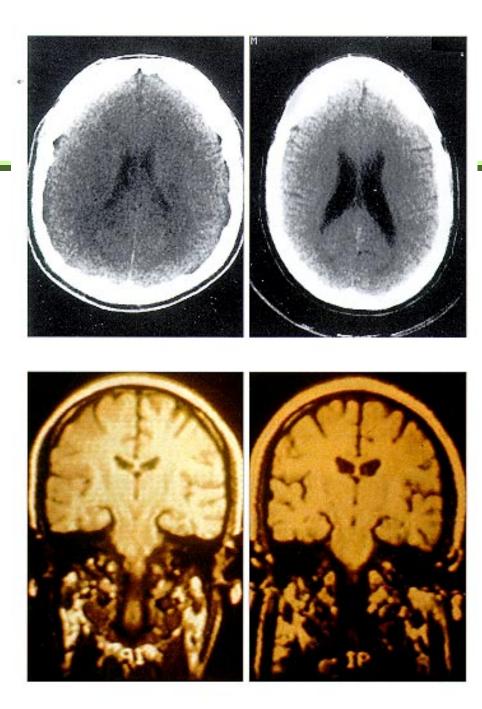


Early Brain Development in Normal and High Risk Children

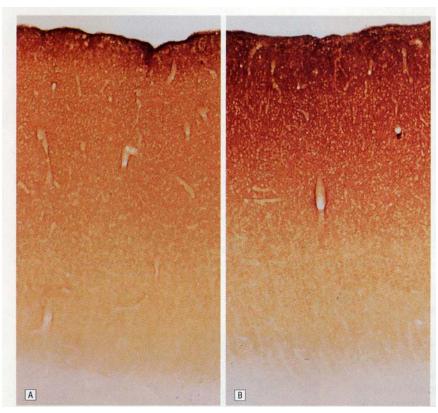
John H. Gilmore, MD

Department of Psychiatry


The University of North Carolina

Neurodevelopmental Hypothesis of Schizophrenia

- Neurodevelopmental disorder with prenatal/perinatal origins
 - Pregnancy and birth complications (OR 2.0-4.0)
 - Subtle childhood neurodevelopmental abnormalities
 - Brain abnormalities on MRI are present at first episode



Abnormal Cortical Connectivity

- Postmortem studies
 - reduced neuropil
 - decreased synaptic markers
 - Synaptophysin, decreased spine numbers
 - no overall neuron loss
- Abnormal functional connectivity on fMRI

Reduced Synapses/Spines

Subject with schizophrenia

Matched normal control subject

Glantz and Lewis, 1997

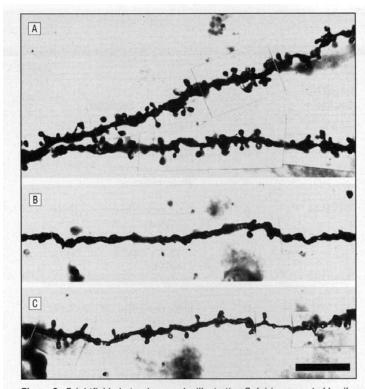
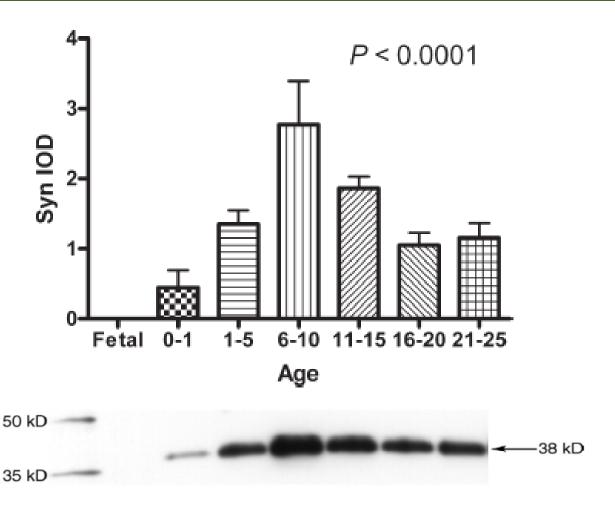
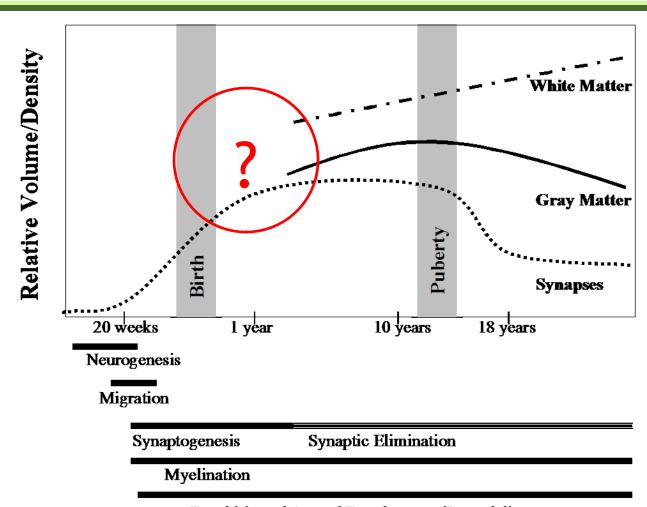
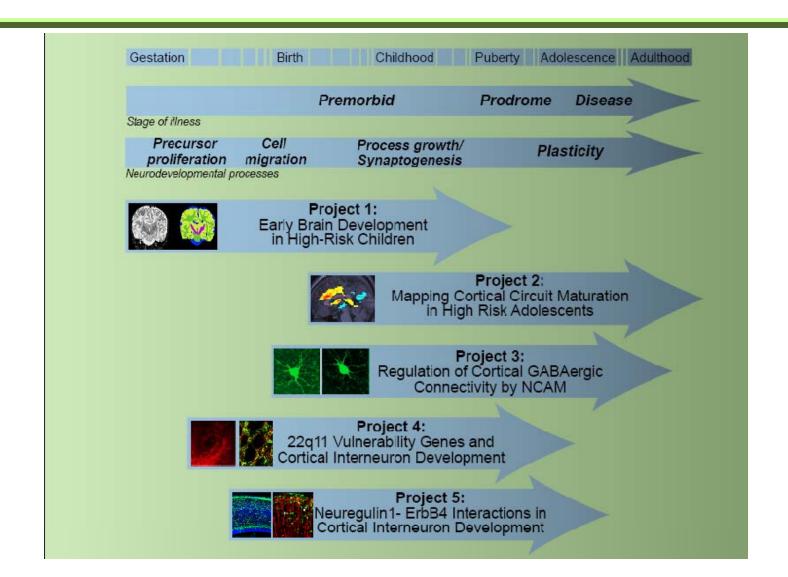



Figure 2. Brightfield photomicrographs illustrating Golgi-impregnated basilar dendrites and spines on dorsolateral prefrontal cortex layer 3 pyramidal neurons from normal control subject 390 (A) and 2 subjects with schizophrenia (subjects 410 [B] and 466 [C]). The calibration bar equals 10 µm.

Glantz and Lewis, 2000

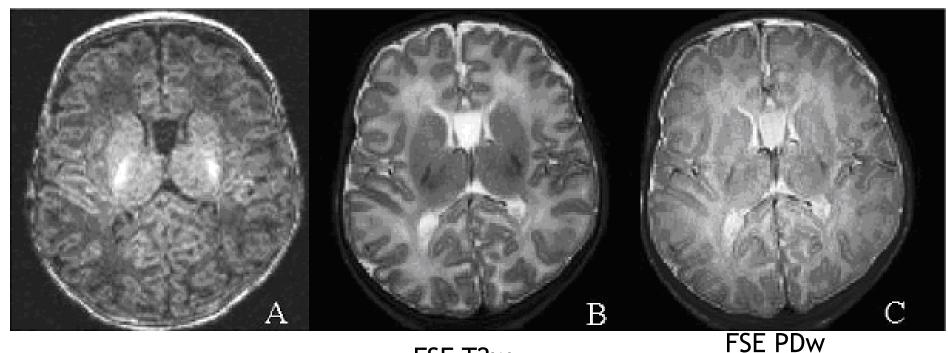

Synaptophysin Prefrontal Ctx

Glantz et al., 2007


Cortex Development

Dendritic and Axonal Development/Remodeling

UNC Conte Center



Schizophrenia as a neurodevelopmental disorder

- Hypothesized that the structural brain abnormalities associated with schizophrenia arise during very early brain development
- No direct evidence to support this hypothesis
- To understand the origins of schizophrenia and other neurodevelopmental disorders, it is critical to develop methodologies to study prenatal and neonatal brain structure

Neonatal MRI: 3T high resolution, high speed scans

T1 3D MPRage 1.0 x 0.9 x 0.9 mm³

FSE T2w 1.25 x 1.25 x 1.95 mm³

1.25 x 1.25 x 1.95 mm³

3T Siemens Allegra

Scan Time: Structural MRI (T1, SpinEcho): 8min, DTI: 4min -> 12 Min tot

Neonatal MRI

- 3T (Siemens Allegra head-only)
- Unsedated, outpatient setting
- Neonates are fed prior to scanning, swaddled, fitted with ear protection; heads fixed in a vac-fix device
- A pulse oximeter monitored by a physician or research nurse
- Most neonates sleep during the scan
- Motion-free scans in approximately 83%

Safety Issues

- Scanner is FDA approved for use in all ages
- Scanner software and hardware limits specific absorption rates to safe levels based on infant weight
- Phantom study with scan sequences
 - Mean (SD) increase 0.19±0.20 °C
 - Range 0.0-0.5 °C
 - (Gilmore et al., Psych Res: Neuroimaging, 132, 2004)

Early Brain Development Studies

- John Gilmore, M.D.
 Principal Investigator
- Studies
- Investigators
- Image Analysis
- Progress/Publications
- Training Opportunities
- · Links
- · Contact Us

Early Brain Development Studies

Normal Controls

Twins

Mild Ventriculomegaly (MVM) (Brain)

Babies of Mothers with Schizophrenia

http://www.earlybrainresearch.org

Study Approach

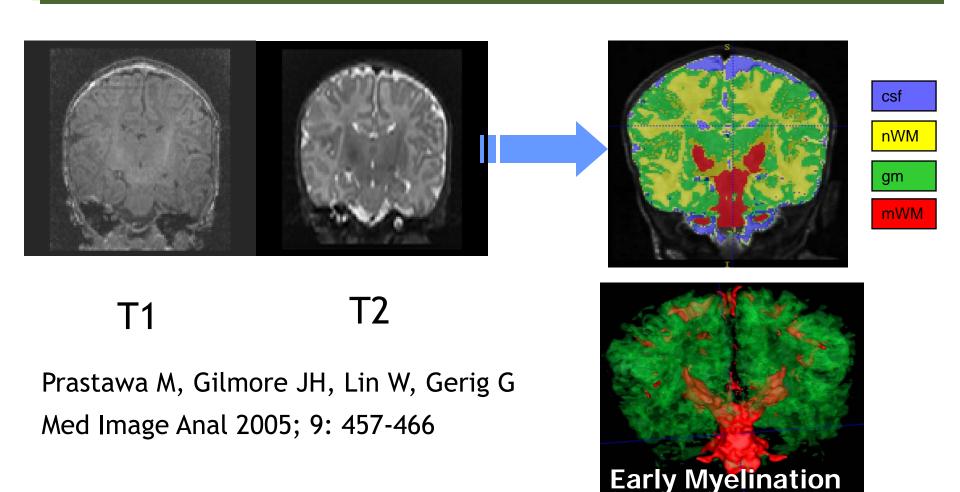
- Prenatal ultrasound, neonatal MRI
- Neurostructural phenotype
 - Enlarged lateral ventricles
 - Gray matter, white matter development
- Two high risk groups
 - Genetic high risk: offspring of mothers with schizophrenia (10% develop schizophrenia)
 - Structural high risk: fetuses with isolated mild ventriculomegaly

Study Design

- Prenatal ultrasound at 22 and 32 weeks
- MRI at 2 weeks after birth
- Developmental assessments at 1 and 2 years of age
 - Mullen Scales of Early Learning
 - Working Memory, Attention

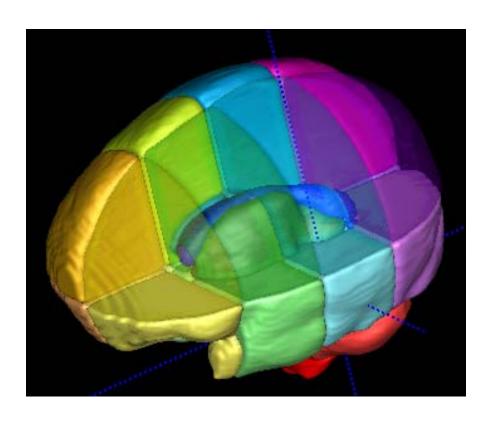
Early Brain Development Studies

 Recruiting to date 	
- Mothers with schizophrenia	47
 Fetuses with mild ventriculomegaly 	50
- Controls	257
- Twins	158 pairs
- Bipolar	33
 Successful neonatal MRI's to date 	
 Mothers with schizophrenia 	29
 Fetuses with mild ventriculomegaly 	37
- Controls	195
- Twins	110 pairs
- Bipolar	11

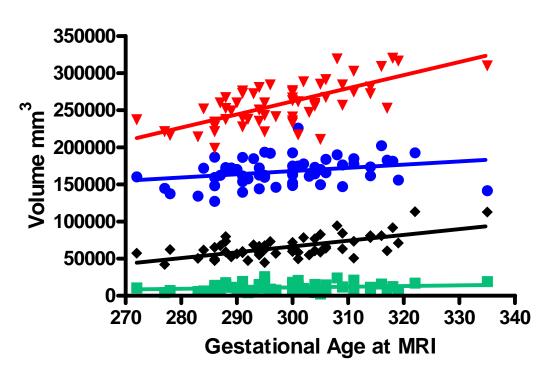


Challenges of Tissue Segmentation

- Small head size
- Low contrast
- Bias field / intensity inhomogeneity
- Motion artifacts
- Ambiguous classification of white matter into myelinated and non-myelinated white matter



Automated Tissue Segmentation

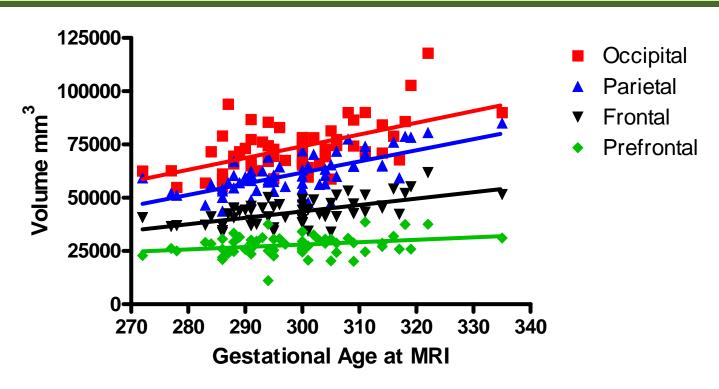


Parcellation

Neonatal Brain Development

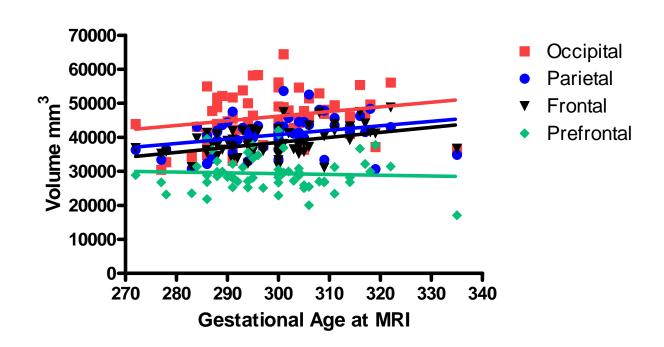
- Gray Matter
- White Matter
- CSF
- Myelinated White Matter

Overall homogeneity of slopes: p < 0.001


Gray Matter vs. White Matter: p < 0.001

Gray Matter vs. CSF: p < 0.001

Gray Matter vs. Umyelinated WM: p < 0.001


Regional Gray Matter

Overall homogeneity of slopes: p < 0.001 Occipital vs. Prefrontal: p < 0.001 Parietal vs. Prefrontal: p < 0.001

Regional White Matter

Overall homogeneity of slopes: p = 0.12

Regional differences in synapse development

P.R. HUTTENLOCHER AND A.S. DABHOLKAR

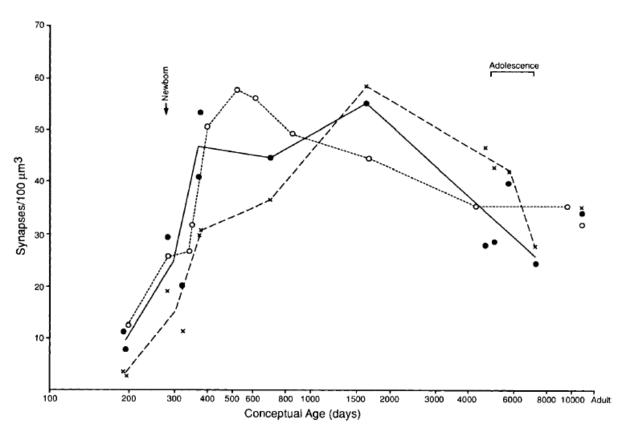
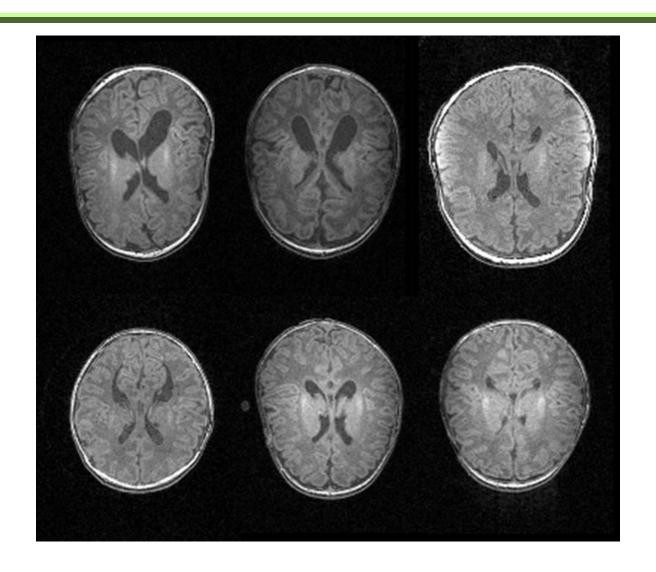


Fig. 2. Mean synaptic density in synapses/100 μm³ in auditory, calcarine, and prefrontal cortex at various ages. Open circles, visual cortex (area 17); filled circles, auditory cortex; x, prefrontal cortex (middle frontal gyrus).

Conclusions

- Early neonatal brain development is characterized by rapid increases in gray matter compared to white matter
- Regional specificity of gray matter development: posterior faster than anterior
- Gender differences in ICV, gray matter volumes present at birth
 - Arise during prenatal brain development
- Asymmetries present at birth, L>R
 - Adult pattern develop after birth


Isolated Mild Ventriculomegaly

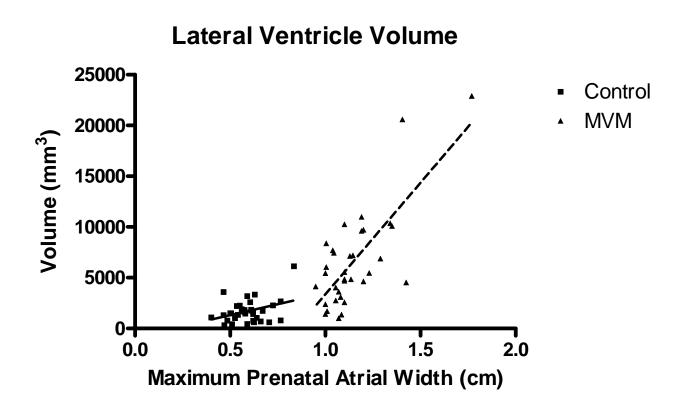
- Atrial width ≥ 10mm
- No associated CNS abnormalities
- Up to 0.7% of pregnancies
- Associated with older maternal age, lower gestational age at birth, and maternal infection
 - Gilmore et al., 1998; Dommergues et al., 1996
- Outcome
 - 33% have developmental delays (Bloom et al., 1997)
 - Autism, ADHD, learning disorders (Gilmore et al., 2001)

- 34 children with isolated MVM
- 34 age and gender matched controls
- Children in the MVM group had significantly larger prenatal maximum lateral ventricle width
 - 1.15 ± 0.03 vs. 0.59 ± 0.03 ; p < 0.0001

Mild Ventriculomegaly

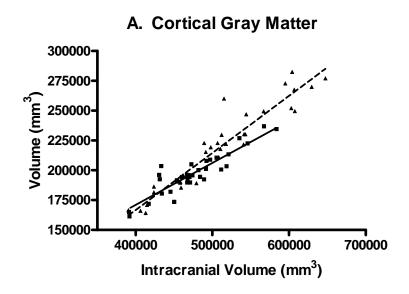
Neonatal Brain Structure

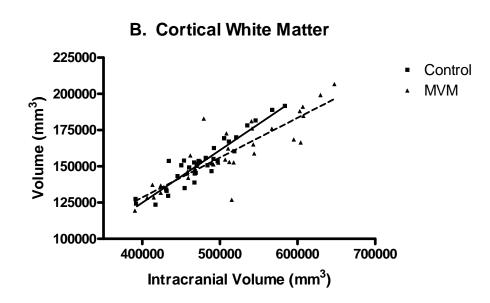
	Control LS mean (SE)	MVM LS mean (SE)	% difference	F-value (DF)	P value
Intracranial Volume (mm³)	475,757 (8,207)	509,615 (8,207)	7.1%	8.51 (1,33)	0.0063
Lateral Ventricle (mm³)	1,701 (585)	6,572 (585)	286.4%	34.64 (1,33)	< 0.0001
Cortical Gray Matter (mm³)	197,625 (3,839)	219156 (3,839)	10.9%	15.72 (1,33)	0.0004
Cortical White Matter (mm³)	152,426 (2,962)	158,680 (2,962)	4.1%	2.23 (1,33)	0.1449
Cerebellum (mm³)	27361 (547)	27181 (547)	- 0.06%	0.05 (1,33)	0.8184


Lateral Ventricles

A. Prenatal Lateral Ventricle Width **B.** Lateral Ventricle Volume 25000-2.0 20000 1.5 Volume (mm³) Width (cm) 15000 1.0-10000 0.5 5000-0.0 MVM Control **MVM** Control

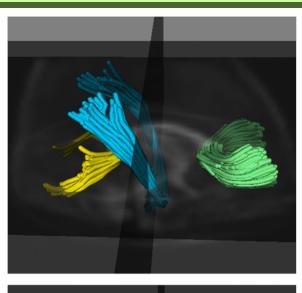
- A. Maximum lateral ventricle width in controls and MVM cases (n=34/group; p<0.0001)
- B. Neonates with prenatal MVM have significantly larger lateral ventricle volumes than matched controls (n= 34/ group; p < 0.0001).

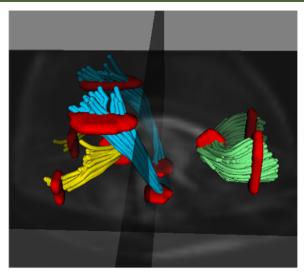

Prenatal/Neonatal Relationship

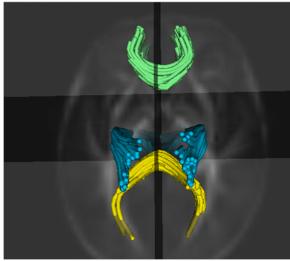

There was a significant correlation between the prenatal maximum lateral ventricle width on ultrasound and neonatal lateral ventricle volume on MRI for both the normal control (Pearson r = 0.3563; p = 0.0386) and the MVM groups (Pearson r = 0.7482, p < 0.0001)

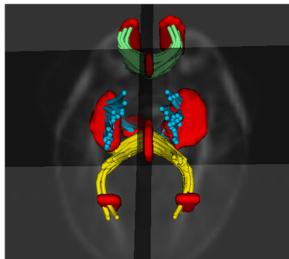
Gray and White Matter Volume

There is a significant difference in the relationship between ICV and cortical gray matter volume in MVM cases compared to controls (homogeneity of slope F=13.15 (1,31); p=0.0010)




There is a significant difference in the relationship between ICV and cortical white matter volume in MVM cases compared to controls (homogeneity of


slope F= 7.04 (1,31); p=0.0125)



DTI Tractography

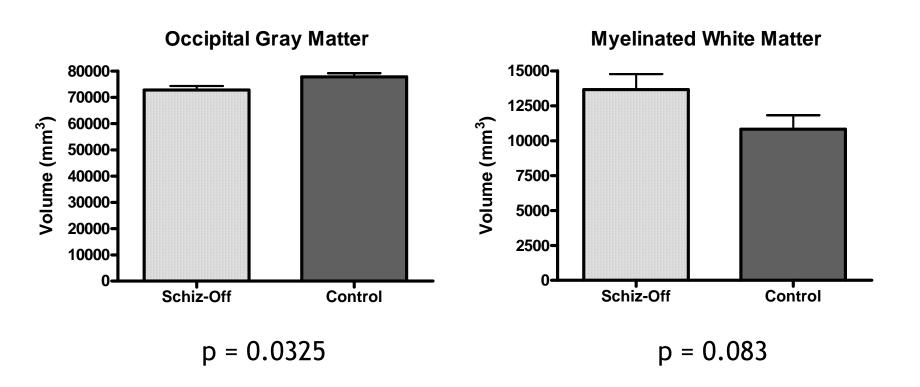
- Mean Diffusivity decreases with age
- Fractional Anisotropy increases with age
- Mean Diffusivity a more sensitive marker of myelination in neonates

Mean Diffusivity	LSMean (SE)		F-Test for difference: Normal Control vs MVM		
Location/ track	Normal Control MVM		F-value (DF)	P-Value	
Genu (-21)	14.58 (0.16)	15.63 (0.17)	20.46 (1,24)	0.0001	
Genu (0)	13.71 (0.28)	14.28 (0.30)	1.92 (1,24)	0.1782	
Genu (21)	13.61 (0.44)	15.31 (0.48)	6.79 (1,24)	0.0155	
Splenium (-24)	15.01 (0.33)	16.70 (0.35)	12.12 (1,24)	0.0019	
Splenium (0)	14.23 (0.21)	14.91 (0.22)	4.88 (1,24)	0.0370	
Splenium (24)	14.59 (0.24)	16.26 (0.26)	22.47 (1,24)	<0.0001	
Left Cortico-spinal (-12)	10.08 (0.08)	10.41 (0.08)	8.55 (1,23)	0.0076	
Left Cortico-spinal (9)	12.43 (0.18)	13.22 (0.20)	8.92 (1,23)	0.0066	
Right Cortico-spinal (-12)	10.06 (0.07)	10.54 (0.08)	20.37 (1,23)	0.0002	
Right Cortico-spinal (9)	12.45 (0.21)	13.10 (0.23)	4.42 (1,23)	0.0466	

Fractional Anisotropy	LSMean (SE)		F-Test for difference: Normal Control vs MVM	
Location/ track	Normal Control	MVM	F-value (DF)	P-Value
Genu (-21)	0.23 (0.01)	0.21 (0.01)	3.08 (1,24)	0.0920
Genu (0)	0.50 (0.01)	0.47 (0.01)	2.22 (1,24)	0.1493
Genu (21)	0.23 (0.01)	0.22 (0.01)	0.74 (1,24)	0.3972
Splenium (-24)	0.29 (0.01)	0.29 (0.01)	0.04 (1,24)	0.8448
Splenium (0)	0.56 (0.01)	0.49 (0.02)	10.59 (1,24)	0.0034
Splenium (24)	0.28 (0.01)	0.25 (0.01)	4.27 (1,24)	0.0498
Left Cortico-spinal (-12)	0.51 (0.01)	0.50 (0.01)	1.24 (1,23)	0.2763
Left Cortico-spinal (9)	0.31 (0.01)	0.28 (0.01)	4.29 (1,23)	0.0497
Right Cortico-spinal (-12)	0.54 (0.01)	0.50 (0.01)	5.20 (1,23)	0.0322
Right Cortico-spinal (9)	0.28 (0.01)	0.28 (0.01)	0.03 (1,23)	0.8629

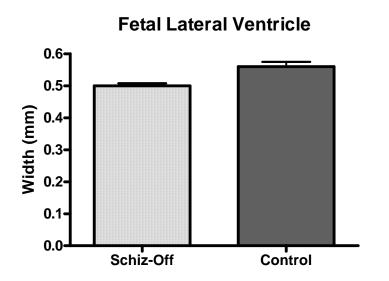
MVM Conclusions

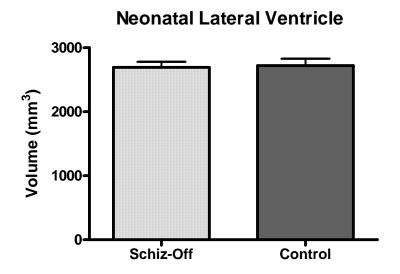
- Prenatal enlargement of the lateral ventricle detected by ultrasound is associated with significant enlargement of the lateral ventricles after birth
- Increased gray matter volumes
- Reduced white matter volumes, and delayed or abnormal maturation of DTI properties in the splenium of the corpus callosum
- It is suggested that prenatal ventricle volume may be an early structural marker of subsequent dysmaturation of the cerebral cortex after birth



Offspring of Mothers with Schizophrenia

- Neonatal MRIs on 19 high risk children and 19 matched controls
- Mothers with schizophrenia, schizoaffective DO
- Controls without psychiatric illness
- Matched on gender, maternal age, gestational age at birth, ethnicity
- 9 males and 10 females
- mean gestational age at MRI 42.7 ± 3.0 weeks


Neonatal brain structure in high risk children



•High risk children had approximately 2.6% less total gray matter (p = 0.077)

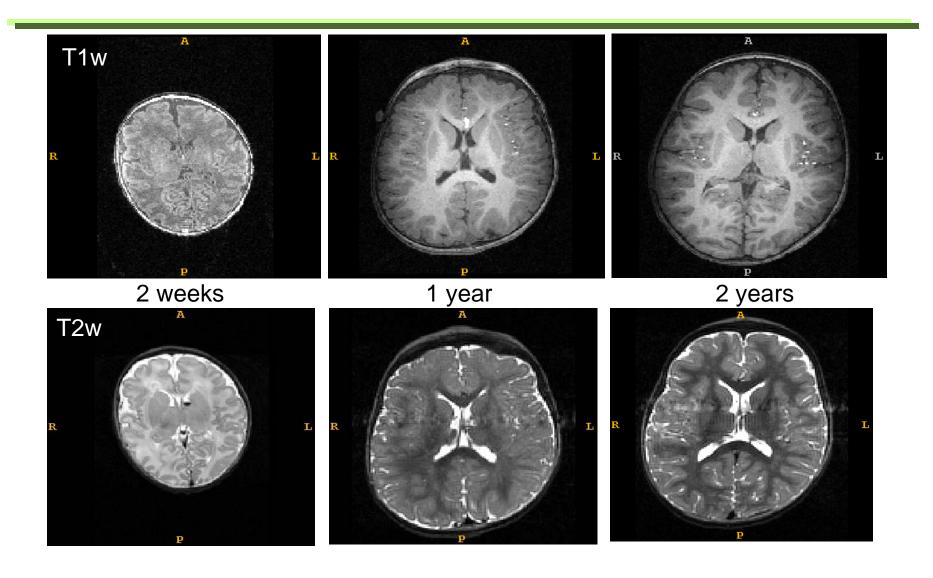
Lateral Ventricle Size

Conclusions

- Early results indicates that the offspring of mothers with schizophrenia have reduced cortical gray matter volumes in the rapidly developing occipital region
- May reflect genetically mediated impairment of cortical synapse development that would be most apparent in the rapidly growing cortical region
- There is a suggestion of altered white matter development
- No difference in lateral ventricle volumes
 - Lateral ventricle volumes increase rapidly in the first year of life the enlargement may arise after birth
- These results focus the time-frame of candidate neurodevelopmental processes that contribute to risk for schizophrenia
- Limitations
 - Medications during pregnancy
 - Mothers with schizophrenia have high rates of prenatal/perinatal complications

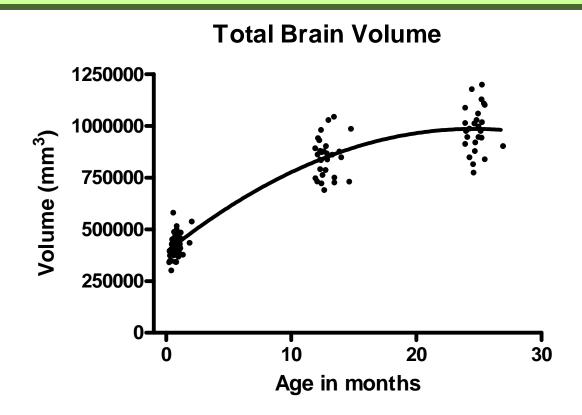
Early Brain Development in 1 and 2 year Olds

Singleton Controls


- 59 one year olds (68% success rate)
- 44 two year olds (60% success rate)

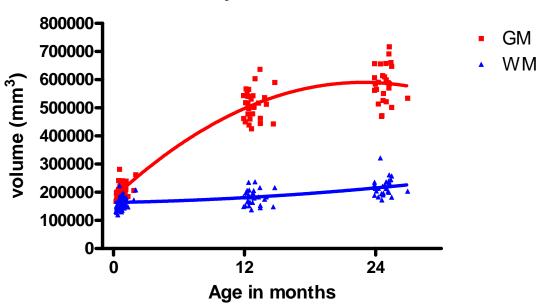
Twins

- 51 pairs at age 1 (90% success rate)
- 37 pairs at age 2 (76% success rate)



Subject with follow-up scans

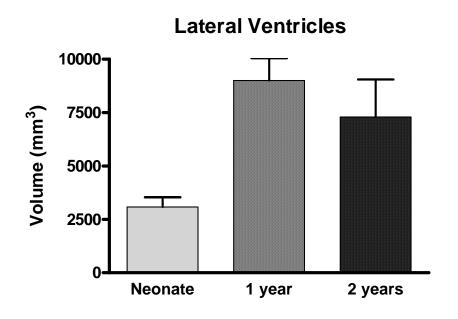
Brain development birth to age 2


TBV grows 101% in first year, 15% in second year

2-4 weeks: 36% of adult volume; 72% at 1 year and 83% at 2 years

Brain development birth to age 2

Cortical Gray and White Matter



Cortical GM: 149% in the first year; 14% in the second year

Cortical WM:

Brain development birth to age 2

Future Directions

- Collecting DNA to study gene-brain structure relationships in early childhood
- Developmental assessments at age one and two years to study structure-function relationships
- Develop age specific head coils to improve resolution and contrast (W. Lin)
- Resting State Networks (W. Lin)
- Apply to other high risk groups

MRI Acquisition

- Weili Lin PhD, Keith Smith MD, Kathy Wilber
- Image Analysis
 - Guido Gerig PhD, Martin Styner, PhD, Sampath Vetsa, Marcel Prastawa, Isabelle Corouge, Sylvain Gouttard, Christopher Looney
 - Dinggang Shen, PhD
- Statistics/Data Management
 - Robert Hamer PhD, Chaeryon Kang, Abby Scheer MA
- Study Coordinator
 - Dianne Evans MA