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MRI of Premature Newborns

1994 - collaboration initiated 
with Petra Huppi to investigate 
structural brain changes in 
premature infants.
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Imaging of Newborn Infants
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Motivation
• Increasing prevalence of surviving very low 

birth weight premature infants
• Very low birth weight infants have high rates of 

adverse neurodevelopmental outcomes:
– 10-15% develop cerebral palsy
– 50% develop significant neurobehavioral problems 

including
• Lowered IQ
• ADHD
• Anxiety disorders
• Learning difficulties

• Considerable educational burden with 
significant economic and social implications.
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Newborn Brain: Structural MRI
Healthy 
fullterm 
infant.

Fullterm 
infant with
delayed 
development.

SPGR 
(T1w) of 
infant with 
PVL.

CSE 
(T2w) of 
infant
with PVL.

Skin shown in pink.
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Studying Brain Development

A sequence of MRI of the same infant: shortly after premature birth, at 
term equivalent age, and at nine months. The sequence of growth of the 
brain and development of myelination in the white matter can be best 
followed by quantitative 3D assessment.

10 weeks 
premature

Term equivalent
age

9 months
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Motivation
• VLBW infants are at risk of altered 

neurodevelopment and adverse outcomes 
from brain injury.
– What are the patterns of brain injury that explain 

the adverse outcomes ?
– What are the perinatal risk factors ?
– What are the causes and mechanisms of brain 

injury ?
• Can we develop imaging and image analysis 

procedures to :
– characterize these patterns of injury and assess 

potential interventions ?
– Establish timing of injury or developmental periods 

of vulnerability ?
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MRI can predict later outcomes
• Qualitative assessments at term age MRI 

predict motor and cognitive outcome at term 
age (Woodward et al. NEJM 2006).
– White matter abnormalities at term are predictive 

at two years of age of: 
• cognitive delay (OR: 3.6), 
• Motor delay (OR: 10.3),
• Cerebral palsy (OR: 9.6)

– Gray matter abnormalities at term predictive of 
cognitive delay, motor delay, cerebral palsy.
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MRI can predict later outcomes
• Quantitative MRI at term equivalent age 

has been shown to predict:
– Impaired visual function in VLBW infants at 

age 2 (Shah et al. 2006)
– Object working memory deficits at age 2 

(Woodward et al. 2005)
– PDI and MDI at age 2 (Thompson et al. 

2008)
– Cognitive and motor outcomes at 1.5 and 2 

years (Peterson et al. 2003)
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Biomarkers

• We aimed to develop a set of MRI 
measures that can 
– 1. characterize the patterns of brain injury in 

premature infants, and 
– 2. can predict motor and cognitive outcomes 

in those children.
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Structural MRI Analysis
• MR parameters
• Image analysis: Segmentation is key

– battery of measures
– Individual subjects:

• Volume measures
• Thickness measures e.g. cortical thickness
• Shape measures (spherical harmonic 

representation, deformable models)
– Groups of subjects (registration is key)

• Statistical atlases.
• Correspondence field morphometry.
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3D Segmentation of Newborn Brain
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Image Segmentation
• Segmentation issues:

– Interactive segmentation:
• time consuming.
• significant intra-rater and inter-rater variability 

(Kikinis et al., 1992, Warfield et al. 1995).

– Automatic segmentation:
• Challenges.

– Imaging artifacts.
– Normal and pathological variability.

• Prospects:
– Objective assessment of imaging data.
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Validation of Image Segmentation
• Segmentation critical to further measures 

such as thickness, gyrification.
• STAPLE (Simultaneous Truth and 

Performance Level Estimation):
– An algorithm for estimating performance 

and ground truth from a collection of 
independent segmentations.

• Warfield, Zou, Wells MICCAI 2002.
• Warfield, Zou, Wells, IEEE TMI 2004.
• Warfield, Zou, Wells, PTRSA 2008.
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Segmentation

Segmented 
images

Registration

Statistical 
Classification

Prior 
probabilities 
for tissues.

Brain atlas

Supervised 
learning.

Grey value 
images

Combine statistical classification and registration 
of a digital anatomical atlas (Warfield et al. 2000)
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Estimation of Class Distributions
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An estimator for the joint probability is then (Duda,Hart 1973):
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Tissue Class Prototypes
• Our previous work has utilized interactive 

selection of per-subject training data:
– Time consuming,
– Subject to intra-rater and inter-rater variability,
– Enabled identification of subtle contrast between 

different tissue types.
• Seek an algorithm that avoids per-subject 

interaction, while maintaining excellent 
performance.
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Template to Target Registration

target template 1 template 2 template 3 template 4
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Tissue prototypes manually identified
target template 1 template 2 template 3 template 4

tissue class samples selected once on the original template images. 
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Tissue prototypes transferred
target template 1 template 2 template 3 template 4

and then projected through the affine transform…
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Tissue prototypes transferred
target template 1 template 2 template 3 template 4

and then projected through the b-spline non-linear transform…
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Tissue prototypes transferred
target template 1 template 2 template 3 template 4

Different prototype configurations are projected onto the target subject
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Multiple Configurations on the Target
target config 1 config 2 config 3 config 4

The different prototype configurations represent the physical variation 
among the template subjects.  By adding template subjects, and 
choosing prototypes by hand only once, a wider range of physical 
variation can be accommodated.  Once a template subject is added, it 
is re-used without further human intervention.

The image intensity data used is only from the individual under study 
(the target).
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Multiple Configurations on the Target
target config 1 config 2 config 3 config 4

Each configuration of sample coordinates leads to a different 
candidate segmentation of the target subject.

STAPLE is used to combined candidate segmentations.
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Configurations are Edited
estimated truth config 1 config 2 config 3 config 4

The previous iteration’s STAPLE output (top left) is used to weed out 
prototypes which are inconsistent with the data.
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Spectral-Spatial Segmentation

After several iterations, a spectral-spatial (watershed) segmentation 
(Grau et al. IEEE TMI 2004) is used to eliminate partial volume effects 
and generate the final result.
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Final Result

The final result is a fully automatic labeling of myelin (orange), 
unmyelinated white matter (red), cortical gray matter (gray), subcortical 
gray matter (white), and cerebrospinal fluid (blue).
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Prenatal Methadone Exposure
• Mothers in methadone maintenance 

program recruited in Christchurch, NZ
• Structural MRI of 27 control infants and 

48 infants prenatally exposed to 
methadone.

• Automatic tissue segmentation utilized.

• Presented at PAS 2008 by Warfield, 
Weisenfeld, Woodward.
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Prenatal Methadone Exposure
• Comparison of group means for each type of 

brain tissue found that prenatal exposure to 
methadone is associated with a reduction in 
brain tissue volume:

• Total Brain Volume, Cortical Gray Matter, 
Subcortical gray matter,  Unmyelinated white 
matter, Myelinated White Matter, and 
Cerebrospinal fluid.

tissue TBV CGM SCG UWM MWM CSF

p-value 0.001 0.087 <.001 0.039 0.017 0.033
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Quantitative Volumetric MR Techniques
• Provided baseline data and identified several 

risk factors in premature infants.
• Enabled description of patterns of brain injury 

in premature infants.

• Limitations:
– Limited by the signal contrast and resolution 

of the imaging acquired.
– Structural measure – implications for 

function and underlying connectivity require 
further probes.
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