm may be
found in the references, Sulsky, Chen, and Schreyer
(1994); Sulsky, Zhou, and Schreyer (1995); Sulsky and
Schreyer (1996).

Interactions between bodies are modeled using a con-
tact algorithm which forbids inter–penetration, but al-
lows separation, sliding with friction, and rolling. A pre-
vious version of the algorithm, in which the logic was
based completely on kinematics, was detailed in, Barden-
hagen, Brackbill, and Sulsky (2000a). Here an essential
modification to the original formulation is described. In
addition, a useful means of screening out the application
of large contact forces, numerical errors due to unfor-
tunate registration of material point information on the
computational grid, is described. These changes provide
for a more accurate and robust algorithm.

2.1 Contact Algorithm Logic Refinements

Recall that contact is modeled on the computational grid
in MPM. The mass and momentum from material points
are interpolated to the computational grid for each body.
Individual body velocities are computed by taking the ra-

tio of momentum, pα, to mass, mα, at the grid nodes, i.e.,

vα � pα

mα α � 1  2 ������� N  (4)

where α indexes the bodies and N is the number of bodies
in a computation. The average velocity of all material
points in the vicinity of a grid node is termed the center
of mass velocity and denoted vcm

vcm � N

∑
α � 1

pα

M
 (5)

where

M � N

∑
α � 1

mα  (6)

is the total mass contribution from all bodies in the vicin-
ity of a grid node. The center of mass velocity and the
total mass are the global quantities which enable the de-
termination of contact grid nodes and precisely what the
contact constraints should be. Nodes in the vicinity of
more than one body are detected by looking at the differ-
ence between individual body and center of mass veloc-
ities. Interface computational grid nodes are defined as
those for which

vcm � vα �� 0 � (7)

Resolution of the interface is commensurate with the
computational grid cell size.

Once a contact grid node has been identified, further
analysis is required to determine what contact condition
should be applied (sticking or slipping contact, or free
separation). Spatial differentiation of the individual body
masses on the grid, mα, provides a computation of the
body surface normals nα. Using the surface normals, ap-
proach and departure can be distinguished. A body is
approaching its neighbor(s) when�
vα � vcm � � nα � 0 � (8)

For the algorithm described previously, Bardenhagen,
Brackbill, and Sulsky (2000a), sticking or slipping con-
tact constraints are applied if approach is detected, other-
wise free separation is allowed.

It is the use of normal traction information which dis-
tinguishes this algorithm from that described previously,
Bardenhagen, Brackbill, and Sulsky (2000a). The nor-
mal surface traction, tα

n , is computed at a contact grid
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node by interpolating individual material point contribu-
tions using the surface normals (and the relation tα

n �
nα � σσσα � nα). In the special case where contacting bodies
are stress free (e.g. when first coming into contact) it is
sufficient to determine which contact condition to apply
based strictly on whether or not bodies are approaching.
When the normal tractions are non–zero, it is important
to distinguish between compressive and tensile interface
tractions. For the sign convention used here compressive
stress is negative and the normal traction is compressive
when

tα
n � 0 � (9)

The essential modification to the contact algorithm logic
is to apply frictional contact when the normal traction
is compressive, allowing free separation otherwise. Fric-
tional contact is applied via constraints on the body ve-
locities vα. Free separation requires that no constraints
be prescribed. Note that the efficiency of the algorithm
is not compromised by the additional logic involving the
normal traction. Calculation of contact conditions in the
center of mass frame eliminates a separate contact de-
tection step, achieves a solution with one sweep through
the computational grid, and yields a linear scaling of the
computational cost with the number of bodies, Barden-
hagen, Brackbill, and Sulsky (2000a). It is also worth
noting that the complexity of the contact algorithm does
not increase if the shape of the bodies are varied, so com-
plex initial geometries and large deformations can easily
be modeled.

Using the simple example of a deformable body colliding
with a rigid boundary, it may be seen that simply mon-
itoring approach and departure is insufficient to model
contact correctly. As the body approaches the bound-
ary the compressive traction builds, and by either kine-
matic or normal traction criteria, frictional contact con-
ditions would be applied. Application of the frictional
contact constraints is equivalent to an instantaneous in-
elastic collision, serving to exchange kinetic and strain
energies. The essential difference occurs during rebound.
If free separation is prescribed as soon as departure be-
gins, the equivalent scenario is instantaneous removal of
the boundary. Rather, the normal traction must be mon-
itored and frictional contact with the boundary applied
while it remains compressive. Free separation is allowed
once the normal traction is non–negative. This modifica-
tion provides for the extraction of strain energy on depar-

ture, much like it provides for strain energy buildup dur-
ing approach. Without this logic modification, friction-
less collisions were found to slightly increase system en-
ergy. Although the logic is not described in detail there,
the modified algorithm was found to be slightly dissipa-
tive Bardenhagen, Brackbill, and Sulsky (2000c).
When applied to contact between deformable bodies the
situation is very similar to that described for a rigid
boundary when both have the same material response.
Enforcement of no interpenetration during contact is ap-
plied by constraining the body velocity component nor-
mal to the surface to be equal to the center of mass
velocity in that direction. This is equivalent to a uni-
form stretch assumption in the surface normal direction.
Because different materials respond to the same stretch
with different stresses, the normal tractions which de-
velop during contact will likely be different for differ-
ent bodies. It is even possible that uniform un–straining
will result in bodies of different materials experiencing
free separation at different times during departure, par-
ticularly when material response allows for permanent
set (e.g. plasticity). Although traction equilibrium is not
maintained at contact nodes, interfaces are unloaded to
their stress free state. This source of error could be elim-
inated in an implicit formulation of MPM where the ap-
propriate partitioning of strain increments between bod-
ies for traction equilibrium would be determined.

2.2 Numerical Considerations

A practical consideration arises in the application of an
MPM algorithm which uses grid node variables. Namely,
interpolated values can be very small when a grid node
first begins to represent material point data. This can oc-
cur when a body’s material points first cross into cells
which previously contained no material points from that
body. Because this happens at the edges of bodies, it is
an especially important consideration in the application
of contact conditions.

Frictional contact conditions are applied by assigning
new grid velocities, ṽα, after contact

ṽα � vα � ∆vα
n � nα � µ � tα  "! µ � � min

#
µ ! ∆vα

t

∆vα
n $ (10)

where µ is the interfacial coefficient of friction, tα is the
unit tangent in the direction of sliding (t � ωωω % n in Bar-
denhagen, Brackbill, and Sulsky (2000a)), and

∆vα � vα � vcm ! (11)
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∆vα
n & ∆vα ' nα ( (12)

∆vα
t & ∆vα ' tα ( (13)

as described in detail in Bardenhagen, Brackbill, and Sul-
sky (2000a).

Resolution of the topology of contacting surfaces on the
computational grid requires no more than two bodies be
represented at a contact grid node. The remaining contact
node analyses are specialized for N & 2. It should be
noted that not all of the properties derived below hold for
N ) 2. The definition of the center of mass velocity, vcm,
Eqn. 5, gives the useful identity

2

∑
α * 1

mα∆vα & 0 ( (14)

from which it can be seen that ∆v1
t + ∆v1

n & ∆v2
t + ∆v2

n, i.e.
either both bodies stick or both bodies slip.
When the effective coefficient of friction, µ , , in Eqn. 10
is not limited by the interfacial friction coefficient, µ, the
surfaces stick. It is easy to show that for this case the
contact algorithm conserves momentum exactly. The to-
tal momentum change imposed by applying sticking con-
tact is

2

∑
α * 1

mα - ṽα . vα / & . 2

∑
α * 1

mα∆vα & 0 0 (15)

where Eqn 14 has been used. For slipping contact, the
sum of momenta on the grid gives

2

∑
α * 1

mα - ṽα . vα / & . 2

∑
α * 1

mα∆vα ' nαnα

. µ
2

∑
α * 1

mα∆vα ' nαtα 0 (16)

While in general slipping contact does not conserve mo-
mentum, the errors are associated with non–collinearity
in the calculation of body normals and tangents, i.e. poor
resolution of interface curvature. For n2 & . n1 and t2 &. t1, momentum is conserved exactly (from Eqn. 14).

A common scenario as two bodies approach and depart
is for the grid mass of one body to approach zero while
the other remains finite. If, through unfortunate registra-
tion of material point mass on the computational grid, a
body’s grid mass is very small, the resulting change in
velocity prescribed by the contact algorithm may be very

large. This result can be seen from Eqn. 15, for exam-
ple. Working with momenta, rather than velocities, is
an elegant solution for updating material point positions
and velocities in this case, Sulsky, Zhou, and Schreyer
(1995). However, calculations of material point incre-
mental strains require velocities on the grid in order to
differentiate it there, and remain problematic. In prac-
tice these unfortunate registration events are marked by
abrupt changes in the kinematics of the contacting bod-
ies, the occurance of which is time step size dependent.

An effective stability criterion has been developed which
is loosely analogous to the Courant explicit time stepping
criterion. The Courant condition demands that solution
information not be allowed to propagate across more than
one cell in a single time step. Similarly, for the contact
algorithm the instantaneous change in velocity must not
be large enough to collapse (or invert) a computational
cell. Define the instantaneous strain rate imposed by the
contact algorithm

ε̇̇ε̇εα
j & ṽα

j
. vα

j

∆x j
(17)

where ∆x j is the grid spacing in each coordinate direc-
tion. Then the condition that the contact strain increment
not collapse a neighboring cell in one time step is

ε̇̇ε̇εα
max∆t 1 1 (18)

where ε̇̇ε̇εα
max & max j 2 ε̇̇ε̇εα

j 2 . Using Eqn. 14, the grid strain
rates for each body may be related, e.g.

ε̇̇ε̇ε2
j & . m1

m2 ε̇̇ε̇ε1
j & m1

M . m1 ε̇̇ε̇ε1
j 0 (19)

These relations allow the most severe grid strain rate, for
either material, to be calculated independently

ε̇̇ε̇εmax & max
j 3 max 3 mα

M . mα
( 1 4 2 ε̇̇ε̇εα

j 2 450 (20)

Only global grid quantities and quantities specific to the
body under consideration are needed in the calculation.

In practice, Eqn. 18 is modified to provide a safety factor,

ε̇̇ε̇εmax∆t 1 γ 0 1 γ 6 1 0 (21)

Implementation of the collapsed cell stability condition
is achieved by scaling the velocity change imposed by
the contact algorithm when necessary

ṽα
scaled & vα . max 3 γ

ε̇̇ε̇εmax∆t
( 1 4 ∆vα

n
- nα 7 µ , tα / 0 (22)
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The most severe constraint, for either body, can be de-
termined using only quantities specific to the body under
consideration, and global quantities, retaining the effi-
ciency of the original formulation. In addition, the scal-
ing preserves the momentum conservation properties of
the algorithm, Eqn.s 15 and 16.
Note that large grid strain increments occur at grid nodes
for which the value of the interpolating functions are
small (resulting in a small grid mass there). Because the
same weighting is used to interpolate strain increments
from the grid back to the material points, material point
strain increments will be much smaller. If grid veloci-
ties are unaltered by the contact algorithm, interpolation
from material points to grid and back again scales out,
and material point strains are well behaved regardless of
the registration of material point information on the grid.
It is only when the grid velocities are adjusted that parti-
cle strain calculations can be problematic, Sulsky, Zhou,
and Schreyer (1995).

The approach described meets the cell collapse con-
straint, Eqn. 21, by systematically limiting the maximum
grid strain rate. Consideration was also given to the ob-
vious alternative, simply reducing the current time step
size, and restarting the time step. This alternative was
rejected because it is the initial registration of the parti-
cle data on the grid which is ultimately responsible for
large grid strain rates. These rates are computational ar-
tifacts, traceable ultimately to the low order of the inter-
polation scheme used to develop grid data. A remedy of
this sort would more appropriately be applied to the pre-
vious time step size. However, without a search to locate
material points near grid boundaries, there is no way to
guarantee avoiding the problem at all grid nodes simul-
taneously. The above described algorithm provides an
efficient means of improving accuracy by screening out
computational artifacts.

3 Applications

To demonstrate the accuracy of the contact algorithm,
numerical solutions are first compared to analytical ones
from rigid body dynamics. A more complex example is
provided by simulating stress wave propagation in ide-
alized granular material. For all cases, the contact algo-
rithm scale factor γ was taken to be 0 9 5. Little sensitiv-
ity to the scale factor was seen in the range 9 5 : γ : 1.
However, for γ ; 0 9 5 bodies were observed to penetrate
to varying degrees during contact. Based on this experi-

ence, a recommended range is 9 5 : γ : 1.

3.1 Sphere Rolling on an Inclined Plane

For a simple test of the algorithm, a sphere rolling down
a flat inclined plane is simulated. The simulation is
performed in 3–dimensions. A symmetry plane exists,
and the simulation direction perpendicular to that plane
serves only to distinguish the geometry (a sphere rather
than a cylinder). See Fig. 2 for the problem setup. The
x– and z–directions lie in the plane of symmetry with x
in the direction of rolling and z perpendicular. The radius
of the sphere, R, is 1.6 m, and the length of the plane
on which it rolls is 20 m. The incline of the plane is
described by the angle between the z–direction and that
of gravity, θ. For all calculations the acceleration due to
gravity is taken to be 10 m/s2. The inclined plane prob-
lem has exact solutions for a rigid sphere on a rigid plane.

g x

z

θ

Figure 2 : Schematic of the inclined plane problem and
R < 4 cell size MPM discretization.

In the simulations the sphere and plane are deformable.
The grid is uniform with equal spacing in all directions
and eight material points per cell. The cell sides are of
length R < 4, providing 8 computational cells across the
diameter of the sphere. This discretization is depicted in
Fig. 2. The material properties are chosen to allow for
large time steps using an explicit code, and consequently
correspond to a rather soft material. Both sphere and
plane are modeled as compressible Neo–Hookean hyper-
elastic bodies, Simo and Hughes (1998). The sphere has
bulk modulus 6 MPa, shear modulus 3 MPa, and density
1000 kg/m3, roughly approximating those of a natural
rubber. The plane has elastic constants and density an
order of magnitude larger, resulting in a much stiffer ma-
terial with the same wave speeds. The longitudinal wave
speed is 100 m/s and a typical calculation for this resolu-
tion requires 500 time steps.
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Figure 3 : Sphere center of mass x–position as a function
of time for both the slip and no slip cases. The rigid
sphere analytical solutions are shown for comparison.

Two cases are considered. For the first θ = π > 4 and the
coefficient of friction is .495. This case is referred to
as the “no slip” case because the rigid sphere solution
describes rolling without slipping. For a rigid sphere the
x–position of the center of mass is given by

x ? t @A= 25 B 2
14

t2 C (23)

The center of mass position of the deformable sphere is
depicted in Fig. 3, along with the analytical solution for
comparison. For the second case θ = π > 3 and the co-
efficient of friction is .286. In this case the analytical
solution describes rolling while sliding and is referred to
as the “slip” case. For a rigid sphere the x–position of the
center of mass is given by

x ? t @A= 5
2
? B 3 D 2

7
@ t2 E (24)

The center of mass position for the deformable sphere,
and the analytical solution for comparison, are also plot-
ted in Fig. 3. For both cases the solutions are similar to
their rigid sphere counterparts, with the deformable disks
rolling and sliding more slowly. The slower motion of the
deformable spheres is also seen in a plot of their center
of mass velocities in the direction of rolling, Fig. 4. The

abrupt changes in velocity, most evident in the no slip
case, are due to the application of the contact algorithm.

Figure 4 : Sphere center of mass x–velocity as a function
of time for both the slip and no slip cases. The rigid
sphere analytical solutions are shown for comparison.

Attention is now focused on the no slip case. To investi-
gate the effect of spatial resolution this case was run with
cell sizes R > 2 and R > 8, corresponding to 4 and 16 cells
across the sphere diameter. The effect of spatial resolu-
tion on calculated position of the center of mass is de-
picted in Fig 5, where the analytical solution for a rigid
sphere appears on the graph for reference. Simulations
for the deformable case are labeled by cell size. The
lowest resolution case, R > 2, is instructive. In this case
the resolution is too crude to resolve the geometry on a
rectangular grid and the sphere fails to roll because of a
flat spot (the resolution is the three–dimensional equiva-
lent of that depicted in Fig. 1). For the finer resolutions,
R > 4 and R > 8, the geometry is sufficiently resolved to per-
mit rolling and the solution quickly converges toward the
rigid sphere case. It appears that although the material
properties correspond to a very soft material, it is resolu-
tion of the geometry that is most important in this simu-
lation.

The effect of spatial resolution on the sphere center of
mass velocity is shown in Fig. 6. For the lowest reso-
lution there is an indication of vibration about the initial
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Figure 5 : No slip case sphere center of mass position
as a function of time for various spatial resolutions. The
rigid sphere analytical solution is shown for comparison.

configuration, but no rolling, as expected. For finer res-
olutions the sphere rolls, and the velocity converges to-
ward the rigid sphere solution. The rigid sphere solution
appears to provide an upper bound on the velocity for
these simulations. This might be expected in part because
potential energy is converted both to elastic (strain) en-
ergy and kinetic energy for the deformable sphere, while
for the rigid case all potential energy is converted to ki-
netic energy. However, the sphere skips slightly, and
while not in contact accelerates more quickly than while
rolling in contact. If the simulation was carried out long
enough, the sphere would eventually travel more quickly
in the numerical simulation, due to skipping

3.2 Backspin Problem

A slightly more complex problem is the motion of an ini-
tially stationary, spinning sphere on a flat plane (θ G 0)
under gravity. Although spinning, the center of mass ve-
locity is initially zero. This problem is termed the “back-
spin” problem. The same material properties and acceler-
ation of gravity are used for this problem, but the sphere
has unit radius and only the higher resolutions consid-
ered are used (cell sizes R H 4 and R H 8). The coefficient of
friction is taken to be 0.5 and the initial angular velocity

Figure 6 : No slip case sphere center of mass velocity
as a function of time for various spatial resolutions. The
rigid sphere analytical solution is shown for comparison.

5 rad/s.

Once again, for a rigid sphere there is an analytical solu-
tion. First the sphere slides and rolls while accelerating.
When velocities at the contact point match it rolls with-
out slipping at constant velocity. This solution for the
center of mass position is given by

x I t JLK x0 GMI 5 H 2 J t2 t N 2 H 7 O (25)

x I t JLK x0 GMI 5 H 2 JPI 2 H 7 J 2 Q I 10 H 7 JRI t K 2 H 7 J t S 2 H 7 O
(26)

where t G 2 H 7 is the time at which slipping stops. Numer-
ical simulation results for deformable spheres, as well as
the rigid sphere solution, are shown in Figs. 7 and 8.

For both position and velocities, results converge toward
the rigid sphere results, indicating the importance of re-
solving the geometry accurately. The deformability of
the sphere plays a larger role at the higher angular ve-
locities induced during this simulation. The combination
of deformability and skipping produces the strong oscil-
lations in center of mass velocity seen in Fig. 8. Analo-
gous to stick–slip like behavior, the sphere catches briefly
causing acceleration of the center of mass velocity, fol-
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Figure 7 : Sphere center of mass position as a function
of time for R T 4 (labeled dx=.250) and R T 8 (dx=.125) cell
size MPM discretizations. The rigid sphere analytical so-
lution is shown for comparison.

lowed by free spinning during which the velocity is es-
sentially constant. The oscillations in velocity are due to
deformability. When the sphere contacts with excessive
forward spin, the center of mass velocity is increased and
the sphere is compressed forward of the contact patch.
As this strain energy is released during a skip (free flight),
the sphere expands resulting in an increase in forward
velocity at the following contact patch and an effective
backspin, slowing the center of mass on contact.

3.3 Stress Waves In Granular Media

A significantly more demanding modeling problem is
presented by calculating stress waves in granular me-
dia. This problem has been studied extensively by Shukla
and co–workers, Rossmanith and Shukla (1982); Shukla
and Damania (1987); Shukla (1991); Zhu, Shukla, and
Sadd (1996), who used detonators to load collections of
disks. Using photoelastic disks and high–speed photog-
raphy, they were able to temporally and spatially resolve
the stress state as the impulse traveled through various
assemblages. More recently similar experiments have
been undertaken, but using a Hopkinson bar to dynam-
ically load the disks, Roessig (2001). In this case the

Figure 8 : Sphere center of mass velocity as a function
of time for R T 4 (labeled dx=.250) and R T 8 (dx=.125) cell
size MPM discretizations. The rigid sphere analytical so-
lution is shown for comparison.

loading results in a step change in velocity rather than an
unsteady impulse of short duration. The latter is better
characterized, and a much easier boundary condition to
simulate.

Because frictional sliding is a defining characteristic of
granular material, it is natural to test the contact algo-
rithm by simulating granular material response. This was
done previously for dynamic wave propagation, Barden-
hagen and Brackbill (1998) and shearing deformations,
Bardenhagen, Brackbill, and Sulsky (2000c,b) with very
good qualitative “macroscopic” agreement. However, a
direct comparison of experimental and numerical results
for a specific microstructure was never made. Here re-
sults for well characterized assemblies of disks and load-
ing conditions are simulated and compared to experimen-
tal measurements.

The experimental setup is facilitated by a mild steel load-
ing frame which holds the disks. Dimensions adjust eas-
ily, allowing various geometries to be assembled. One–
quarter inch grooves in the sides of the frame hold the
disks in plane. Loading is applied via a split Hopkin-
son bar. The input pulse is recorded and analyzed to
give a striker velocity, which for the experiments reported



518 Copyright c
U

2001 Tech Science Press CMES, vol.2, no.4, pp.509-522, 2001

here is 5.6 m/s. The disks are 2 inches in diameter, 1/4
inch thick, and made of Plexiglas. Experimental mea-
surements are made using a high speed camera and the
technique of photoelasticity. The camera is triggered by
wave propagation in the Hopkinson bar prior to reaching
the disks. The transfer of the stress wave to a loading
pin of equal thickness as the disks ensures plane stress
loading conditions. Unfortunately, this results in some
uncertainty ( V 10 µs) in the arrival time of the stress wave
at the first disks (“impact”). However, interframe times
are much more precise, and provide the more exacting
constraint on the comparisons. Photoelasticity gener-
ates dark fringes at contours of constant maximum shear
stress. Because in the simulations the spatial variation of
the stress state is known, it is straight–forward to do the
corresponding calculation. Specifically, the stress tensor
is diagonalized. For isotropic response the the out–of–
plane direction is a principal one, and decoupled from
the in–plane response. The difference in in–plane prin-
cipal stresses is then proportional to the maximum shear
stress in–plane. Fringes are generated by taking the co-
sine of the difference in in–plane principal stress divided
by a parameter to adjust fringe density.

Experiment

Simulation

Experiment

Simulation

Experiment

Simulation

Figure 9 : Stress wave propagation through a collection
of four disks with aligned centers. Matching frames are
presented in pairs with the experimental data on top and
simulation results below. Non–dimensional frame times
are 2.6, 6.6, and 9.2 for the experimental data and 2.2,
5.5, and 7.7 for the simulation.

The numerical simulations use a linear hypoelastic con-
stitutive model for the Plexiglas, Fung (1965). In part
because the elastic constants are not known accurately
for the Plexiglas used (properties can vary with manu-
facturer and to some degree even by material lot), and
in part to facilitate a parameter study varying the elastic
constants, unit geometries and wave speeds were speci-
fied in the simulations. The numerical simulations use 1
cm diameter disks and material properties resulting in a
longitudinal wave speed of 1cm/µs. Specifically the ma-
terial properties are shear modulus 72 GPa, bulk modulus
102 GPa and density 1900 kg/m3. If Plexiglas was ac-
curately modeled using hypoelasticity with the selected
ratio of shear to bulk moduli, then stress magnitudes and
wave speeds could be scaled by the ratio of actual to sim-
ulated moduli, and transit times could be scaled by the
ratio of disk diameters, to make precise comparisons be-
tween simulations and experiments. However, the elastic
constants are not known very precisely yet and, in ad-
dition, there is evidence for more complicated, rate de-
pendent, material response, Roessig (2001). Still, purely
elastic response has been found to capture gross features,
as measured photoelastically, remarkably well, as seen in
Fig. 9 for four collinear disks impacted on the right.

For this simple geometry, the computational resolution
serves primarily to resolve the geometry, as the contact
conditions are generally no slip due to the compressive
loading and the geometric and material symmetry. The
simulations use 80 cells across disk diameters and one
material point per cell. Because of the material modeling
uncertainties, the experimental results for this configura-
tion of disks were used to determine the fringe density
parameter. Matching fringe patterns were chosen by eye,
subject to the constraint of equal interframe times, as in
the experimental data. The same fringe density param-
eter is then used in all subsequent photoelastic analyses
for the more complex geometries considered next.

To compare results more precisely, non–dimensional
frame times are reported. The non–dimensional frame
time is defined as the time after impact divided by the
longitudinal wave transit time across one disk. For the
simulations the longitudinal wave transit time across one
disk is 1 µs. For the experiments, estimating the longi-
tudinal wave speed as 0.27 cm/µs, Marsh (1980) results
in a wave transit time of 19 µs. A selection of matching
frames is shown in Fig. 9. For the experiments, the non–
dimensional frame times are 2.6, 6.6, and 9.2. For the
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simulations, the non–dimensional frame times are 2.2,
5.5, and 7.7. The computations accurately reproduce the
experimental fringe patterns. Note that a finite exposure
time results in some smoothing of the experimental im-
ages not present in the simulation data (which is instan-
taneous). The variation in fringe velocity through disks
and across contacts is also accurately simulated. How-
ever the non–dimensional frame times are different, the
fringes propagate (relatively) more quickly in the simu-
lation.

Experiment

Simulation

Experiment

Simulation

Experiment

Simulation

Figure 10 : Stress wave propagation through a collection
of five disks with zig–zagged centers. The simulation
used a friction coefficient of 0.5. Matching frames are
presented in pairs with the experimental data on top and
simulation results below. Non–dimensional frame times
are 5.3, 10.5, and 15.8 for the experimental data and 3.0,
6.0, and 9.0 for the simulation.

A geometry which promotes slipping contact was sim-
ulated next. The disk centers were arranged such that

lines connecting the centers form a 90 degree zig–zag
pattern. For the simulations a coefficient of friction of
0.5 was used between the disks and contact with the
walls was frictionless. Experimental and numerical re-
sults for this geometry are shown in Fig. 10 for match-
ing fringe patterns (subject to the equal inter–frame time
constraint). Matching fringe patterns were obtained at
non–dimensional times of 5.3, 10.5, and 15.8 in the ex-
periments and 3.0, 6.0, and 9.0 in the simulation. Again
the fringe patterns and variations in fringe velocity are
accurately simulated. In addition, other gross features are
similar. Because contacts can slide, load carrying paths
first develop between disk contacts and a wall. Only after
sufficient normal traction builds up and the next disk con-
tact sticks do fringes propagate into the next disk in the
series. Note that the grooves in the experimental appara-
tus, which serve to hold the disks in plane, obscure pho-
toelastic measurements of disk contacts with the walls.
The ability of contacts to slide hinders fringe propaga-
tion across contacts and fringes propagate much more
slowly in this configuration, in both the experiment and
the simulation, than in the collinear disks configuration.
However, the non–dimensional frame times are again in
error, with fringes propagating (relatively) faster in the
simulation than for the experiment, as for the collinear
configuration.

To provide maximum contrast, the case was examined
where the disks were glued together in the experiment
to eliminate slip all altogether. No slip contact condi-
tions were implemented between disks in the simulation
by taking the coefficient of friction to be infinite. Con-
tact with the walls remained frictionless in the simula-
tion. Results for this case are shown in Fig. 11. Match-
ing fringe patterns (subject to the equal inter–frame time
constraint) were obtained at non–dimensional times of
1.6, 4.2, and 6.8 in the experiments and 1.4, 3.6, and 5.8
in the simulation. Again the fringe patterns and vari-
ations in fringe velocity are accurately simulated, and
other gross features are similar. When contacts support
shear immediately, the primary load path across a disk
first develops between disk contact points. Load paths
connecting disk contact points to the boundary develop
later. As a result, the fringes propagate through the as-
sembly much faster than for the same configuration with
slipping contact. However, the non–dimensional frame
times are again in error, with fringes propagating (rela-
tively) faster in the simulation than in the experiment.
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Experiment

Simulation

Experiment

Simulation

Experiment

Simulation

Figure 11 : Stress wave propagation through a collec-
tion of five disks with zig–zagged centers and sticking
contact. Matching frames are presented in pairs with the
experimental data on top and simulation results below.
Non–dimensional frame times are 1.6, 4.2, and 6.8 for
the experimental data and 1.4, 3.6, and 5.8 for the simu-
lation.

The above examples indicate that contact plays an im-
portant role in stress wave propagation in collections of
disks, and almost certainly plays in important role in
more general granular material as well. Fringe wave
speeds are strongly dependent on contact conditions,
specifically the amount of slippage. The simulations are
found to be in excellent qualitative agreement with the
experiments. Some of the discrepancies in the details
may be attributable to the boundary conditions. The disks
are initially in contact with each other and the walls in the
simulations, while for the experiments there are small
tolerances. The biggest differences however, the sys-
tematic differences in non–dimensional frame times, are

most likely due to errors in modeling material response.

A parameter study was undertaken, using the collinear
disks geometry, to determine the sensitivity of fringe ve-
locity to the Poisson’s ratio, ν, keeping the longitudi-
nal wave speed fixed. It was found that fringe velocity
is strongly dependent on Poisson’s ratio, but fringe pat-
terns much less so. For the elastic constants selected,
ν X 0 Y 22. A reduction in fringe velocity by more than a
factor of two was obtained by increasing the Poisson’s ra-
tio from 0.22 to 0.48. This result is not unexpected, as the
photoelastic technique measures gradients in shear stress,
and the shear modulus (and consequently the shear wave
speed) decreases with increasing Poisson’s ratio. With
both contact conditions and elastic constants playing im-
portant roles, a more quantitative assessment of the accu-
racy of the calculations awaits a better characterization
of the Plexiglas’ material properties. At this point it is
simply noted that for a given set of material constants,
the same collective fringe velocity trends are exhibited
in the simulations as in the experimental data. In addi-
tion, for ν Z 0 Y 22, an easily justifiable material modeling
modification for polymers, the decrease in fringe velocity
would tend to reduce the systematic differences in non–
dimensional frame times. Better characterization of the
Plexiglas used in these experiments is underway, and the
results will appear in conjunction with a study of more
complicated disk assemblages, Roessig (2001).

4 Conclusions

The Material Point Method provides a convenient frame-
work for the implementation of contact between de-
formable bodies. The contact conditions are equivalent
to a perfectly inelastic collision, providing for maximum
exchange of kinetic and strain energy. For accurate appli-
cation of contact under this scenario, the normal tractions
must be monitored and included in the release logic. The
contact calculations are computationally efficient, per-
formed on the computational grid body by body, with-
out requiring a search to identify neighbors. A potential
numerical difficulty associated with unfortunate registra-
tion of particle information on the computational grid has
been eliminated by a scaling which retains both the ef-
ficient properties of the algorithm, and conservation of
momentum during contact.

The algorithm is exercised on several simple problems,
for which analogous rigid body problems have analytical
solutions. The algorithm is found to compare well, even
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for fairly coarse discretizations with resolution of geom-
etry the most important factor in obtaining convergence.
The algorithm is exercised on a more demanding sim-
ulation involving stress propagation through collections
of polymeric disks for which high fidelity experimen-
tal data is available. Excellent qualitative agreement is
found for three examples with very different contact con-
ditions. The importance of accurate simulation of ma-
terial contact is demonstrated by the strong dependence
of load path development and collective wave propaga-
tion speeds on the contact conditions. Other important
simulation parameters were identified, including material
properties and experimental tolerances. Future work will
focus on obtaining better measurements of these param-
eters, comparing simulation to experiment quantitatively,
and simulating more complex assemblages.
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