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ABSTRACT

White matter fiber bundles of the human brain form a spa-
tial pattern defined by the anatomical and functional archi-
tecture. Human brain atlases provide names for individ-
ual tracts and document that these patterns are comparable
across subjects. Tractography applied to the tensor field in
diffusion tensor imaging (DTI) results in sets of streamlines
which can be associated with major fiber tracts. Compar-
ison of fiber tract properties across subjects requires com-
parison at corresponding anatomical locations. As an al-
ternative to linear and nonlinear registration of DTI images
and voxel-based analysis, we propose a novel methodology
that models the shape of white matter tracts. A clustering
uses similarity of adjacent curves and an iterative process-
ing scheme to group sets of curves to bundles and to reject
outliers. Unlike previous work which models fiber tracts as
sets of curves centered around a spine, we extend the notion
of bundling towards a more general representation of man-
ifolds. We describe tracts, represented as sets of curves of
similar shape, by a shape prototype swept along a space tra-
jectory. This approach can naturally describe white matter
structures observed either as bundles dispersing towards the
cortex or tracts defined as dense patterns of parallel fibers
forming manifolds. Curves are parameterized by arc-length
and represented by intrinsic local shape properties (curva-
ture and torsion). Feasibility is demonstrated by model-
ing the left and right cortico-spinal tracts and a part of the
transversal callosal tract.

1. INTRODUCTION

Diffusion Tensor Imaging (DTI) of brain structures mea-
sures diffusion properties by the local probability of self-
motion of water molecules. A tensor field, represented by
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3 × 3 symmetric definite-positive matrices, characterizes
amount and locally preferred directions of local diffusiv-
ity. While diffusion can be considered isotropic in fluid
it appears highly anisotropic along neural fiber tracts due
to inhibition of free diffusion of intra- and extra-cellular
fluid. DTI has become the preferred modality to explore
white matter properties associated with brain connectivity
in vivo. To date, most research work has been dedicated to
the calculation of the tensor field, its regularization, its vi-
sualization and subsequently to the design of fiber tracking
algorithms [1], [2], [3], [4], [5], [6]. Some groups have in-
vestigated ways to further analyze DT images. Alexander et
al. address matching issues in DTI [7] in order to character-
ize variations in white matter structure within a population.
Xu et al. combine tractography and spatial normalization
to produce statistical maps of fiber occurrence [8] while Fil-
lard et al. propose to perform statistical analysis of diffusion
properties along fibers [9].

In this paper, we propose a new framework for mod-
eling and shape analysis of fibers bundles. We propose to
cluster a set of fibers into meaningful bundles using various
similarity metrics and to study shape deviation within these
bundles with respect to a prototype. Closely related previ-
ous work has been proposed by Ding et al. [10]. Their
bundling algorithm relies on the concept of subdivision into
corresponding curve segments and the use of Euclidean dis-
tance to define piece-wise similarity. Geometric characteri-
zation is obtained by averaging shape features (e.g. curva-
ture and torsion) along each bundle medial axis. Instead, we
study the clustering fibers into bundles based on alternative
distance metrics and we keep individual local shape charac-
terization of each curve within a bundle. Ultimately, we will
model bundles not only by prototypes and statistical varia-
tion but rather by a prototype shape and its space trajectory.
This model would be particularly appropriate for bundles
like dense callosal fibers which are observed as a “sweep-
ing” of a U-shaped template (see Figures 1.c and 1.d).
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Fig. 1. Examples of fibers obtained from high-resolution DTI by tractography. (a) Major fiber tracts: cortico-spinal (blue),
superior longitudinal (yellow), splenium/genu (red); (b) cortico-spinal tract (red) with source and target regions of interest
(green); (c) about 8000 callosal fibers; (d) subset of (c) suggesting the new bundling concept proposed here: this bundle could
be represented as a U-shaped prototype shape and its trajectory, here the center of mass of each curve (red dots).

2. METHODS

2.1. Preprocessing: fiber extraction
The extraction of fiber tracts is performed with the trac-
tography tool described in [6]. The tensor field is com-
puted from high-resolution DTI data (baseline and 6 direc-
tional channels with 2 × 2 × 2 mm3 resolution) by solv-
ing the Stejskal-Tanner’s diffusion equation system as de-
scribed in [1]. Streamlines following the principal diffusion
tensor directions between source and target regions of inter-
est are then extracted by tractography under local continu-
ity constraints [8]. Except at branchings or crossings, these
3D curves are assumed to represent the most likely paths
through the tensor field and to mimick white matter path-
ways. Figure 1 shows fiber sets extracted by this method.
Note that the term fibers used here is representing stream-
lines extracted from the tensor field. These do not represent
single fibers but coarse-scale properties of fiber bundles.

2.2. Clustering fibers to bundles

The fiber tracking process provides us with a set F of 3D
curves, Fi, each represented by a set of 3D points pk, F =
{Fi, Fi = {pk}}. Due to limited robustness of fiber track-
ing at junctions and in noisy low-contrast regions, F may
still contain outlier curves. Also, the set of reconstructed
fibers might contain curves that are part of other anatomi-
cal bundles. We therefore develop an algorithm to remove
outliers and to cluster curves to bundles. We propose a clus-
tering algorithm based on position and shape similarity of
pairs of fibers and test several distance metrics.

Given a pairwise distance d and a fiber Fi, d is com-
puted between Fi and Fj for all Fj in F , j �= i. Fi and Fj

are decided to be in the same class if d(Fi, Fj) < t where
t ∈ R is a treshold to be chosen. Clusters of very low car-
dinal (e.g. containing less than 10% of initial fibers) are
considered as outliers and rejected. Thus, for each fiber Fi

within a class C, at least one fiber Fj , j �= i in C is such
that d(Fi, Fj) < t. After calculating a table of pairwise dis-
tances, the algorithm propagates labels from neighbouring
fiber to neighbouring fiber and benefits from a “transitivity
property”. Moreover, only one parameter, the threshold t,
has to be set up. A large value of t implies a low number of

classes, whereas a smaller value will result in an increased
number of classes. The optimal parameter t depends on the
data set under examination and on the choice of the distance
metric. We compute the histogram of the number of classes
as a function of t to study the sensitivity of each metric in
regard to this parameter and to help users to come up with
a meaningful choice. For example, users select the number
of sought clusters instead of the parameter itself.

Three pairwise distances between fibers Fi and Fj have
been implemented:

1. Closest point distance, dc:

dc(Fi, Fj) = min
pk∈Fi,pl∈Fj

‖ pk − pl ‖, (1)

‖ . ‖ being the Euclidean norm;

2. Mean distance of closest distances called dM and de-
fined as:

dM (Fi, Fj) = mean(dm(Fi, Fj), dm(Fj , Fi))
with dm(Fi, Fj) = meanpl∈Fi

min
pk∈Fj

‖pk − pl‖, (2)

3. Hausdorff distance, dH :

dH(Fi, Fj) = max(dh(Fi, Fj), dh(Fi, Fj))
with dh(Fi, Fj) = max

pk∈Fi

min
pl∈Fj

‖pk − pl‖. (3)

Additionally, we use shape-based distances by extract-
ing geometric characteristics from fibers such as length, cen-
ter of mass and second order moments. The principle of
the clustering algorithm remains the same when using first
or second order moments. In the former case, d is the Eu-
clidean distance between centers of mass, called dG, whereas
in the latter case it represents orientation similarity of the
first principal directions.

The distance dc can not be expected to have a good dis-
crimination power between fibers since it encodes only very
coarse information about fiber similarity and closeness. On
the contrary, dM provides a global similarity measure inte-
grated along the whole curve. The Hausdorff distance being
a worst-case distance, it is a useful metric to reject outliers
and prevents the algorithm from clustering curves with high
dissimilarity. Centers of mass are an appropriate feature to
measure coarse similarity of pose since they are a first or-
der complete representation of a fiber, whereas the second
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Fig. 2. Coronal and sagittal 3D views of the test data sets.
Left: 40 fibers presenting left and right cortico-spinal tracts.
Right: 500 callosal fibers.

Fig. 3. From left to right: clustering to bundles obtained
with distance metrics dM , dH and dG on the cortical-spinal
tracts (top) and callosal fibers (bottom) shown in Figure 2.

order moment metric has difficulties to discriminate dense
fiber sets (see for example Figure 1.c) because of their high
sensitivity to noise.

2.3. Shape analysis of fiber bundles

Our main goal is a modeling of white matter bundles in-
cluding a geometric characterization. Qualitative views of
3D rendering suggest that sets of fibers might be described
as a replication of a prototype curve along a space trajec-
tory, simulating the sweeping of a space curve to form a
manifold. We propose to generate a geometric description
of a set of curves forming a bundle, to calculate an aver-
age, prototype curve, and to analyze the variability of shape
deviations from this prototype. Local shape descriptors are
derived from the Frénet frame.

Given a differentiable parameterization r(t) of a curve
C, the Frénet frame (

−→
T ,

−→
N ,

−→
B ) in each point p of the curve

is defined by:


−→
T = r′(t)

‖r′(t)‖ where r′(t) = d
dtr(t)

−→
N =

−→
T ′

‖−→T ′‖ where
−→
T ′ = d

−→
T

dt

−→
B =

−→
T ∧ −→

N where ∧ denotes the vector product.

(4)

The vector
−→
T is the unit tangent vector,

−→
N the unit normal

vector and
−→
B supplements the frame so that it is orthonor-

mal. At each point p, this frame allows the calculation of
local features such as curvature κ and torsion τ . These mea-
surements are given by the Serret-Frénet formulæ:

d
−→
T

ds
= κ

−→
N and

d
−→
B

ds
= −τ

−→
N (5)

where s is the curvilinear abscissa of C.
In order to perform an analysis of these features across

fibers, we design a simple matching scheme that establishes
point correspondences between fibers. First, we define a
common origin for the set of fibers in each cluster. The
choice of this origin might be based on geometric criteria,
e.g. a cross-section with minimal area, or based on anatom-
ical information, like the symmetry plane of the interhemi-
spheric fissure. Second, we reparameterize the fibers with
cubic B-splines wich enables an equidistant sampling of all
curves in the training set and also allows an adequate sam-
pling of fibers with different overall lengths. Points having
the same curvilinear abscissæ across the fiber set are de-
fined as homologuous. Curvature and torsion are computed
along each curve as described above. Pointwise mean and
standard deviation on these features define average and vari-
ability, characterizing local shape of the whole bundle.

3. EXPERIMENTS AND RESULTS

Figure 2 shows 3D views of the two test data sets. The
first represents the cortico-spinal tracts of the left and right
hemispheres. The second corresponds to a dense set of
callosal fibers also including parts of the inferior-posterior
pathways. Both data sets contain many outliers. Note for
example the presence of outlier curves crossing the inter-
hemispheric plane in Figure 2, left. Figure 3 presents bun-
dles obtained with distance metrics dM , dH and dG. These
results compare the power of the different metrics to cluster
curves to bundles and to remove outliers.

Shape analysis of bundles uses the filtered sets of curves
as shown in Figure 4, top. The common origin of all fibers
for the cortico-spinal tracts is chosen as the location of thinnest
cross-section at the level of the internal capsule. For the cal-
losal fiber bundle, a natural choice is the intersection with
the mid-sagittal plane. Figure 4 top displays the shape fea-
tures of the set of curves aligned to bundles. Due to lim-
ited available space, only curvature is displayed but similar
properties are observed as torsion is concerned. The bottom
figure shows mean and standard deviation of curvature for
both test cases. The corticospinal tract (left figure) shows
two parts of increased variability, located at the locations of
largest curvature. The curves seem to be well aligned and
demonstrate very similar shape features. The callosal tract
composed of over 350 curves (right figure) also seems to
demonstrate that the curves present very similar shape fea-
tures across the corpus callosum. The 3D rendering of the
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Fig. 4. Two test data sets: Top: 3D rendering with coordinate origin (blue) and curvature of the aligned set of fibers. Bottom:
prototype shape and statistics of curvature with mean (blue) and standard deviation (red and green).

set of curves demonstrates that these fibers follow a com-
mon shape originating at the center and then dispersing to-
wards the cortex. This process is clearly shown in the curva-
ture plot, where a central portion bounded by low curvature
parts (coordinates -40 to 30) presents lower variability in
comparison to both ends of the curves.

4. CONCLUSION

This paper presents new techniques for clustering 3D curves
to bundles, to remove outlier curves and to develop a tech-
nique towards shape description of these bundles. The pre-
liminary results on two test datasets demonstrate that the
new clustering process is quite efficient to bundle sets of
curves to anatomically meaningful fiber tracts. This is fur-
ther confirmed in our comparison of local shape features
across the set of curves. The main goal is the development
of a new methodology for modeling white matter tracts of
the human brain, given diffusion tensor images. Our general
model of bundles takes into account that white matter tracts
are not observed as “cables” composed of sets of curves cen-
tered around a spine, but as “ribbon cables” that form thin
manifolds. Further, fiber tracts might fan out and disperse
due to their function of connecting folded cortical regions
with large surface area, collecting these fibers to thin, dense
bundles through the brain (e.g. towards the brain stem or
through the central part of the brain for longitudinal fasci-
culi). Our future work will focus to extend this shape model
to get a full description of the prototype shape, its change
along a trajectory, and a shape description of the trajectory

curve with associated smooth change of the local coordinate
frame.
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