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Abstract—White matter fiber bundles of the human brain
form a spatial pattern defined by the anatomical and func-
tional architecture. Tractography applied to the tensor
field in diffusion tensor imaging (DTI) results in sets of
streamlines which can be associated with major fiber tracts.
Comparison of fiber tract properties across subjects needs
comparison at corresponding anatomical locations. More-
over, clinical analysis studying fiber tract disruption and
integrity requires analysis along tracts and within cross-
sections, which is hard to accomplish by conventional re-
gion of interest and voxel-based analysis. We propose a new
framework for MR DTI analysis that includes tractography,
fiber clustering, alignment via local shape parametrization
and diffusion analysis across and along tracts. Feasibility
is shown with the uncinate fasciculus and the cortico-spinal
tracts. The extended set of features including fiber tract ge-
ometry and diffusion properties might lead to an improved
understanding of diffusion properties and its association to
normal/abnormal brain development.

I. Introduction

Diffusion Tensor Imaging (DTI) measures local proba-
bility distribution of the self-motion of water molecules.
Restricted motion of extra- and intra-cellular fluid within
brain white matter fibers correlates local diffusion pat-
terns, in its simplest form represented by local tensors,
with the orientation and density of white matter fibers.
The potential of DTI to present white matter integrity,
disruption and pathology long before visible changes oc-
cur in structural imaging makes it the preferred modality
to study white matter diseases. The two tensor measures
most commonly used in clinical analysis are the “apparent
diffusion coefficient” (ADC, trace of tensor) and the “frac-
tional anisotropy” (FA, normalized difference from spher-
ical). Previous research has been mostly focused on the
robust calculation of the tensor field, regularization [1], sci-
entific visualization [2] and fiber tracking [3], [4], [5], [6],
[7], [8]. Atlas building and comparison of subject groups
have been studied by non-linear registration of DTI im-
ages [9] and by combining tractography and spatial nor-
malization [10].

Clinical analysis of DTI mostly followed the common
concept of aligning DTI images via affine transformation
to a template and statistical parametric mapping (SPM)
for voxel-wise group difference tests [11], [12], [13]. Despite
the use of manually defined regions of interest, discussion
of results used the terms “connectivity” and “fiber disrup-
tion”, properties that might be better explained by mod-
eling of whole tracts. Kubicki et al. [12], [13] report about
differences of cross-sectional area of the uncinate fascicu-
lus and the cingulate, measured in orthogonal sections of
the MRI acquisition. They could further show significant

differences between controls and schizophrenics using the
fractional anisotropy area statistics. These studies show
that clinical analysis of DTI could benefit from improved
tools for reliable extraction of fiber tracts of interest, for es-
tablishing homology across subjects, and for measuring and
comparing geometric and diffusion properties along tracts.
This paper significantly extends earlier work initiated by
Fillard et al. [8] and by Corouge et al. [14]. We will not
describe tractography but focus on the subsequent quanti-
tative analysis.

II. Quantitative analysis of white matter fiber
tracts

We have developed a new set of tools for quantitative
analysis of diffusion properties associated with fiber tracts:
• Tractography to extract sets of streamlines representing
major fiber tracts.
• Fiber bundling and outlier removal.
• Parametrization of sets of streamlines representing bun-
dles.
• Calculation of local parameters of space curves to help
to establish point to point correspondence between tracts.
• Calculation of diffusion properties within bundle cross-
sections and along bundles.
• Statistical analysis of fiber tract properties across sub-
jects.

The following subsections summarizes the individual pro-
cessing steps, more details are found in [14]. Figure 2 il-
lustrates the concept with the example of the uncinate fas-
ciculus. The complexity of the structure indicates that it
might be difficult to measure properties with region of in-
terest analysis. We used tractography and clustering to
extract the left and the right bundles, parametrized the set
of streamlines and attribute each line with a parameter ex-
tracted from the local diffusion tensors, here the fractional
anisotropy (Fig. 2 lower right).

A. Tractography

The extraction of sets of streamlines from the diffusion
tensor field is performed with a method originally devel-
oped by Mori et al. [15] and further improved by Fillard et
al. [8] 1. Selection of source and target regions is similar to
the concept outlined in [15]; we use backtracking from tar-
get to source and use large target regions (the full brain or
the whole portion superior to the corpus callosum, e.g.) to
generate seed points to be traced back to the source region.

1Fiber tracking tool download at
http://www.cs.unc.edu/~fillard



Tracking is regularized by two parameters controlling local
coherence and smoothness of streamlines. Results for a set
of major tracts are shown in Fig. 1a.

B. Clustering of curves to bundles

Tractography results in sets of streamlines connecting
target to source regions. As our tracking is not guided by
geometric constraints, this set can be noisy and can include
multiple paths (see Fig. 3a,b and d). We developed a clus-
tering scheme that uses various curve distance metrics to
remove outliers and to combine curves to bundles. Closely
related previous work has been proposed by Ding et al. [16].
Their bundling algorithm relies on the concept of subdivi-
sion into curve segments and the use of Euclidean distance
to define similarity centered around a core curve. We ex-
tend this notion of cable-like bundles in order to represent
ribbon cables and even bundles represented by sweeping a
template curve to form a manifold [14], using the full set
of pairwise distances.

The fiber tracking process provides us with a set F of
3D curves, Fi, each represented by a set of 3D points pk,
F = {Fi, Fi = {pk}}. Given a pairwise distance d and a
fiber Fi, d is computed between Fi and Fj for all Fj in F ,
j 6= i. Fi and Fj are decided to be in the same class if
d(Fi, Fj) < t where t ∈ R is a treshold to be chosen. This
process can be described as a graph clustering. A graph
with with nodes representing the curves and attributed
edges representing pairwise distance is cut at threshold t,
breaking the whole graph into a number of clusters. Each
cluster is populated with a number of curves. Clusters of
very low cardinality (e.g. containing less than 10% of ini-
tial fibers) are considered as outliers and rejected. Thus,
for each fiber Fi within a class C, at least one fiber Fj , j 6= i
in C is such that d(Fi, Fj) < t. In our implementation, we
calculate a matrix of pairwise distances where each curve
gets an individual label. These labels are iteratively propa-
gated to neighbors until there is no change. This clustering
possesses a “transitivity property” and can also collect sets
of curves which are not close to one single template but
which can be described as a continuous sweeping of curves
across space. Only one parameter, the threshold t, has to
be selected. A large value of t results in a small number of
classes, whereas a smaller value will increase the number of
classes. The optimal parameter t depends on the data set
under examination and on the choice of the distance met-
ric. We compute the histogram of the number of classes
as a function of t to study the sensitivity of each metric
in regard to this parameter and to guide users to come up
with a meaningful choice. For example, users can select
the number of sought clusters instead of the parameter it-
self, which is used in Figure 3d to separate left and right
cortico-spinal tracts.

Three pairwise distances between curves Fi and Fj have
been implemented:
1. Closest point distance dc: Closest distance between
pairs of curves A and B.
2. Mean dM of closest distances: Mean of closest distance
for every point of curve A to curve B.

3. Hausdorff distance, dH : Maximum of point-wise mini-
mum distances between pairs of curves.

Since all these distances are not symmetric, we calculate
the combined metrics for A to B and B to A. Additionally,
we use shape-based distances by extracting geometric char-
acteristics from fibers such as length, center of mass and
second order moments. The principle of the clustering al-
gorithm remains the same when using first or second order
moments. In the former case, d is the Euclidean distance
between centers of mass, called dG, whereas in the latter
case it represents orientation similarity of the first principal
directions.

The overall closest distance dc can not be expected to
have a good discrimination power between fibers since a
single closest point pair does not encode shape similarity.
On the contrary, dM provides a global similarity measure
since it integrates closest distances along the whole curve.
The Hausdorff distance is a worst-case distance, it is a use-
ful metric to reject outliers and prevents the algorithm from
clustering curves with high dissimilarity. Centers of mass
are an appropriate feature to measure coarse similarity of
pose since they are a first order complete representation of
a fiber, whereas the second order moment metric has diffi-
culties to discriminate dense fiber sets because of its noise
sensitivity.

The interactively guided clustering allows a multi-
criteria based classification. For example, outliers can
be first rejected based on length and Hausdorff distance
whereas left/right bundles might be separated by compar-
ing the center of mass. We will develop guidelines for major
tracts and thus standardize the procedure aiming towards
an automated clustering scheme.

C. Attributing bundles with diffusion properties

It is now interesting to study local diffusion not in small
regions of interest but as a function of the geometry of
the whole tract. Our tractography tool [8] simplifies this
task since fibers are stored as standardized ITK poly-
lines attributed with the full tensor and derived proper-
ties. Visualization of the splenium (Fig. 1b) clearly demon-
strates that the fractional anisotropy varies significantly
as a function of location along the tract but also within
cross-sections. The histogram representing the mid-sagittal
cross-section (Fig. 1c) clearly shows that values range from
0.1 up to 0.9, representing the whole range from nearly
isotropic up to highly anisotropic diffusion. We assume
that this broad range is a function of the coarse sam-
pling of the underlying macroscopic fiber structures (here
2 × 2 × 2mm3), partial voluming, but also natural varia-
tion of fiber density and myelination sheath. However, it
demonstrates that region of interest analysis is not suffi-
cient and might be very sensitive to the exact definition of
cross-sections.

DTI properties of large bundles (corpus callosum and
cortico-spinal) are illustrated in the first column of Fig. 5.
Whereas apparent diffusion (ADC) is mostly constant
across the whole bundle, an interesting pattern is observed
in fractional anisotropy (FA). The FA values change signif-



icantly and form regular patterns. The dark blue on top is
easily explained by fiber dispertion towards the cortex and
thus isotropic diffusion. The “stripe” patterns are induced
by neighboring tracts either running in parallel or perpen-
dicular. These views again indicate that regions of interest
analysis might not capture this natural variation and even
might be very sensitive to selecting locations along tracts.

D. Parametrization of fiber bundles

Summarizing diffusion properties within a bundle re-
quires parametrization. First, we define a common origin
for the set of fibers in each cluster. The choice of this
origin might be based on geometric criteria, e.g. a cross-
section with minimal area, or based on anatomical infor-
mation, like the symmetry plane of the interhemispheric
fissure. The polyline of each curve is parametrized by a
cubic B-spline curve. The set of splines is re-sampled and
diffusion measurements at each point are obtained by in-
terpolation. The two attributes ADC and FA can now be
integrated across cross-sections and expressed as a func-
tion of arc-length. Fig. 5 displays average and standard
deviations of ADC and along the fiber directions, i.e. from
inferior to superior direction. Results are illustrated for
a healthy adult case. The curves representing FA clearly
reflect the “stripes” shown in the color displays, and also
indicate that the commonly used region of interest analysis
need high spatial precision not to be affected by this large
natural variations.

E. Attributing bundles with local shape properties

Comparison of fiber tracts across subjects requires a one-
to-one correspondence between tracts. We explore the use
of local shape statistics on the set of curves to automat-
ically and reproducibly define significant locations along
tracts. Given a differentiable parametrization r(t) of a
curve C, we calculate the Frénet frame (−→T ,

−→
N ,

−→
B ) in each

point p of the curves.
The vector −→T is the unit tangent vector, −→N the unit nor-

mal vector and −→
B supplements the frame so that it is or-

thonormal. At each point p, this frame allows the cal-
culation of local features such as curvature κ and torsion
τ . We use the parametrization by cubic B-splines as dis-
cussed earlier to establish point correspondence between
sets of fibers. Points with the same curvilinear abscissæ
across the fiber set, i.e. with the same arc-length, are de-
fined as homologuous. Results for curvature of the corpus
callosum bundle are shown in Fig. 4. The mesh represen-
tations and the mean and standard deviation of curvature
reflect the high similarity of the U-shaped curves close to
the origin (midsagittal plane) and the increased variability
towards the cortex (left and right in graphs) as expected
due to fiber dispersion.

III. Conclusion

This paper discussed work in progress for quantitative
analysis of DTI data. Unlike voxel-based analysis by non-
linear registration, we develop a “tract-based” concept that
uses tractography to define complex regions of interest.

a b c

Fig. 1. DTI fiber tracts: a) Sets of tracts obtained by tractography,
b) coloring FA properties along and across bundle (range [0 · · · 1] rep-
resented from blue to red) and c) histogram of FA properties within
mid-sagittal cross-section.

Fig. 2. Uncinate fasiculus: Top: Sagittal cut with overlay of seg-
mented structure and three-dimensional view of left and right unci-
nate. Bottom: Left and right fasciculi obtained by fiber tracking and
same structures but color-coding of FA value.

Tracts are parametrized and attributed with local diffu-
sion properties and local shape characteristics. This allows
us to calculate diffusion properties within cross-sections
and along bundles. This analysis will naturally comple-
ment the currently used whole brain screening by align-
ment and SPM statistics. For example, regions of inter-
est found as significant could be used to focus on specific
tracts using the method proposed here. The preliminary
analysis and visualization clearly demonstrates that dif-
fusion tensor properties change significantly across bun-
dles but also along tracts. This observation also raises the
question of currently used parametric statistics (e.g. mean
FA) within regions of interest are appropriate. The few
cases illustrated in this paper are part of two much larger
studies which a) explore normal variability within a set of
15 healthy adults and b) study early brain development
of newborns at risk (age 2 weeks) with follow-up after 1
and/or 2 years. Models on healthy controls will help us to

Fig. 3. Clustering of sets of streamlines to fiber bundles. Cortico-
spinal tract before and after clustering.



Fig. 4. Local shape properties along callosal tract. Left: Mesh
display of curvature along tracts illustrating curvature (left to right)
for the set of fibers (front to back. Right: Callosal tract with center
of origin

Fig. 5. Analysis of diffusion properties along major fiber tracts. Top:
ADC and FA values for the cortico-spinal tracts, bottom row FA
for the callosal tract. Middle: Corresponding statistics, left to right
represents inferior to superior and the vertical axis the ADC and FA
values. Mean and standard deviations are shown. Bottom: Corpus
callosum tract with FA color coding and corresponding statistics.

measure and quantify geometric and diffusion changes of
fiber tracts due to pathology.
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