
Continuum Effective-Stress Approach for High-Rate Plastic Deformation of
Fluid-Saturated Geomaterials with Application to Shaped-Charge Jet Penetration

Michael A. Homel, James Guilkey, Rebecca M. Brannona,b,c,

aUniversity of Utah, Department of Mechanical Engineering
bUniversity of Utah, Department of Mechanical Engineering

cThe University of Utah, Department of Mechanical Engineering, 50 S. Central Campus Dr., MEB 2110, Salt Lake City, Utah 84112

Abstract

A practical engineering approach is presented for modeling the constitutive response of fluid-saturated porous geomaterials under
loading that is typical of shaped-charge jet penetration for wellbore completion. An analytical model of a saturated thick spherical
shell provides valuable insight into the qualitative character of the elastic-plastic response with an evolving pore fluid pressure.
However, intrinsic limitations of such a simplistic theory are discussed to motivate the more realistic semi-empirical model used in
this work. The constitutive model is implemented into a material point method (MPM) code that can accommodate extremely large
deformations. Consistent with experimental observations, the simulations of wellbore perforation exhibit appropriate dependencies
of depth of penetration (DOP) on pore pressure and confining stress.
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1. Introduction

1.1. Fluid Saturated Porous Materials

Deformation characteristics of fluid-saturated porous materi-
als are fundamental to geomechanics modeling (Karrech et al.,
2012), with conventional engineering applications in hydroge-
ology, biomechanics, and ceramic processing (Wang, 2000), as
well as emerging applications in biomechanics, such as simu-
lating bone regrowth (Swan et al., 2003; Kohles et al., 2002;
Borja, 2006; Gupta et al., 2007), ice flow and climate model-
ing (Scambos et al., 2000; Kamb, 1991). For high-rate, large-
deformation simulations, it is necessary to model not only the
elastic response, but also the response to inelastic deformation
such as pore collapse and the loss of strength due to the intro-
duction of microcracks or voids (Strack et al., 2014). In contin-
uum approaches, homogenization is applied so the two-phase
material can be represented as a mechanically-equivalent single
phase (Geiser; and Blight, 2004), which (as can be confirmed
via mesoscale modeling at various strain rates) is a reasonable
approximation for high-rate applications such as wellbore com-
pletion.

1.2. Effective-Stress Model History

Modern approaches for continuum modeling of fluid-
saturated porous media define an “effective stress,” first intro-
duced by Terzaghi (1936) and Fillunger (1915) that governs the
stress-strain response and strength of a porous material (Schre-
fler and Gawin, 1996). The general formulation for effective
stress is

σeff ≡ σ − αp f I, (1)

where p f
1 is the pore fluid pressure, and α is Biot’s parame-

ter (Schrefler and Gawin, 1996; Biot, 1956, 1941). The appeal
of the effective-stress approach is that it allows the response
of a porous solid with fluid pressure to be determined from
the measured response of a drained sample (Nedjar, 2012), for
which experimental methods are more tractable (Nur and By-
erlee, 1971). While the effective-stress concept has been ex-
tended to partially-saturated material to describe effects of ma-
tric suction (Sun et al., 2007) and molecular adhesion (Anan-
darajah, 2010), studies on the capillary stress tensor in wet
granular materials have shown the pore fluid in unsaturated ma-
terial is “inherently anisotropic and strongly dependent on the
combined loading and hydric history of the material” (Scholts
et al., 2009) making it fundamentally different from an isotropic
fluid pressure and thus calling into question the applicability of
the effective-stress approach for unsaturated granular materi-
als (Xie and Shao, 2012; Sheng et al., 2013). At sufficiently-
high strain rates fluid transport through the pore network can be
neglected (Nedjar, 2013), so this discussion will focus on the
case of a fully-saturated material with a pore fluid pressure that
evolves with local material deformation.

1.2.1. Elastic Response
The elastic response of a porous material with pore pressure

can be expressed in terms of an effective stress (Wang, 2000).
For linear-elastic deformation, where the pore pressure is as-
sumed to be proportional to strain, a theoretical value for Biot’s

1Throughout this manuscript, an overbar denotes a quantity that is positive
in compression.

Preprint submitted to Journal of Applied Geophysics December 10, 2014



parameter is (Schrefler and Gawin, 1996)

α = 1 −
K
K′s
, (2)

where K and K′s are the bulk moduli of the drained and
undrained porous material, respectively. This definition is con-
sistent with experimental evidence and provides the correct re-
sponse in the limit as porosity goes to zero (Nur and Byerlee,
1971).

1.2.2. Inelastic Response
Terzaghi’s effective-stress postulate agrees well with experi-

mental data for soils and rock materials under the stresses typ-
ical of geotechnical applications, but the strength properties at
very high stresses cannot be determined accurately without ac-
counting for micromechanical considerations (Jaegar and Cook,
1976; Goodman, 1980; Buhan and Dormieux, 1996; Schrefler
and Gawin, 1996; Barthelemy and Dormieux, 2010). While
the poroelastic effective-stress model can be derived theoreti-
cally (Coussy, 1995) asserts that there is no similar justification
for evaluating the material strength based on effective stress.
Accordingly, the stress and fluid pressure must be accounted
for independently in the yield function, f ′(σ, p f ), which cannot
be determined directly from the yield function for the drained
material, f (σ). Buhan and Dormieux (1996) show that an
effective-stress approach is applicable when the matrix strength
depends only on the stress deviator (e.g., von Mises or Tresca
yield conditions), and they conclude that the approach repre-
sents a “safe lower bound” for materials with frictional strength
properties (e.g., Mohr-Coulomb or Drucker-Prager yield condi-
tions) with a vertex at the origin of stress space; experimental
investigations support this assertion for specific low-rate (Xie
and Shao, 2012) and high-rate (Lomov et al., 2001) load cases,
but the subject remains an open research topic (Xie and Shao,
2012; Wilmanski, 2006).

1.3. Shaped-Charge Jet Penetration

High-rate constitutive modeling of saturated porous materi-
als is crucial to any computational investigation of wellbore
completion, in which a shaped-charge jet is used to penetrate
the well casing and surrounding rock in order to open a pathway
for oil to flow. A well-known guideline for shaped charge jet ex-
plosives correlates the depth of penetration (DOP) to the ratio
of densities of the penetrator to the target (Cooper, 2007). How-
ever, it is widely observed that the penetration depth is greater
into undrained rock than into drained, despite the increased tar-
get density, emphasizing the need to better understand the role
that a pore space fluid plays in the material response (Grove
et al., 2008).

Simulation of shaped-charge jet penetration into rock is
highly nontrivial, with large deformation, large rotation, mul-
tiple materials and contact that would require adaptive remesh-
ing to avoid mesh entanglement in traditional finite element
methods (Lee and Bathe, 1994). The need for an accurate
constitutive response of the target materials precludes Eule-
rian approaches (Antoun et al., 2006) that do not allow for

full-stress constitutive models with history-dependent proper-
ties (Liu et al., 1986). A promising alternative is the material
point method (MPM), which is a mixed Eulerian-Lagrangian
approach that solves the equations of motion on a fixed back-
ground grid while tracking the material state on particles that
travel through this grid (Bardenhagen et al., 2000). The penetra-
tion simulations and mesoscale modeling described herein are
performed in Uintah, a scalable parallel environment for mul-
tiphysics simulations that includes capabilities for various im-
plementations of the material point method, as well as support
for explosives and fluid-structure interactions (Guilkey et al.,
2009).

2. Methods

We will describe first an analytical model for a thick spheri-
cal shell that contains a pore fluid. This idealized model is not
directly applicable to constitutive modeling of geomaterials, but
does provide valuable insight into the desired elastic-plastic re-
sponse with an evolving pore fluid pressure. A practical empir-
ically based solution method is then presented to mitigate some
errors in the shell model associated with the clearly unrealistic
morphology and to accommodate a generalized effective-stress
principle for elastic-plastic deformation under arbitrary load-
ing. Finally we describe the application of this model to MPM
simulations of wellbore completion, to produce experimentally
observed trends in penetration channel formation vs. pore pres-
sure and confining stress.

2.1. Analytical Model of a Thick Spherical Shell

To better understand the effect of a pore fluid on the consti-
tutive response of a porous material, we first consider the ide-
alized case of a linear-elastic, perfectly-plastic, incompressible,
thick spherical shell, for which analytical solutions can be de-
rived to describe the response to hydrostatic loading. This clas-

Figure 1: Diagram of the thick spherical shell with a pore fluid pressure.
The shell material is linear-elastic, perfectly plastic, and incompressible so the
porosity depends only on the displacement of the outer surface.

sical starting point was presented by Carroll and Holt (1972),
who derived an analytical solution for the pressure during pore
collapse in three regions, (i) fully elastic, (ii) elastic-plastic, and
(iii) fully-plastic, as a function of the current and initial disten-
sion (ratio of the density of the matrix and bulk materials), the
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shear modulus (G) and the yield strength (Y) of the shell mate-
rial. Extending their work to include an evolving fluid pressure
at the pore surface, we prove in Appendix A that Terzhagi’s
postulate (Buhan and Dormieux, 1996) is valid for this system,
and the resulting steady-state solution can be expressed in terms
of an “effective pressure,” defined as the difference in pressure
at the inner and outer surface.

2.1.1. Response
The porosity vs. pressure responses of the hollow and fluid-

filled spherical shells are plotted in Fig. 2. For the hollow shell,
the compressive fully plastic response (i.e., the orange “crush”
curve on the right-hand side of the figure) is independent of the
initial porosity, but for the fluid-filled shell the pore pressure
– and thus the overall response – depend on the initial pore
volume.

p

p

Figure 2: Porosity vs. pressure for a hollow (top) and fluid-filled (bottom) thick
spherical shell, for a range of initial porosities

In spherical tension, the elastic-plastic to fully-plastic transi-
tion occurs at a lower stress as dilatation increases, an unstable
response resulting from thinning of the spherical shell. An in-

teresting result is observed when plotting the tensile response
for very low initial porosities, in which the shell thinning occurs
in the elastic-plastic domain as shown in Fig. 3. For such cases,
there exists a region of unrealizable states, enclosed by the fully
plastic envelope, that cannot be achieved through quasistatic
deformation. While not directly relevant to the effective-stress
development, this has important implications as a potential pore
nucleation criterion in spherical tension.
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Figure 3: Pore collapse and expansion for a hollow thick spherical shell for a
range of low initial porosities

2.1.2. Continuum Implementation
Using the analytical solution for the fluid-filled spherical

shell from Appendix A , the load-unload response of the spher-
ical shell is computed, as shown in Fig. 4. During decompres-
sion, accumulated fluid pressure causes the matrix material to
expand beyond its zero effective-stress state, inducing yield in
biaxial tension within the matrix material while the confining
pressure remains spherical and compressive. As a result, the
matrix material undergoes significant extensional plastic strain
during unloading, and is in a state of incipient tensile yield at
the unloaded equilibrium. This mechanism could affect the
damage (de Borst et al., 1999) and therefore the permeability
(Morris et al., 2003) in the deformed structure. From the an-
alytical solution to the spherical shell, expressions can be de-
rived for the evolution of the hydrostatic compressive strength
and the unloaded fluid pressure with volumetric plastic strain.
The accumulated fluid pressure creates a hydrostatic shift (ζ)
in the yield surface, interpreted as an isotropic backstress, and
pore collapse evolves the hydrostatic compressive strength (X),
herein defined as the value of the first stress invariant (I1) at the
elastic limit. Both X and ζ evolve with plastic strain as illus-
trated in Fig. 5.

While it is possible to obtain a set of evolution equations for
X and ζ from the spherical shell model, direct continuum im-
plementation of these equations is problematic. The response
of a ductile spherical shell is a poor approximation for the non-
linear response of a geomaterial, and the approximation error
is not significantly reduced by treating the model parameters
as empirical fitting parameters. More critically, the analytical
solution is tractable only because it assumes an incompressible
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Figure 4: Load/unload response for an incompressible thick spherical shell with
compressible pore fluid. The dots correspond to the states indicated in Fig. 5.

Figure 5: Evolution of constitutive model state variables for the hydrostatic
compressive strength (X) and the isotropic backstress (ζ) for some compressive
increment in volumetric plastic strain.

matrix, so that the pore volume is a simple function of the bulk
volumetric strain. Without this assumption it becomes very dif-
ficult to define the boundary conditions at the pore surface dur-
ing plastic deformation, but with this assumption the model be-
comes overly stiff in the limit of low porosity, and only allows
a finite compressive strain.

2.2. Empirical Approach Model

A new approach was taken in this work to describe the hy-
drostatic constitutive response of the saturated material, which
accounts for matrix compressibility while ensuring a consis-
tent coupling between the models for elastic response, pore col-
lapse, and evolution of the pore pressure.

Since classical poroelasticity is limited to linear elastic defor-
mation (Karrech et al., 2012), we must derive an approximate
relation to predict the porosity during pore collapse as a func-
tion of the compressibilities of the fluid and matrix phases.

2.2.1. Isotropic Backstress Evolution
We begin by assuming that the volume reduction in each

phase is proportional to the applied pressure, so that each phase
contributes a resistance to the overall change in volume that is
a function of its volume fraction and bulk modulus.

The fluid is described by a simple logarithmic equation of
state, so the fluid pressure (p f ) is a function of the fluid bulk
modulus (K f ), and the change in fluid volume (V f ) from the

initial state (V i
f ), and possibly the additional zero-strain fluid

pressure ( p̄i
f ),

p f = K f ln

V i
f

V f

 + p̄i
f . (3)

Neglecting grain-scale heterogeneity and assuming the over-
all effective response of the matrix is isotropic, we express the
change in matrix volume (Vm) from the initial state (V i

m =

(1 − φi)V i
tot) in terms of an effective matrix pressure (pm) and

bulk modulus (Km):

pm = Km ln
(

V i
m

Vm

)
(4)

The initial porosity (φi) is defined as

φi =
V i

f

V i
m + V i

f

. (5)

Volumetric strain (εv) is defined as a sum of elastic (εe
v) and

plastic (εp
v ) strains, based on the total volume change from an

initial unit volume:

εv = ln

V f + Vm

V i
f + V i

m

 . (6)

Combining Eq. 3 through Eq. 6 gives

φi epm/Km = e(p f− p̄i
f )/K f

(
eεv+pm/Km + φi − 1

)
. (7)

Consider a material that has been compressed plastically and
unloaded to a point of zero effective stress (peff

= p̄ − p f = 0),
such as the state corresponding to the blue dot in Fig. 4. At this
point, the stress coincides with the shifted elastic center, which
implies zero elastic strain in an effective stress framework. The
plastic strain therefore then equals the total strain εv = ε

p
v . For

some control volume, the boundary of the matrix material is
subject to either the fluid pressure or the confining pressure, as
shown in Fig. 6. For a homogenized matrix material, the de-
formation is self similar, and the effective matrix pressure must
equal that of the fluid and confinement (pm = p f = p̄). This ho-
mogenization neglects variations in residual stress throughout
the matrix material, but is used only to estimate the total com-
pressed matrix volume. To account for heterogeneity, the effec-
tive matrix bulk modulus (Km) should be determined directly
from measurements of the drained material once all porosity
has been crushed out, rather than from theoretical properties of
a single grain or crystal. Equation 7 can now be applied to relate
the pressure ( p̄) and volumetric plastic strain (εp

v ).

φi ep̄/Km = e(p̄−p̄i
f )/K f

(
eε

p
v +p̄/Km + φi − 1

)
(8)

In this unloaded, plastically deformed state, the pressure is
proportional to the isotropic backstress shift of the yield sur-
face ζ = −3p f = −3p̄(εp

v ). While Eq. 8 cannot be solved ex-
plicitly for p̄(εp

v ), implicit differentiation can be used to obtain
an evolution equation for the isotropic backstress:(

∂ζ

∂ε
p
v

)
=

3K f Km eε
p
v(

K f + Km

)
eε

p
v − φiK f e

3p̄i
f +ζ

3K f − (1 − φi) Km e
ζ

3Km

. (9)
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Figure 6: RVE schematic of the pressure acting on the matrix domain for the
special case of zero effective stress so the pressure ( p̄) equals the fluid pressure
(p f ).

2.2.2. Porosity-Strain Relationship
Eq. 9 describes the evolution of the unloaded pore pressure

with plastic deformation, but to estimate the change in elas-
tic properties with deformation, it is also necessary to derive a
porosity-strain relationship.

In terms of an engineering strain measure, the total volumet-
ric strain (εv) can be defined in terms of the volumetric strain in
each phase and the initial porosity as

εv = φi ε
f
v + (1 − φi)εm

v . (10)

Approximating the pressure in each phase as equal (−ε f
v K f +

p̄i
f = −εm

v Km), and solving Eq. 10 for the volumetric strain in
each phase,

ε
f
v =

εvKm + (1 − φi) p̄i
f

(1 − φi)K f + φiKm
. (11)

εm
v =

εvK f − φi p̄i
f

(1 − φi)K f + φiKm
(12)

Eq. 10 comes from the following four equations:

ε
f
v =

V f − V i
f

V i
f

(13)

εm
v =

Vm − V i
m

V i
m

(14)

εv =
V f + Vm − (V i

f + V i
m)

V i
f + V i

m
(15)

V i
f

V i
f + V i

m
= φi. (16)

These equations assume an engineering strain measure. For
logarithmic (Hencky) strain measure, the relation (analogous
to Eq. 10) is

eεv = eε
m
v (1 − φi) + eε

f
vφi. (17)

This form is not used because no algebraic solution exists (anal-
ogous to Eq. 11 and Eq. 12) when using the logarithmic strain
measure. Although an engineering strain measure introduces
error when applied to large-deformations, here we are only de-
termining the relative volume change of the two phases, which
mitigates this error.

Combining Eq. 11 and Eq. 12 gives the following approx-
imate relationship between the current porosity and the total
volumetric strain:

φ(εv) =
φi e(p̄i

f +Kmεv)/χ

φi e(p̄i
f +Kmεv)/χ

+ (1 − φi) eK f εv/χ
(18)

where
χ = K f (1 − φi) + φiKm. (19)

This expression is only an approximation, since the actual pore
pressure would depend on the path-dependent residual stress
state in the matrix material.

2.2.3. Bulk Modulus
The elastic tangent bulk modulus of the saturated material

K′s can be estimated using the classical approach presented by
Biot (1941) and Gassmann (1951) based on the bulk modulus
of the drained material (K), the material porosity (φ), and the
bulk moduli of the fluid (K f ) and solid (Km) phases.

K′s = K +
γ2

γ
Km

+ φ
(

1
K f
− 1

Km

) , where γ = 1 − K/Km (20)

Hart and Wang (1995) demonstrated that this formulation
produces a reasonable approximation for the measured hydro-
static properties of Berea sandstone and Salem limestone up to
the elastic limit. In extending this model to large deformation,
we allow the porosity to depend on plastic strain according to
Eq. 18, with the drained bulk modulus varying according to
Eq. 21.

While it may be possible to improve the predictions
with models that account for micromechanical considerations
(c.f., Pietruszczak and Pande (1995)) (most importantly that the
solid phase in typical sedimentary rock is inhomogeneous ), the
improved models require either additional experimental mea-
surements, or knowledge of the microstructure that may not be
readily obtainable. In contrast, the present approach requires
only measurements that can be obtained directly from the hy-
drostatic response of the bulk material.

These poroelasticity approaches are derived under the as-
sumption of quasistatic deformation, so that a state of purely
isotropic stress can be assumed to exist throughout the pore
fluid. This assumption loses validity at higher rates of load-
ing, where local shear stresses would no doubt exist (even in a
macroscopic hydrostatic loading) as the pore space deformed.
The magnitude of the shear stresses for a given load path would
depend additionally on the strain rate and viscosity of the fluid,
but the amount of shear deformation in the fluid would depend
on the microstructure and could likely not be inferred from qua-
sistatic hydrostatic data. This is one of several dynamic effects
that are accommodated en ensemble with a Duvaut-Lion rate
dependent model.
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2.2.4. Parameterization
The hydrostatic load-unload response of a drained material is

well described by empirical formulations. The elastic tangent
bulk modulus in compression can be approximated as a function
of the hydrostatic stress (I1), volumetric plastic strain (εp

v ), and
parameters (bi) by the relation (Brannon et al., 2009):

K = b0 + b1 e−b2/|I1 | − b3 e−b4/|ε
p
v |, (21)

where b0 is the initial value, and b0 + b1 is the high-pressure
limit, which is assumed to be equal to the bulk modulus of the
solid phase (Km).

The crush curve, which defines the relation between the hy-
drostatic compressive strength (i.e., the evolving value, X, of
the first stress invariant, I1, beyond which pores irreversibly col-
lapse in compression) and volumetric plastic strain is described
by Brannon et al. (2009):

X(εp
v ) = p0 +

1
p1

ln
(
ε

p
v + p3

p3

)
, (22)

where p0 is the value of I1 at the initial hydrostatic compres-
sive limit, p1 is a shape parameter, and p3 is the magnitude of
the maximum achievable compressive volumetric plastic strain.
The initial porosity is related to the crush curve parameters by

φi = 1 − e−p3 . (23)

This development has used a simple one-parameter logarithmic
equation of state for the fluid. The fluid bulk modulus is se-
lected to best approximate the fluid response over the range
of application. Figure 7 compares this logarithmic equation
to the Tait equation (Li, 1967), for a wide range of pressure.
A reduced value of the fluid bulk modulus could be used to

Equation of State
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Logarithmic, Kf =2GPa
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Figure 7: Comparison of the logarithmic equation of state with two values of
bulk modulus to the Tait equation of state, fit to Amagat’s data (Li, 1967) over
two pressure ranges.

roughly approximate the response of a partially saturated ma-
terial. Though this neglects the effect of matric suction, it may
be suitable for high-rate applications. The logarithmic equa-
tion of state was selected because it produces tractable analyt-
ical expressions for the state variable evolution, porosity, and

fluid pressure. In principal the approach presented in this paper
could be used with a more complex equation of state (or even a
lookup table).

2.2.5. Empirical Strain-to-Yield Model
The model for the elastic tangent bulk modulus of a saturated

material can be extended to obtain a crush curve equation for
the undrained material using only the empirical characterization
of the drained material.

Assuming the drained material is well-characterized by em-
pirical relations, the following relationship exists between the
hydrostatic strength (Eq. 22), elastic tangent bulk modulus
(Eq. 21), and the volumetric strain-to-yield (εe,yield

v ).

X(εp
v ) = 3

∫ ε
e,yield
v

0
K

(
I1, ε

p
v

)
dεe,yield

v (24)

Using a midpoint rule to approximate the integral in Eq. 24, we
evaluate Eq. 21 at the halfway point to yield (I1 ≈

1
2 X

(
ε

p
v

)
),

which gives a simple expression for the elastic volumetric
strain-to-yield as a function of the volumetric plastic strain:

ε
e,yield
v (εp

v ) =
1
3

X
(
ε

p
v

)
K

(
I1ε

p
v

) =

1
3 X

(
ε

p
v

)
b0 + b1 e−2b2/|X(εp

v )| − b3 e−b4/|ε
p
v |
,

(25)
Assuming that the volumetric strain-to-yield (εe,yield

v ) is the
same for the drained and undrained materials, we can now use
the semi-empirical formula for the bulk modulus of the satu-
rated material (Eq. 21) to estimate the hydrostatic compressive
yield stress for the saturated material:

X̄′(εp
v ) = 3K′sε

e,yield
v (εp

v ) (26)

The strain-to-yield approach, implicitly assumes that the matrix
material strength does not depend on pressure, which is consis-
tent with the theoretical limitations of the applicability of the
effective-stress approach for plastic deformation described by
Buhan and Dormieux (1996).

The matrix material for a porous rock would certainly have
frictional strength properties, but in justifying this assumption,
we suggest the following: During pore collapse the plastic de-
formation localizes near contact points between grains, where
the surrounding pore pressure may act to both expand micro-
cracks exposed to the pore fluid and to compress microcracks
that are isolated from the pore space. These competing effects
would mitigate the effect of matrix strength pressure depen-
dence on the overall response. word this better In this paper we
present results that show this approach can predict the correct
trends in penetration simulations. This strain-to-yield approach
has been motivated by mesoscale simulation that elucidate the
grain-scale plastic deformation of saturated granular materials
(Homel et al., 2014a).

2.3. Simulation of Wellbore Completion

To demonstrate the application of this effective-stress
model, we simulate hypervelocity penetration into drained and
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undrained sandstone, with a variety of preconfinement and ini-
tial pore pressure states.

The simulations use the material point method (MPM) (Sul-
sky et al., 1995) component of the Uintah Computational
Framework (Guilkey et al., 2009). Except where noted, the re-
sults are for 2-D axisymmetric simulations, and use a cpGIMP
(Bardenhagen and Kober, 2004) form of the material point
method. Previous work by Austin (2013) determined a suitable
target domain, mesh resolution, particle density and method for
ramped application of boundary conditions that mitigate edge
effects on the simulation results.

Figure 8: Diagram showing the problem setup for the axisymmetric penetration
simulations.

2.3.1. Target Description
The target is a sandstone cylinder, with a radius 5cm, and a

length sufficient to avoid interaction of the pressure pulse re-
flection from the cylinder end with the channel formation. In
some cases, a steel plate is defined at the penetrator surface, to
model the effect of the wellbore casing.

The constitutive model for the sandstone target is Arenisca
(Homel et al., 2014b), an open-source geomaterial model devel-
oped by the authors to implement the effective-stress approach
described herein.

The strength is defined by a two-surface description com-
bining a shear limit surface and a porosity cap function, simi-
lar to those shown in Fig. 5. The shear strength is defined by
a nonlinear Drucker-Prager surface, fit to data from plate-slap
(Lomov et al., 2001), triaxial compression, unconfined com-
pression, and tension tests (Bobich, 2005), as shown in Fig. 9.
The elastic response supports nonlinear elasticity with elastic-
plastic coupling for the bulk modulus (Eq. 21) (Brannon et al.,
2009). The evolution of the porosity cap is defined in compres-
sion by the hydrostatic crush curve (Eq. 22), and in dilatation
by an extension of this curve that introduces a loss of strength
with pore expansion. The bulk modulus and crush curve func-
tions are fit to hydrostatic load-unload data for Berea sandstone,
shown in Fig. 10. The plastic solution allows for nonassocia-
tivity to control the shear-induced dilatation (Burghardt et al.,
2012). A Duvaut-Lions viscoelasticity model describes the ap-
parent increase in strength with increased strain rate (c.f., (Simo
and Hughes, 1998)).

In initializing the pore pressure and confining stress, a Neu-
mann boundary condition is applied to the outer surfaces of the
target; the pressure is ramped from the value of the initial pore
pressure to that of the confining stress. This preload is done

Shear Strength

Experimental Data

Linear Drucker Prager

Nonlinear Drucker-Prager

I1

J2

Figure 9: Parametrization of the nonlinear Drucker-Prager shear limit function
to experimental data for Berea sandstone, along with the linear fit to the low
pressure data. Proprietary values are omitted from the axes labels.

Figure 10: Experimental data for the hydrostatic load-unload response of
drained Berea sandstone, and the simulated response obtained by fitting the
empirical models for the bulk modulus and crush curve. Proprietary values are
omitted from the axes labels.

slowly enough to avoid local plastic deformation, but does in-
crease the pore pressure from the initial prescribed value. At
the time of impact, the resulting “true initial pore pressure” will
lie between the prescribed initial value and the confining stress.

Various combinations of constitutive model features are ex-
plored in Section 3.

2.3.2. Penetrator Description
The new methods described in this paper were developed to

model the penetration of a shaped-charge jet into a porous rock
target. As shown in Fig. 11, it is possible to model the formation
of the shaped-charge jet using the MPM, but to more efficiently
investigate the interactions between the penetrator and target,
several types of imported penetrators were defined.

Using proprietary data from flash x-ray and time-of-arrival
tests for a typical shaped charge (similar to the method de-
scribed by Huang (2013)), a jet description was created that
defines the mass, momentum and kinetic energy of the jet at
a particular snapshot in time. The actual jet comprises a high
velocity cloud of particulates that are much finer than the res-
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Figure 11: 3-D Uintah MPM simulation of shaped-charge jet formation and
penetration into a sandstone target

olution of the penetration simulations. Both the density and
velocity are spatially varying, and the jet expands over time.
Three approaches were taken to approximate this behavior.

The simplest approach defines a uniform tungsten rod with a
total mass and kinetic energy matched to the measured proper-
ties of the jet. The length of the rod was defined so that the time
over which 90% of the momentum flux occurred is the same as
in the actual jet. This approach ignores the complexity of the
jet, and also results in a very small penetrator diameter, which
likely increases the simulation resolution needed to capture the
correct constitutive response near the penetration channel.

The second approach defines a discrete jet of tungsten cylin-
ders, each having a length, radius, and velocity specified to
match the measured jet description (Burghardt et al., 2010).
This approach is more reasonable, but produces a pulsed impact
at the target, the frequency of which is dependent on discretiza-
tion. Additionally, there is some evidence that the discrete jet
increases the likelihood of kinematics errors that sometimes oc-
cur in MPM simulations, possibly due to numerical error asso-
ciated with small-mass nodes in the numerical solution (Austin,
2013)

Finally, a continuum jet was defined with a continuous vari-
able density (CVD) using the Arenisca constitutive model with
parameters selected to achieve the desired response. The con-
tinuum jet has a spatially varying velocity, density, and radius.
For each particle in the jet, the initial porosity is defined based
on the density of the compacted jet material and the desired
initial void fraction at the point. The crush curve is parameter-
ized so that the initial hydrostatic compressive strength is quite
small, and quickly evolves to a high value only when the initial
void fraction has been compressed out. The shear limit surface
is defined with a vertex at the origin, and a pressure response
that quickly transitions to a von Mises surface at high pressure.
Furthermore a nonassociative plastic flow is defined to ensure
that the stress state remains at the vertex during dilatation. This
is illustrated in Fig. 12. With this definition, the jet material

Plastically Compressed

Initial

Figure 12: Illustration of the yield surface for the CVD jet. Arrows illustrate
the nonassociative return directions from various trial state.
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Figure 13: Expansion and impact of the continuous, variable-density jet show-
ing contours of velocity and density (top), momentum and kinetic energy lineal
densities in the initial jet description (inset). Proprietary values are omitted
from the axes labels.

will yield at near-zero stress during the initial free flight expan-
sion, but as it impacts the target, the porosity is eliminated and
the material response quickly becomes that of dense tungsten.
Figure 13 shows free flight expansion and initial impact of the
continuum jet, along with a profile of the momentum and ki-
netic energy density in the initial configuration. The apparent
noise in the velocity profile results from the interpretation of
the experimental data, which has been retained to mimic the
fluctuations that would exist in a real jet.

3. Results

3.1. Hydrostatic Response
The implementation of the continuum effective-stress model

is illustrated through a single- element prescribed-deformation
test of the load-unload response. Fig. 14 shows the porosity vs.
pressure for a drained and undrained material. To aid in inter-
preting these figures, each deformation path is also illustrated
as a pressure vs. volumetric strain path. The drained material
is loaded elastically from (A) to the initial yield at (B). Pores
collapse from (B) to (C), at which point the strain is reversed
so the material is unloaded until yielding in tension at (D). The
tensile yield occurs at a constant stress from (D) to (E). The
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Figure 14: Single-element hydrostatic load-unload response of a drained (left)
and undrained (right) material. The p̄ vs. εv plots notionally illustrate the load
paths, but are not actual results since it is difficult to see the elastic region in a
plot of the true response over a scale sufficient to collapse pores.

material is then recompressed to yield at (F), with continuing
pore collapse from (F) to (G). The undrained material follows
a similar deformation path. The response shows that the fluid
slightly increases the initial hydrostatic compressive strength.
The compressive response is noticeably shifted by the evolv-
ing isotropic backstress, but in spherical tension the response is
equivalent to that of the drained material.

3.2. Penetration Simulations

The validity of the effective-stress approach described herein
has been demonstrated though its application to the simulation
of shaped-charge jet penetration into sandstone, with particular
emphasis on the effects of initial pore pressure and confining
stress on the final penetration channel and damaged region.

Figure 15 compares the penetration channel for a CVD jet
shot into a preconfined drained sandstone target to that formed
in a less confined undrained target with initial pore pressure.
The results correctly show that the depth of penetration (DOP)
is deeper for the undrained target, despite the increased tar-
get density. The drained and undrained responses are similar
for the initial high-velocity phase when hydrodynamic effects
dominate, but then the tail of the jet produces a very different
response since constitutive effects dominate at lower jet veloci-
ties. One of the uncertainties in parametrization of the model is
how to best define the shear modulus. For an isotropic elastic
tangent stiffness to be thermodynamically consistent, the bulk
modulus can depend on stress only through pressure, (if the
elastic shear strains are nonnegligible) the shear modulus must
be constant (Fuller and Brannon, 2013). However, measure-
ments of the Poisson’s ratio for Berea sandstone (inferred from
measurements of Young’s modulus) at different pressures (Hart
and Wang, 1995) show a strong pressure dependence, likely a
result of induced anisotropy. To identify the best choices for
defining elastic properties within the confines of an isotropic
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Figure 15: Penetration of a CVD jet into sandstone. Left: drained, σ̄m =

25MPa. Right: Undrained, σ̄m = 10MPa, p̄i
f = 5MPa Contours show pressure

(left) and volumetric plastic strain (right) for the target along with velocity (left)
and density (right) for the jet.

tangent stiffness, we compute the bulk modulus in compression
using the empirical hydrostatic model described previously, and
then compute the shear modulus from that value and a pressure-
dependent Poisson’s ratio. The Poisson’s ratio is defined as

ν = g1 + g2e−b2/Ī1 , (27)

where g1 is the initial value, g1 + g2 is the high-pressure limit,
and b2 is the same shape parameter used for the pressure-
dependent bulk modulus (Eq. 21). The effect of the Poisson’s
ratio scaling is shown in Fig. 16 for a broad range of Poisson’s
ratio values. The results show that pressure dependence of the
shear modulus significantly affects both the channel geometry
and depth of penetration. When the Poisson’s ratio is allowed
to increase significantly with pressure, this reflects the dam-
age (decrease in shear modulus) that occurs with pore collapse.
Much like nonassociativity, this becomes a tuning parameter
that can be adjusted to fit experiments, but which should not
be expected to provide predictive results when applied to sim-
ulations where the modes of deformation differ from those for
which the model was tuned.

3.2.1. Simpler models
The results in Fig. 15 were obtained using an advanced

CVD description of the jet, as well as nonlinear models for the
strength and pressure-dependent elastic properties fit to the best
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Figure 16: Comparison of penetration of a CVD jet into drained sandstone
with 25MPa confining stress for various values of the Poisson’s ratio scaling
parameter g2. Poisson’s ratio increases with pressure (left), remains constant
(center), and decreases (right).

available data. The simulation response with simpler models
was also investigated to determine the extent to which the cor-
rect trends could be obtained with a less detailed description of
the target material. This section provides evidence that simpler
models are generally inadequate.

The simplified simulations use a thin tungsten rod penetra-
tor, and the target has a linear Drucker-Prager strength model
(which over predicts the strength at high pressures as shown in
Fig. 9), and a constant shear modulus (which overpredicts the
Poisson’s ratio at high pressure). Figure 17 shows the trends
for thin rod penetration into drained and undrained sandstone
with a range of initial pore pressures and confining stresses.
Figure 18 shows the penetration channel formed for a subset
of these simulations, all with 50MPa confining stress. The
results in Fig. 17 show the correct general trend that confin-
ing stress decreases DOP while pore pressure increases DOP,
but the drained data show a significantly deeper DOP than the
corresponding undrained points. This suggests that while the
constitutive model produces the correct trends, the trends are
“weak” in the sense that the fluid-induced strength reduction
is insufficient to compensate for the increased target density.
To support this assertion, an additional simulation using the
undrained constitutive model, but with density of the drained
material, showed an increase in DOP approximately equal to
the discrepancy between the drained and undrained tests.

Considering these results and those obtained with the CVD
jet and more advanced target model, it is clear that while
the effective-stress model can be implemented in a simplified
framework, the resulting errors may overwhelm the effects of
pore pressure in the simulation.

3.2.2. The Penetration Channel
The geometry of the penetration channel is used to compare

the effect of constitutive model features and penetrator types.
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Figure 17: Trends in depth of penetration vs. pore pressure and confining stress
for a tungsten rod into sandstone.
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Figure 18: Penetration channel showing contours of pressure for a tungsten rod
into a simplified model of drained and undrained sandstone. Each simulation
has a 50MPa confining stress and a range of initial pore pressures.
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MPM simulations do not explicitly track material surfaces, and
while this allows for very efficient treatment of impact simu-
lations with severe distortion, it also introduces uncertainty in
defining the channel geometry.

Two approaches are taken to define the depth of penetration.
Fig. 19 shows the penetrator slug in the channel tip, for which
the DOP is determined from the deepest penetrating jet particle.
While the variation in slug geometry introduces some error in
the measurement, it does not appear sufficient to account for the
non-monotonicity observed in Fig. 17.
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Figure 19: Jet material in the penetration channel tip for a tungsten rod pene-
trator into simplified drained and undrained sandstone, corresponding to the re-
sults in Fig. 17. The target density for the undrained material has been increased
to account for the pore fluid, except for the (*) simulation in gray, which used
a drained target density to quantify this effect.

In penetration experiments, the depth of penetration is typi-
cally measured for a cleaned channel, which has been scrubbed
to remove loose debris. By defining a threshold of plastic de-
formation, we can visualize the region surrounding the channel
that would likely be rubblized. An example of this alternative
interpretation of DOP is shown in Fig. 20, which compares the
volumetric plastic strain surrounding the penetration channel
for a drained and undrained target. While the depth of pene-
tration based on the jet material is similar for the two cases,
there is a significant difference in the damaged region around
the channel. The increased dilatation in the undrained target
results from (i) reduced compressibility, which requires greater
radial displacement to allow for the penetrator, and (ii) the plas-
tic expansion during unloading resulting from the accumulated
pore pressure.

3.2.3. Penetrator Type
A key value of the tools presented in this paper is the abil-

ity to evaluate the design of penetrator types and to tailor the
design and selection of shaped charges to specific target mate-
rials. While we have thus far focused primarily on the target
model, it is important to understand how the character of the
penetration channel is affected by both the type of penetrator
and the method by which the penetrator is approximated in the
simulation.

The simulation results in Figs. 15 through 20 show that a
very different response is obtained for the CVD jet compared
to that of a thin tungsten rod having the same total mass and
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Figure 20: Penetration channel showing contours of volumetric plastic strain for
a thin tungsten rod into a drained sandstone target with σ̄m = 50MPa (top) and
undrained an undrained sandstone with σ̄m = 10MPa, p̄i

f = 5MPa (bottom).

kinetic energy. A discrete jet was also investigated, which has
nominally the same mass and velocity distribution as the CVD
jet.

The discrete jet is desirable because it employs a simpler (and
more efficient) constitutive model for dense tungsten, but the
discretization of the jet is somewhat arbitrary, and it results in
a pulsed momentum deposition that is not physically based, in-
troducing uncertainty in the validity of the approach. Figure 21
compares the penetration of discrete and continuum jets into
drained unconfined sandstone. While the results are similar, the
discrete jet produces less depth of penetration relative to the
continuous description. This difference could be due to smooth
vs. pulsed momentum deposition, or due to the differences in
contact area between the jet and target. While there is some
minimal dissipation due to the plasticity approach used to al-
low expansion of the continuum jet, this would likely produce
a decreased depth of penetration if it were a significant source
of error.

Jet Velocity (m/s)

Jet Density (kg/m³)

Discrete Jet Continuous Jet

Pressure (Pa)

Vol. Plastic Strain

Figure 21: Penetration channel formation into an undrained target with no con-
fining stress for a discrete jet (left) and continuum jet (right). Though the mo-
mentum and kinetic energy are matched for both jets, the continuum jet pro-
duces a deeper penetration channel.

3.2.4. Mesh Resolution
The results above have shown that the trends expected from

the constitutive model manifest only weakly for the rod pene-
tration simulations. This may be partially attributed to the small
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radius of the rod penetrator (1.5mm) relative to that of the dis-
crete or continuous jet. Since the mesh resolution for the rod
(Fig. 18) and jet (Fig. 21) tests were the same (1mm grid, 4
particles per cell (ppc)), the number of grid cells resolving the
impact region was lower for the rod penetration.

To investigate mesh resolution effects, we compare the
drained and undrained response for penetration of a shorter,
2mm radius rod (with the same mass and kinetic energy as the
long-rod penetrator) and a higher mesh resolution (0.5mm grid,
4 ppc). For this simulation, the densities of both targets are the
same to isolate the constitutive effects. The results in Fig. 22
show a much more significant increase in depth of penetra-
tion for the undrained target than was observed for the lower-
resolution thin-rod penetrator tests, which supports the conjec-
ture that the weak and nonmonotonic trends in Fig. 17 are at
least partially attributable to under-resolution.
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Figure 22: Penetration channel showing contours of pressure and volumet-
ric plastic strain for a short rod penetrator into drained sandstone with σ̄m =

50MPa (left) and undrained sandstone with σ̄m = 10MPa p̄i
f = 5MPa (right).

The mesh resolution is 0.5mm.

The results in Fig. 15 show the correct trends using a 1mm
mesh, with a particle density of 4 ppc for the jet and target core.
To demonstrate convergence of the results, the same simula-
tion is run using a resolution of 2mm and 0.5mm, as shown in
Fig. 23. The convergence study shows that the depth of pene-
tration increases and the channel narrows with refinement. The
results suggest a weak convergence in that the change from
the coarsest to the middle resolution is greater than that from
the middle to fine resolution, but the coarsest simulation is
severely under-resolved and has a very different channel struc-
ture from the other two. The differences between the drained
and undrained simulations are more pronounced with higher
resolution. Dependence of the results on mesh resolution is ex-
pected in problems with large shear deformation, in particular
when the response is governed by the formation of shear bands.
Shear band thickness will generally decrease with mesh refine-
ment, unless a nonlocal constitutive model is used (Burghardt
et al., 2012). The severe deformations at the channel surface
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Figure 23: Mesh resolution dependence of penetration channel for CVD jet
into drained sandstone. Grid resolution increases 2mm,1mm,0.5mm, from left
to right.

make it difficult to detect specific shear bands, but there is a
clear decrease in the thickness of the damaged region at higher
resolution. Nonlocal models can introduce significant cost and
complication to the solution method, particularly in parallelized
codes. However, the undesirable mesh dependence can be mit-
igated somewhat by introducing statistical variability and con-
comitant scale effects in the material strength. This introduces
a distribution of weak points to initialize failure, that are spa-
tially distributed with a length scale independent of the mesh
resolution (Strack et al., 2014).

3.2.5. Visualization of Stress States During Penetration
To better understand the role of the constitutive model, a new

approach was used to visualize the stress state in the target ma-
terial throughout the penetration event. While it is common to
visualize simulations by plotting contours of the pressure or the
magnitude of the shear stress, this does not allow direct com-
parison of results to plots of the yield surface for full-stress con-
stitutive models.

To allow this comparison, two scalar field plots were gener-
ated over the problem domain, one of equivalent shear stress
and one of pressure. The color maps are black to yellow, and
cyan to magenta, respectively so that a 50 percent opacity over-
lay of the two images creates a CMYK colormap of the stress
state.

The stress state during penetration is shown in Fig. 24, for
a tungsten rod shot into a drained sandstone target. The stress
state extends well beyond the initial yield surface. In the com-
pressive region, this is partially attributed to hardening (expan-
sion of the porosity cap), but low-pressure, high-shear stresses
also arise that lie outside the shear limit surface. This is at-
tributed to the viscoplastic overstress that occurs at high loading
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Figure 24: Penetration of a tungsten rod into drained sandstone with 25 MPa
confining stress. Contours map to stress space legend (inlaid) shown along with
the meridional profile of the initial yield surface.

rates.

3.2.6. Third invariant dependence

In the previous simulations, the target yield surface is defined
in the meridional plane of stress space by yield criteria that de-
pend only on pressure and shear stress. This neglects the vari-
ation in strength between triaxial compression (TXC) and tri-
axial extension (TXE), (i.e., “Lode angle” or “third-invariant”
dependence), which is known to be significant for geomaterials
(Pivonka and Willam, 2003; Schreyer and Bean, 1985).

The stress path for a particle near the penetrator tip was
rendered in order to illustrate the Lode angle of the stresses
within the target material. Fig. 25 shows the stress path rel-
ative to the initial yield surface in 3D principal stress space
and in the octahedral profile. Since the ordering of the prin-
cipal stresses is arbitrary, the path is confined to a sextant of
the octahedral profile. There is significant Lode angle variation
throughout the load history within that sextant, which suggests
that the ability to simulate 3rd-invariant dependence may be im-
portant in obtaining predictive results. To investigate the effect
of Lode-angle dependence, a penetration simulation was run us-
ing a Mohr-Coulomb type 3rdinvariant dependence, with ratio
of TXC/TXE strength of 1.2. Figure 26 compares the results of
a CVD jet penetration into drained sandstone with and without
the 3rdinvariant dependence. The results show that there is a
wide range of Lode angle states throughout the target. While
there are some subtle differences in the stress state and channel
geometry, the results show there is not a significant effect on
the channel geometry or depth of penetration, suggesting that
Lode angle dependence plays only a minor role in penetration
response.
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Figure 25: Path through 3D principal stress space (left) and the octahedral plane
(right) of a particle of target material near the penetration channel, shown with
a rendering of the Arenisca yield surface

4. Discussion and Conclusions

The results of numerical simulations suggest that an effective
stress model, when implemented as an isotropic backstress, is
sufficient to capture the key features in the response of penetra-
tion to pore fluid and confining stress, but only when the con-
stitutive model is of sufficient fidelity to describe the response
of the material.

In developing the methods described herein, a key constraint
was the need to parameterize the model from a limited set of
tractable experimental methods. This makes it practical to ap-
ply the model for a wide variety of target materials.

4.1. Limitations

The constitutive model is only as accurate as the data from
which it is parametrized. Significant experimental error may
exist, and in some cases the stresses in penetration simulations
may lie well outside the range of experiments used to charac-
terize the material. However, even where empirical models are
used, we have endeavored to develop functional forms that pro-
duce the reasonable trends in limiting cases, improving the pre-
dictions when extrapolation is needed.

The isotropic constitutive model does not account for the ini-
tial anisotropy from the bedding planes of the sedimentary rock,
nor the induced anisotropy that no doubt occurs during defor-
mation. Induced anisotropy is an important phenomenon, and
has been postulated to be the true mechanism behind the exper-
imental response that has motivated nonassociative plasticity as
well as pressure dependence of the shear modulus (Fuller and
Brannon, 2013).

As formulated, this approach is limited to applications where
the fluid pressure can be determined from material properties,
initial conditions, and the local deformation state. This implies
that either the porosity must be disconnected or the loading
rates must be sufficiently high that fluid transport through the
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Figure 26: Comparison of of the target stress state during penetration at 170 µs.
The target is drained sandstone with 25 MPa confining stress. The target on the
left has no Lode angle dependence. The target on the right is identical but with
a Mohr-Coulomb strength model and a TXC to TXE strength ratio of 1.2.

matrix can be neglected. Extending the approach to lower load-
ing rates requires solving for multiple velocity fields and allow-
ing the fluid mass flux into the material to modify the effective
value of p̄i

f . Additionally it would be necessary to define a
relationship between plastic deformation, damage, and perme-
ability.

The work has assumed high rates, which would normally be
associated with adiabatic deformation, but the effect of temper-
ature on the constitutive response (e.g., differences in isother-
mal and isentropic moduli) has been neglected. The added
expense of including thermal effects in the constitutive model
would not clearly be justified by the added value in application
to comparative shaped charge jet design.

The approach has been presented using a very simple fluid
equation of state, which only roughly approximates the isother-
mal compressibility of liquid water. Furthermore, the use of
isothermal (rather than adiabatic) equation-of-state data is ques-
tionable for high-rate loading, but this was done in order to
be consistent with the compressibility of the grains, which is
inferred from measurements of the high-pressure response in
quasistatic hydrostatic compression. This was done to preserve
the porosity-volume relationship, which depends on the rela-
tive compressibility of the fluid and grain. To some extent, the
difference between this approach and the true response is com-
pensated for in the empirical model of rate dependence.

Previous work has shown that a time-to-failure damage
model, along with perturbation of initial strength by statistical
variability and scale effects helps to mitigate mesh dependence,
allowing for more realistic brittle failure (Strack et al., 2014).
For this effort, the constitutive response has neglected softening

except through cap retraction in dilatation, and does not model
damage except through the elastic-plastic coupling effect in the
bulk modulus. While there is certainly significant degradation
of the material strength in the heavily deformed region, the ap-
plication of a softening model within an axisymmetric simu-
lation is questionable, since radial cracking cannot occur. As a
result, nonphysical radial expansion is observed for simulations
with low confining pressure, (c.f., Fig. 22). Using the methods
described herein in a full 3-D simulation that included a real-
istic brittle failure model would likely result in improved pre-
dictions of the damaged region around the channel, especially
at lower pressures, but would significantly increase the com-
putational expense. The addition of a damage model has been
shown by Vorobiev et al. (2007) to be significant factor in pen-
etration simulations of metal projectiles, and would likely also
be play a significant role with shaped-charge jet penetration.

Finally, the internal state variable evolution laws given in
Eq. 9 and Eq. 26 are suitable for implementation into a con-
ventional plasticity framework (c.f., Brannon (2007)). How-
ever, these evolution laws are highly nonlinear, and care must
be taken in the numerical solution to obtain a stable and accu-
rate result. Details of our implementation for numerical solu-
tion are given in Homel and Brannon (2014), which describes
these issues as well as several other challenges specific to this
class of model.

4.2. Capabilities
To our knowledge, the effective stress model described herein

is the only such tool capable of simulating the effects of an
evolving pore pressure in both elastic and plastic deformation,
while allowing for specification of an initial pore pressure and
confining stress, and maintaining the necessary capabilities of a
geomechanics constitutive model.

This capability has allowed for predictive quality in penetra-
tion simulations that was previously unobtainable.

While the empirical models for the various features (bulk
modulus, crush curve, limit surface, rate dependence, etc.) in
the models were fit to the best data from standard calibration
tests (e.g., hydrostatic compression, triaxial compression, etc.),
there was no parameter tuning to achieve the desired response
from the penetration simulation. That the results predicted
both the correct trends, and reasonable quantitative values is
a key step in validating the assumptions made in formulating
the model.

4.3. Conclusions
A continuum constitutive modeling approach has been de-

veloped to implement the effective stress concept with a pore
pressure that evolves with plastic deformation. This is a power-
ful tool that may be helpful in the design of shaped-charge jet
technologies and other applications that involve high-rate de-
formation of fluid-saturated porous materials.

The model development is motivated by an analytical model
of a saturated thick spherical shell, which led to an isotropic
backstress as an additional state variable in a full-featured plas-
ticity model for geomaterials. In combination with poroelastic-
ity theory and a strain-to-yield approach, the response of the
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drained material can be predicted using parameters obtained
from tractable experiments on the drained material.

A continuum description of the shaped charge jet allows for
an initial void fraction to closely match the density, velocity and
geometry profile measured from a real jet. This approach was
shown to produce much more realistic trends than either a solid
or discrete jet description.

This work has surveyed the influence of a variety of physical
phenomena and model features, to determine the effect each has
on the penetration response. The results indicate that the correct
trends in depth of penetration vs. pore pressure can be achieved
with the effective stress model in combination with the CVD jet,
but these trends are not strongly evident when simpler models
for the penetrator or target are used.

Application of the model is made tractable through several
simplifying assumptions, but even with these limitations it ap-
pears well-suited for comparative analysis of various target/jet
combinations.
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Appendix A. Derivation of the Spherical Shell Model

In this section the steady-state response is derived for an
incompressible, linear-elastic, perfectly-plastic, thick spherical
shell containing a pore fluid. The derivation is identical to that
presented by Carroll and Holt (1972), except for the addition
of a single term which accounts for the pore pressure at the
inner surface. This confirms that an effective stress formula-
tion is valid for the model. Additionally, the analysis has been
extended into the tensile domain, which provides some insight
into the nucleation of pores from small defects.

The spherical shell has inner radius, a and outer radius, b as
depicted in Eq. 1. The shell is linear elastic with shear modulus
G, and perfectly plastic with a yield stress Y . A pressure p̄b

acts on the outer surface of the material, and a pore pressure
( p̄a = p̄a) acts on the inner surface.

The solution is derived in terms of the distension (α), (the
ratio of the total volume to the solid volume, α = V/Vs, for 1 ≤
α), but the results are presented in terms of the more intuitive
variables for porosity and volumetric strain.

Appendix A.1. Spherical Equations of Motion

We begin with a general spherically symmetric motion,
where the Eulerian and Lagrangian spherical coordinates are
related by r = r(r0, t). For the motion to be isochoric, the Jaco-
bian of the deformation must be 1 so:2

r2

r2
0

∂r
∂r0

= 1 (A.1)

Separating Eq. A.1 and integrating:

r3 = r3
0 − B(t) (A.2)

Differentiating Eq. A.2 with respect to time:

3r2r′ = −B(t) (A.3)

Differentiating Eq. A.3 with respect to time

3r2r′′ + 6r
(
r′
)2

= −B′′(t) (A.4)

Using Eq. A.3 to eliminate r′ from Eq. A.4

2B′(t)2

3r3 + 3r2r′′ = −B′′(t) (A.5)

Solving for d2r/dt2

r′′ =
−1
9r5 (3r3 + B′′(t) + 2B′(t)2) (A.6)

Defining an integration potential ψ(r, t)

ψ(r, t) =

∫
1
9

(
3B′′(t)

r
+

B′(t)2

2r4

)
dr (A.7)

2This equation was typeset incorrectly in the original Carroll and Holt
(1972) publication.
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We define an infinitesimal displacement

u(r, t) = −B(t)/3r2, (A.8)

and principal strains,

εr(r, t) = 2B(t)/3r3 (A.9)

εθ(r, t) = εφ(r, t) = −B(t)/3r3 (A.10)

The principal deviatoric stresses are

sr(r, t) = 2Gεr(r, t) (A.11)

sθ(r, t) = sφ(r, t) = 2Gεθ(r, t) (A.12)

from which we define the principal stresses

σr = −p(r, t) + sr(r, t) (A.13)

σθ = σφ = −p(r, t) + sθ(r, t) (A.14)

The radial equation of motion in terms of the integration poten-
tial is

∂σr(r, t)
∂r

+
2
r

[σr(r, t) − σθ(r, t)] = ρ
∂ψ(r, t)
∂r

. (A.15)

Integrating this with respect to r to gives

−p(r, t) = −
1
9
ρ

(
−

3B′′(t)
r
−

B′(t)2

2r4

)
, (A.16)

where we can substitute the integration potential to obtain

−p(r, t) =
ρ

9

(
3B′′(t)

r
+

B′(t)2

2r4

)
+ h(t), (A.17)

where h(t) is an integration constant.
Applying boundary conditions we can eliminate p(r, t) at the

boundary. At the inner surface (r = a), pressure is a function
of the change in pore volume and the bulk modulus of the fluid
(K f ).

σa
r = −p̄a (A.18)

At the outer surface, the radial stress is the material pressure,
which may vary with time:

σb
r = −p̄b (A.19)

We can then define the internal pressure at the boundaries, for
substitution into the integrated equation of motion:

pa = sr(a, t) − σa
r =

4GB(t)
3a2 − p̄a (A.20)

pb = sr(b, t) − σa
r =

4GB(t)
3b3 + p̄b (A.21)

We eliminate h(t) by evaluating the integral over a ≤ r ≤ b

−pb + pa = ρ
[
ψ(b, t) − ψ(r, t)

]
(A.22)

Expressing B(t), B′(t), and B′′(t) in terms of the distension (α),
unloaded distension α0, and unloaded pore radius (a0) we get

B(t) = a3
0
α0 − α(t)
α0 − 1

(A.23)

B′(t) = −
a3

0α
′(t)

α0 − 1
(A.24)

B′′(t) = −
a3

0α
′′(t)

α0 − 1
. (A.25)

We then evaluate the integration potential at the boundary

ψ(a, t) =
1
9

 a6
0α
′(t)2

2a4(α0 − 1)2 −
3a3

0α
′′(t)

a(α0 − 1)

 (A.26)

ψ(b, t) =
1
9

 a6
0α
′(t)2

2b4(α0 − 1)2 −
3a3

0α
′′(t)

b(α0 − 1)

 (A.27)

The inner and outer shell radius can then be defined int terms
of the distension, initial distention, and the initial inner radius:

a = a0
3

√
α − 1
α0 − 1

(A.28)

b = a0
3

√
α

α0 − 1
(A.29)

Appendix A.2. Solution

For the steady state solution, ψ(a, t) = ψ(b, t) = 0. Substitut-
ing Eq. A.20 and Eq. A.21 into Eq. A.22, and using Eq. A.28,
Eq. A.29, and Eq. A.23 we obtain:

EffectiveStress︷  ︸︸  ︷
p̄b − p̄a =

4G(α0 − α)
3α(α − 1)

(A.30)

The right hand side of this result is identical to the Carroll and
Holt solution for the drained material, but has now been ex-
pressed in terms of an effective stress. The expression holds in
both pore collapse and expansion.

The elastic limit is found by solving Eq. A.30 for the disten-
sion at which the inner surface is at the yield stress. Setting
(sr(a) − sθ(a)) equal to Y gives the limit distension (αE

c ) in pore
collapse.

αEP
c =

2α0G + Y
2G + Y

(A.31)

As the shell deforms, the stress increases until the inner surface
reaches the yield stress (yield occurs first at the inner surface in
both pore collapse and expansion). The yield threshold radius c
is defined as the point at which the transition from an elastic to
plastic state occurs, and is defined such that for r ≤ c, the stress
state must equal the yield condition.

The transition from elastic-plastic to fully plastic deforma-
tion occurs when the yield threshold reaches the outer surface
(sr(b) − sθ(b)).

αFP
c =

2α0G
2G + Y

(A.32)
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The Carroll and Holt solution derives the elastic-plastic and
fully plastic solutions from Eq. A.22. The presence of a pore
fluid modifies only the pa term. As with the elastic solution, we
find that results with pore fluid are identical to those obtained
for the hollow shell when the solution is expressed in terms of
the effective stress.

In pore collapse we have (Carroll and Holt, 1972):

peff
c (α) =


4G(α0 − α)/3α(α − 1), α0 ≥ α ≥ α

EP
c

2
3 [G(2 − 2α0/α)+
Y ln( 2G(α0−α)

Y(α−1) ) + Y
]
, αEP

c > α > αFP
c

2
3 Y ln

(
α
α−1

)
, αFP

c ≥ α > 1

(A.33)

Extending these results to pore expansion, we find that the
elastic response is identical to the pore collapse solution. The
yield stress in tension is −Y . Applying the same methodology,
the resulting solution for pore expansion is:

peff
e (α) =


4G(α0 − α)/3α(α − 1), α0 ≤ α ≤ α

EP
c

− 4G
3α (α0 − α)
− 2Y

3

[
1 + ln

(
2G(α−α0)

Y(α−1)

)]
, αEP

c < α < αFP
c

− 2
3 Y ln

(
α
α−1

)
, αFP

c ≤ α

(A.34)

Where the transitions to elastic-plastic and fully-plastic defor-
mation are:

αEP
e =

2α0G − Y
2G − Y

(A.35)

αFP
e =

2α0G
2G − Y

(A.36)

Appendix A.3. Porosity vs. Pressure
To generate the porosity vs. pressure curves in Fig. 2 and

Fig. 3, the solution is expressed in terms of porosity (φ) rather
than distension (α). The two are related by:

α =
1

1 − φ
(A.37)

In terms of porosity rather than distension, the effective stress
( p̄eff = p̄b − p̄a) for the collapsing spherical shell is:

peff
c =


4G
3

(φ0−φ)(φ−1)
φ(φ0−1) , φ0 ≥ φ ≥ φ

EP
c

2Y
3 [ln 2G(φ−φ0)

Yφ(φ0−1) + 1] + 4
3G φ0−φ

φ0−1 , φEP
c ≥ φ ≥ φ

FP
c

− 2Y
3 ln(φ), φFP

c ≥ φ ≥ 0
(A.38)

The transition from elastic to elastic-plastic (φEP
c ), and elastic

to fully-plastic (φFP
c ) in pore collapse are

φEP
c =

2Gφ0

2G + Y(1 − φ0)
, (A.39)

and
φFP

c =
2Gφ0 + Y(φ0 − 1)

2G
. (A.40)

Similarly, for the expanding spherical shell:

peff
e =


4G
3

(φ0−φ)(φ−1)
φ(φ0−1) , φ0 ≤ φ ≤ φ

EP
c

2Y
3 [ln 2G(φ−φ0)

Yφ(φ0−1) + 1] + 4
3G φ0−φ

φ0−1 , φEP
c ≤ φ ≤ φ

FP
c

− 2Y
3 ln(φ), φFP

c ≤ φ
(A.41)

The transition from elastic to elastic-plastic (φEP
e ), and elastic

to fully-plastic (φFP
e ) in expansion are

φEP
e =

2Gφ0

2G + Y(φ0 − 1)
, (A.42)

and
φFP

e =
2Gφ0 + Y(1 − φ0)

2G
. (A.43)

Appendix A.4. Pore Pressure

To generate the load-unload response plotted in Fig. 4, we
first must express the porosity in terms of volumetric strain. We
define the current and initial porosity in terms of the inner and
outer shell radii:

φ = a3/b3 (A.44)

φi = a3
i /b

3
i (A.45)

The volumetric strain is defined in terms of the change in the
outer shell radius

εv = ln(b3/b3
i ) (A.46)

Since the matrix is incompressible the current and initial shell
volumes must be equal.

(b3 − a4) = b3
i − a3

i (A.47)

Combining Eq. A.44 through Eq. A.47 we obtain the following
relations for switching between porosity and volumetric strain:

φ = e−εv (eεv + φi − 1) (A.48)

εv = ln(
φi − 1
φ − 1

) (A.49)

Finally, the pore pressure depends on the change in pore vol-
ume, so

p f = K f ln(a3
i /a

3) (A.50)

Combining Eq. A.44 through Eq. A.50 the fluid pressure can be
expressed in terms of current (φ) and initial porosity (φi).

p f =

K f ln
(
φi(φ−1)
φ(φi−1)

)
, φ < φi

0, φ ≥ φi
(A.51)

Appendix A.5. Load-Unload Response

The initial porosity is only equal to the unloaded porosity
(φ0) when there is zero plastic strain in the matrix.

Setting p̄ = p̄b = p̄eff + p f , where p̄eff is given by Eq. A.38
and Eq. A.41, and using p̄a = p f from Eq. A.51 we obtain the
porosity vs. pressure plots in Fig. 2 and Fig. 3.

The loading portion of Fig. 4 is obtained from Eq. A.38 and
Eq. A.41 using the porosity-strain relation in Eq. A.48. To com-
pute the unloading response, it is necessary to define a new un-
loaded porosity (different than the initial porosity). If the mate-
rial has been compressed to some minimum porosity (φmin), the
new unloaded porosity (φnew

0 ) is found by solving Eq. A.39.

φnew
0 =

2Gφmin + Y
2G + Y

(A.52)
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This new unloaded porosity is now used to evaluate Eq. A.38
and Eq. A.41, but the initial porosity is still used in Eq. A.51
and Eq. A.48.

For these plots, the following parameters were used.
Parameter Description Value

Y Yield Strength (Compression) 414MPa
Yt Yield Strength (Tension) 75MPa
G Shear Modulus 27GPa
φi Initial Porosity 0.084
K f Fluid Bulk Modulus 2.2GPa
φmin Minimum Porosity 0.045

Appendix B. Penetration Simulation Parameters

Tables of constitutive model and simulation parameters.

Appendix B.1. Target Geometry
Parameters refer to the schematic in Fig. 8.

Parameter Description Value
t f Thickness of high res target face 5mm
lc Length of high res target core 50cm
lt Total target length 60cm
ri Core radius 2.5cm
ro Outer radius 5cm

Appendix B.2. Target Constitutive Model
Input parameters for the Arenisca constitutive model (Homel

et al., 2014b).
Parameter Feature Value

ρ Density (Drained) 2300kg/m3

ρ Density (Undrained) 2472kg/m3

b0 Bulk Modulus 1.003GPa
b1 Bulk Modulus 14.7GPa
b2 Bulk Modulus 41.0MPa
b3 Bulk Modulus 1.0GPa
b4 Bulk Modulus 4.0 × 10−3

g0 Shear Modulus 401.28MPa
g1 Shear Modulus 0.25
g2 Shear Modulus −0.13
g3 Shear Modulus 0.0
g4 Shear Modulus 0.0

FSLOPE Shear Limit Surface 0.435
STREN Shear Limit Surface 100.0MPa
YSLOPE Shear Limit Surface 0.079
PEAKI1 Shear Limit Surface 21.8457MPa

β Nonassociativity 1.0
p0 Crush Curve −30MPa
p1 Crush Curve 5.4 × 10−11Pa−1

p2 Crush Curve 0.0
p3 Crush Curve 0.189

CR Cap Function 0.50
K f Pore Fluid 2.2GPa
p̄i

f Pore Fluid 5.0MPa
T1 Rate Dependence 4.0 × 10−4s
T2 Rate Dependence 0.835

nsub Subcycling 256

Appendix B.3. CVD jet description

Input parameters to described the CVD jet using the Arenisca
constitutive model (Homel et al., 2014b). It is also necessary
to define geometric objects and insertion rules to result in the
desired velocity/density/radius profile along the length of the
jet. The Use_Disaggregation_Algorithm flag will cause
the model to define an initial material density based on the
void_fraction defined for each geometric object.

Parameter Feature Value
ρ Density (No Void) 19325kg/m3

b0 Bulk Modulus 268.7GPa
b1 Bulk Modulus 0.0
b2 Bulk Modulus 0.0
b3 Bulk Modulus 0.0
b4 Bulk Modulus 0.0
g0 Shear Modulus 124.0GPa
g1 Shear Modulus 0.0
g2 Shear Modulus 0.0
g3 Shear Modulus 0.0
g4 Shear Modulus 0.0

FSLOPE Shear Limit Surface 0.0
STREN Shear Limit Surface 404.0MPa
YSLOPE Shear Limit Surface 0.0
PEAKI1 Shear Limit Surface 0.0

β Nonassociativity 1.0 × 10−3

p0 Crush Curve −100kPa
p1 Crush Curve 1.0 × 10−5Pa−1

p2 Crush Curve 0.0
p3 Crush Curve 0.5

CR Cap Function 0.09
K f Pore Fluid 0.0
p̄i

f Pore Fluid 0.0
T1 Rate Dependence 0.0
T2 Rate Dependence 0.0

nsub Subcycling 256
Disaggregation true
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