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Parametrization of closed curves

and surfaces

Parametrically deformable models give rise to the question of obtaining parametrical de-
scriptions of given pixel or voxel based object contours or surfaces, as they usually result
from manual segmentation.

In the following the term “parametrization” will be used in two different senses. On the
one hand, the process which maps one parameter value (s) to each point of a curve or two
parameter values (s, t) to each point of a surface is called curve or surface parametrization.

v(s) =
(
v1(s)
v2(s)

)
=
(
x(s)
y(s)

)
(4.1)

in 2-D, or

v(s, t) =

 v1(s, t)
v2(s, t)
v3(s, t)

 =

 x(s, t)
y(s, t)
z(s, t)

 (4.2)

in 3-D. On the other hand, these mappings can be used to give a mathematical represen-
tation of the contour by the coordinate functions in v(s) and v(s, t). As it has been shown
in the previous chapter, the coordinate functions also depend on parameters (descriptors),
e.g., the weights of some basis functions. Confusingly, the procedure to compute these de-
scriptors is also called parametrization. To make a clear distinction, in the following curve
or surface parametrization will refer to the mapping procedure and simply parametrization
to the computation of shape descriptors.

The computation of the parametrization of a given binary object usually obtained from
manual segmentation is a three-stage process. In the first stage, the contour or surface
of the object is converted into an abstract data structure called chain or crack code in
2-D and cuberille notion in 3-D describing the shape as a set of line segments or a set of
rectangular patches. Considering only the case of simply connected objects, in the second
stage, based on these notations, curves are mapped on the unit circle Ω2, while surfaces on
the unit sphere Ω3. Arc length parametrization guarantees constant speed for v(s) along
the curve, while the equivalent criteria of area preservation for surfaces can be at most
approximately fulfilled. In the third stage a mathematical representation of the object is
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computed by deriving the parameters (descriptors) of the chosen functions, e.g., Fourier
basis or superquadrics.

4.1 Fourier coefficients of a closed curve

Kuhl and Giardina in [Kuhl and Giardina 1982] presented an algorithm to efficiently
compute the Fourier coefficients of a 2-D contour. Their elegant approach does not require
integration or the use of fast Fourier transform techniques. The algorithm takes the
chain code of the contour as its input, which is easily obtained from a pixel-based image.
The resulting Fourier descriptors can be made invariant with rotation, dilatation and
translation of the contour, and also with the starting point of the parametrization on the
contour, without losing information about the shape.

4.1.1 Obtaining the code of a contour

The chain code first described by Freeman approximates a contour by a sequence of
piecewise linear fits that consist of eight standardized line segments. The code of a contour
is then the chain V of length K, V = a1a2a3 . . . aK , where each link ai is an integer between
0 and 7 oriented in the direction (π/4)ai and of length 1 or

√
2 depending, respectively,

on whether ai is even or odd. Figure 4.1b illustrates the chain code of the simple object
shown in Figure 4.1a. One can notice that per definition the chain coded contour lies
by half voxel inside the object introducing a systematic error of 0.5 voxel edge into the
description. To generate it the definition of “object” and “background” in the image is
required. Crack code has been introduced to overcome these limitations. It is defined
to lye exactly on the border of background and object (Figure 4.1, image c) and can be
simplified by replacing two segments building a corner by a diagonal one (image d). While
the simplification considerably shortens V (see Table 4.1), it also introduces error into the
representation. The choice of a coding technique depend on the application, chain codes
are most appropriate in case of area-quantized images. In our application to describe
hand segmented organs, we have used unsimplified crack codes since these are closest to
the original contour.
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Figure 4.1: Different coding techniques of the simple object shown in a. The Freeman code (b)
is defined to connect the middle points of the border pixels of the object. Images c and d illustrate
the crack code and its simplification, respectively, while e shows the assignment of code numbers
to directions.
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Vchain = 0005676644422123
Vcrack = 000064660666444422202242
Vsimplecrack = 0075766544321231

Table 4.1: Code sequences corresponding to Figures 4.1(b,c, and d,)

4.1.2 Computing Fourier descriptors of a closed polygonal curve

The contour of a simply connected 2-D region is a closed curve which can be mapped onto
the parameter space defined by the unit circle Ω2. The contour is then parametrized by
the polar coordinate φ, such that the position v(u) on the contour becomes a periodic
function of φ. This suggests the harmonic Fourier basis being the preferred set of basis
functions for the object description. Curves are usually parametrized with their arclength
s measured from an arbitrarily chosen starting point on the contour. Thus, when the
whole curve has the length L, the point of arclength s from the starting point is assigned
to the parameter φ = 2πs

L . The mathematical treatment is simpler in the complex plane,
i.e. when the parameter space is the circle U = {u ∈ C | u∗u = 1} and the mapping
z : U 7→ C represents the curve. (A full deduction of the complex formulas presented here
can be found in Christian Brechbühler’s Phd. thesis [Brechbühler-Mǐskuv 1995].)

The relation between s, φ, and u is

u = u0 + ju1 = ejφ = e
2πjs
L (4.3)

Fourier expansion

In the complex notation the vector function given in equation 4.1 transforms to the complex
valued function z(u). z(u) is represented as a series of complex exponentials.

z(u) =
inf∑

n=− inf

znu
n (4.4)

where the complex coefficient zn can be expressed in polar notation, i.e.

zn = rne
jψn , (4.5)

with rn ∈ R, rn ≥ 0, and ψ ∈ R.

Determining the coefficients

The calculation of zn for a given contour z(u) is of practical interest. This is given by the
formula:

zn =
1

2π

∮
z(u)−n|du| (4.6)



30 Chapter 4. Parametrization of closed curves and surfaces

In most applications, z(u) describes a polygon and often we are not interested in the center
of gravity of the contour. In this case, it is simplest to start from the derivative d

|du| of 4.4
and derive another formula for zn:

zn =
1
jn

∮
z′(u)−n|du| (4.7)

Computing the Fourier descriptor for a closed polygon

When the curve is given as a polygon (e.g. by its Freeman-code), it can be expressed as
a sum of straight line pieces. In the same way the integral 4.7 brakes up into a sum of
partial integrals. The M sample points z(uk), k = 0 . . .M of the Freeman curve define
the transitions between the partial integrals. The arclength parametrization of the curve
implies that the point z(u) traverses the curve with constant speed; on each individual
straight line piece this leads to

z′(u) =
∆z
|∆u|

=
L∆z

2π|∆u|
= const (4.8)

This relation significantly simplifies the expression for zn since the partial integrals of
straight line segments can be substituted for their solution.

zn = − 1
n2

M−1∑
k=0

z′[k]u−n |uk+1
uk (4.9)

To evaluate this sum, it is enough to calculate one complex exponential for each term. As
the lower bound of each term is equal to the upper bound of the previous term, the value
of u−n can be reused.

In the case of Freeman-code, ∆z can only take eight different values, namely 1, 1 + j,
j, −1 + j, −1, −1− j, −j, and 1− j. The same holds for z′: these as well are completely
determined by the code 0 . . . 7.

4.1.3 Normalization in object and parameter space

The normalization proposed by [Kuhl and Giardina 1982] is based on the ellipse defined by
the 1st order Fourier descriptors and is carried out both in object and in parameter space.
Normalization in object space effects the curve’s position, orientation and size, while that
in parameter space applies to the curve parametrization behind it. After normalization in
object space the center of the 1st order ellipse of a normalized contour concurs with the
coordinate origin, its main axis overlaps with the x -axis of the coordinate system has the
length of 1. In parameter space the starting point of the parametrization is moved to a
standard position defined by the crossing of the 1st order ellipse and its main axis.

The authors derive an error bound on the Fourier approximation which can be used
to determine the number of harmonics required by a desired accuracy. Furthermore, they
describe a classification and recognition procedure that is applicable to classes of objects
which may occur in different orientation, sizes and translation. The following section
briefly summarizes the mathematics of Fourier descriptors.
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Dependence on starting point

To make the descriptors independent on the starting point of the parametrization, this
can be shifted to a standard position, e.g. to the tip of the ellipse defined by the 1st order
Fourier descriptors. This can be thought of as a rotation in parameter space U given by
the unit circle. The transformation is defined by

zn |V = zne
jnθ , (4.10)

where the notation |V marks the coefficients resulting from shifting by angle θ.

Dependence on rotational position

In the complex notation, rotation in object space by angle ψ is simply a multiplication by
e−jψ. Applying it to 4.4 immediately reveals the coefficients of the rotated object.

zn |R= zne
jψ (4.11)

To achieve a standardized position of the curve, it is rotated in a way that its first ellipse’s
main axis matches the horizontal (real) coordinate axis.

Scale dependence

Scaling the objects by factor α leads to multiplying its coefficients by the same factor:

zn |S= αzn (4.12)

The scaling factor α is usually set to normalize the half major axis to unity, meaning

α =
1

|z1|+ |z−1|
=

1
r1 + r−1

(4.13)

Invariant Fourier descriptors

Ignoring z0, that is setting z0 |T= 0, achieves translation invariance. Summing up all
standardizations; the invariant coefficients are denoted z̃n:

zn |V,R,S,T= z̃n = zn
ej(nθ−ψ)

r1 + r−1
(4.14)

z̃0 = 0 (4.15)

4.1.4 Relations to real valued notation

In the complex notation of Fourier coefficients real and imaginary parts of zn correspond
to the x and y coordinates(

x

y

)
n

=
(
an bn
cn dn

)(
sin 2πns

L

cos 2πns
L

)
, (4.16)
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Figure 4.2: Normalization steps of Fourier coefficients; shifting of the starting point to the tip of
the ellipse (a), moving the center of gravity to the coordinate origin (b), rotating the main axis of
the ellipse to the real axis (c), and finally scaling the half major axis to unity (d).

where the real valued coefficients an, bn, cn, and dn are defined as follows.

an = Rezn + Rez−n (4.17)

bn = −Imzn + Imz−n (4.18)

cn = Imzn + Imz−n (4.19)

dn = Rezn − Rez−n (4.20)

(4.21)

4.2 Description of surfaces by spherical harmonic functions

The problem of finding a similarly homogeneous parametrization of arbitrarily shaped sur-
faces proved to be more difficult. [Brechbühler et al. 1995] introduced only recently a new
surface parametrization technique which can be considered as a complete generalization
of Kuhl and Giardina’s technique to three dimensions.

Earlier methods for mapping an object surface onto a sphere have been limited to
represent only star-shaped or convex objects, as they start from an initial radial surface
function r(θ, φ). [Staib and Duncan 1992b] discuss the use of a parameter space with
torus topology, which can be deformed into a tube by squeezing the torus cross-section to
a thin ribbon. Closed surfaces are obtained by considering tubes whose ends close up to
a point. This approach illustrates some principal difficulties which can also be found in
other parametrization techniques.

• Warping a torus to a closed surface poses the problem that the parameters have
different rules. One parameter defines a kind of spine along which cross-sections are
stacked up.

• Squeezing a circle to line results in a nonhomogeneous distribution of parameters on
the object surface.

• Warping a torus to a tube and finally to a closed surface causes the parametrization
does not result in a one-to-one mapping of surface points to parameters.




