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Abstract 
We present a novel vector ridge detector 

which is designed to automaticaly find the right scale 
of a ridge even in the presence of noise, multiple steps 
and narrow valleys. One of the key features of such 
ridge detector is that it has  a zero response at discon- 
tinuities. The ridge detector can be applied both to 
scalar and vector quantities such as color. 

We also present a parallel perceptual organi- 
zation scheme based on such ridge detector that works 
without edges; in addition to perceptual groups, the 
scheme computes potential focus of attention points 
at which to direct future processing. 

The relation to human perception and sev- 
eral theoretical findings supporting the scheme are pre- 
sented. We also show results of a Connection Machine 
implementation of the scheme for perceptual organi- 
xation (without edges) using color. 

:I Introduction 

Perceptual organization (aka grouping and segmenta- 
tion) is a process that computes regions of the im- 
itge that come from different objects, with little de- 
i,ailed knowledge of the particular objects present in  
(,he image. Recent work on computer vision has em- 
phasized the role of edge detection and discontinuities 
in segmentation and recognition. This line of research 
stresses that edge detection should be done at an early 
stage on a brightness representation of the image, and 
segmentation and other early vision modules operate 
later on (see Figure 1 left). We (like others) argue 
against such an approach and present a scheme that 
segments an image without finding brightness, texture, 
or color edges (see Figure 1 right). In our scheme, 
,discontinuities and a potential focus of attent ion for 
subsequent processing are found as a byproduct of the 
perceptual organization process which is based on a 
novel ridge detector. 

Segmentation without edges is not new. Previous 
,approaches fall into two classes. Algorithms in the first 
,:lass are based on coloring or region growing [Haralick 
,and Shapiro 19851. These schemes proceed by lay- 
nng a few (‘seeds” in the image and then ((growing” 
these until a complete region is found. The growing 
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Figure 1 
ceptual organization. 

Two different views on the role of per- 

is done using a local threshold function, i.e. deci- 
sions are made based on local neighborhoods. This 
results in schemes limited in two ways: first, the grow- 
ing function does not incorporate global factors, re- 
sulting in fragmented regions (see Figure 2). Second, 
there is no way to incorporate a priori knowledge of 
the shapes that we are looking for. Indeed, impor- 
tant Gestiilt principles such as symmetry, convexity 
and proximity (extensively used by current grouping 
algorithms) have not been incorporated in coloring al- 
gorithms. These principles are useful heuristics to aid 
grouping processes and are often sufficient to disam- 
biguate certain situations. In this paper we present a 
non-local perceptual organization scheme that uses no 
edges and which embodies these gestalt principles. It 
is for this reason that our scheme overcomes some of 
the problems with region growing schemes, mainly the 
fragmenting of regions and the merging of overlapping 
regions with similar region properties. 

The second class of segmentation schemes which 
work without edges are based on computations that 
find discontinuities while preserving some region prop- 
erties such as smoothness or other physical approxi- 
mations [Geman and Geman 19841, [Terzopoulos 861, 
[Blake ancl Zisserman 19871, [Poggio, Gamble and Lit- 
tle 19881. These schemes are scale dependent and 
in some instances depend on reliable edge detection. 
Scale has been addressed previously at the discont>i- 
nuity level, but these schemes do not explicitly repre- 
sent regions, and often meaningful regions are not fully 
enclosed by the obtained discontinuities. Like with 
the previous class, all these algorithms do not embody 
any of the Gestalt principles and in addition perform 
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Figure 2: Top left: An image of shirt. Top cen 
ter: Original seeds for a region gro ing se mentatior 
algorithm, Top right: Final segmeni tion o%tained us. 
ing a regon y w i n g  algorithm. 6 'ow: Ed e ima c 
and skeleton o tained on color image with C.B.F.. Tk 
skeleton can be used to find the shirt ribbon by growing 
a region startin on the skeleton and using parameter: 
based on the wfole skeleton. 

Fi ure 3: Left: Model of an edge. Right: Model of i 
ri&e or box. Are these appropriate? 

poorly when there is a nonzero gradient inside a region. 
The scheme presented in this paper performs percep- 
tual organization (see above) and addresses scale by 
computing the largest scale at which a structure ( n o t  
necessarily a discontinuity) can be found in the image. 

The scheme that we will present is an extension of 
the brightness-based perceptual organization scheme 
presented in [Subirana-Vilanova 19901. Such a scheme 
is based on a filter-based ridge detector with a number 
of important problems we will discuss. These include 
its dependence on scale and its sensitivity to  curved 
shapes. Our analysis will lead us to  a non-linear filter 
that overcomes most of these problems. 

Our scheme is designed to  work for brightness, tex- 
ture, and, color but our implementation deals only 
with color. Color is an interesting case to  study 
because it is a three-dimensional property, not one- 
dimensional like intensity which makes the extension 
of brightness based schemes to  color non-trivial. 

We begin in the next section by listing reasons for 
exploring non-edge based schemes and then present 
our approach. Some results of a version of our scheme 
implemented on the Connection Machine will be shown 
at  the end of the paper. 

2 In Favor of Regions 
What is an edge? Unfortunately there is no agreed 

definition of it. It can be defined in several related 
ways: as a discontinuity in a certain property, as 
"something" that looks like a step edge [Canny 19861 
see Figure 3), or by an algorithm (e.g. zero-crossings t Marr and Hildreth 19801). Characterizing edges has 

Figure 4: Edges computed at three different scales for 
an image of a person. Note that the results are notably 
different. Which scale is best? 

proven to be difficult especially near corners, junctions 
and when there are edges at  multiple scales, noise, or 
transparent surfaces. 

Attempting to  define regions 
bears problems similar to  those encountered in the def- 
inition of an edge. Roughly speaking, it is a collection 
of pixels in an image that share a common property. 
In this context, an edge is the border of a region. But 
how can we find regions in images? We could proceed 
in a similar way as with edges, so that a region be de- 
fined (in one dimension) as a structure that looks like 
a box (see Figure 3).  But this suffers from problems 
similar to the ones mentioned for edges. 

Thus, regions and edges are two concepts closely 
related. It is unclear how we should represent the 
information contained in an image. As regions? As 
edges? Furthermore, independently of our choice, 
which structures should we try to  recover first? Edges 
or regions? We believe that computer vision has over 
emphasized the early computation of discontinuities 
(whether brightness, texture or color discontinuities). 
Here are some reasons why exploring the computa- 
tion of regions (without edges) may be a promising 
approach (see [Subirana-Vilanova and Sung 19911 for 
a more comprehensive discussion including some ref- 
erences): 

0 There is psychological evidence that humans can 
recognize images with region information better 
than line drawings. 

0 Representations which maintain some region in- 
formation such as the sign-bit of the zero crossings 
(instead of just the zero crossings themselves) are 
useful for perceptual organization. 

0 The performance of most rigid-object schemes is 
bounded by the complexity of the feature space 
used for exploring possible matchs. Additional 
region groups should reduce such complexity. 

0 Previous research on recognition has focused on 
rigid objects. Related grouping research has fo- 
cussed on finding small sets of features with high 
likelihood of coming from the same object. For 
non-rigid objects this is not sufficient. Instead, it 
is necessary to  group most of the features coming 
from a single object. We find it hard to  believe 
that edge-features will be sufficient for bottom-up 
grouping in this case. 

0 Scale and stability are recognized as important 
problems. However, is it the stability and scale 

What is a region? 
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Figure 5:  The similarity measure described in Equa- 
tion l is illustrated here for an image of a person. Left: 
Image. Center: Similarity measure using as reference 
color the color of the pixel located at the intersection 
of the two segments shown. Right: Plot of the simi- 
larity measure along the long segment using the same 
reference color. 

of an edge? or that of a region that we are inter- 
ested in? Our scheme addresses stability in terms 
of objects (not edges). In addition, our scheme 
commits to  one scale corresponding to  the object 
of interest chosen by our scheme. 

3 Color, Brightness Or Texture? 

The perceptual organization scheme presented in this 
paper includes color, brightness, and texture. We de- 
cided to  implement it on color first, without texture 
or brightness. In fact, color similarity measures are 
based on vector values and cannot be mapped onto a 
one-dimensional measure. This makes color perception 
different from brightness from a computational point 
of view since not all the one-dimensional techniques 
used in brightness images extend naturally to higher 
dimensions. The extension to  texture and brigthness 
is possible since both can be casted naturaly into a 
two-dimensional vector field. 

The exact algorithm by which humans compute per- 
ceived color is still unclear. Our scheme only requires 
a rough estimate of color which is used to  segment 
the image, see Figure 5. In fact, most other measures 
proposed in the literature can be incorporated in our 
scheme. In our images, color is entered in the com- 
puter as a “color vector” with three components: the 
red, green, and blue channels of the video signal. Our 
scheme works on color differences S, between pairs of 
pixels c‘ and ck. The difference that we used is defined 
in equation 1 and was taken from [Subirana-Vilanova 
and Sung 911 (@ denotes the vector cross product oper- 
ation) and responds very sensitively to  color differences 
between similar colors. 

This similarity measure is a decreasing function with 
respect to  the angular color difference. It assigns a 
maximum value of 1 to  colors that are identical to the 
reference “ridge color”, c:, and a minimum value of 0 
to  colors that are orthogonal to  c’i in the RGB vector 
space. The discriminability of this measure can be 
seen intuitively by looking at  the normalized image in 
Figure 5 .  

IUI 
Figure 6: Left: Plot with multiple steps. A ridge detec- 
tor should detect three ridges. Right: Plot with narrow 
valleys. A ridge detector should be able to detect the 
different lobes independently of the size of the neigh- 
boring lobes. 

4 Problems in Finding Ridges 

In the last two sections we have set forth an ambitious 
goal: Develop a perceptual organization scheme that 
works on the image itself, without edges and using 
color, brightness, and texture information. 

But what constitutes a good region? What “class” 
of regions ought to  be found? Our work is based on 
the observation that many objects in nature (or their 
parts) have a common color or texture, and are long, 
wide, symmetric, and convex. 

One way of simplifying the perceptual organization 
task is to  start by looking at  a one dimensional version 
of the problem. This is especially true if such a solu- 
tion lends itself to a generalized scheme for the two 
dimensional problem. This would be a similar path to 
the one followed by most edge detection research. In 
the case of edge detection, the generally accepted one 
dimensional version of the problem is a step function 
(as shown in Figure 3). Similarly, perceptual organiza- 
tion without edges can be cast in one dimension as the 
problem of finding ridges similar to  a hat (as shown in 
Figure 3). 

The hat model has a number of problems which 

Scale: Ridges should be detected at  multiple 
scales. 

e Non-edgeness: The filter should give no response 
for a step edge. This property is violated by 
[Canny 19861. 

e Multiple steps: A hat is a good model because 
it has one of the basic properties of a region: it 
is uniform and has a discontinuity in its border. 
However, a ridge detector should also detect small 
steps which are not well described by a hat. These 
are frequent in images, for example when an ob- 
ject is occluding the space between two other ob- 
jects. This complicates matters in color images 
because the surfaces are defined by vectors no just 
scalar values (see Figure 6). 

e Narrow valleys: The operator should also work in 
the presence of multiple ridges even when they are 
separated by small valleys. 

e Noise: As with any operator that is to  work in 
real images, tolerance to noise is a critical factor. 

Localrzatzon: The ridge-detector output should be 
higher in the middle of the ridge than on the sides. 

illustrate some useful features of a ridge operator: 
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Strength: The strength of the response should be 
somehow correlated with the strength of the per- 
ception of the ridge by humans. 

0 Large scales: Large scales should receive higher 
response. This is a property used by [Subirana- 
Vilanova 19901's scheme and is important because 
it embodies the preference for large objects. 

Previous schemes to  find ridges often fail to con- 
sider one or more of the above issues. For example, 
[Canny 19861 and [Subirana-Vilanova 19901 assumed 
that ridges appear a t  just one scale. While this is a 
good working assumption for edges, it is simply not 
true in most images (except in simple ones like text 
images where objects have a fixed width). 

5 A Color/Vector Ridge Detector 
In the previous section we have outlined a number 

of properties we would like our ridge-detector to have. 
As we have mentioned, the Canny ridge-detector fails 
because, among other things, it cannot handle multiple 
scales. A naive way of solving the scale problem would 
be to  apply the Canny ridge detector a t  multiple scales 
and define the output of the filter a t  each point as the 
response at the scale which yields a maximum value. 
This filter would work in a number of occasions but 
has the problem of giving a response for step edges 
(since the ridge-detector a t  any single scale responds 

Figure 7: Left: Gaussian second derivative, an approx- 
imation to Canny's optimal ridge detector. Center: In- 
dividual one-dimensional masks used by our operator. 
Right: Response for an edge (left) and a ridge (right) 
for: the left operator of our ridge detector (second row), 
the right operator (third row) and the combined min- 
imum of the two responses (fourth row). In all cases, 
sigma is roughly the size of the ridge. This is a quali- 
tative demonstration. It illustrates why combining the 
responses of two filters yields a positive response for a 
ridge but no response for an edne. 

to  edges, so will the combined filter do - see Figure 

One can suppress the response to  edges by splitting 
Canny's ridge operator into two pieces, one for each 
edge, and then combining the two responses by look- 
ing at  the minimum of the two responses. This is the 
basic idea behind our approach (see Figure 7). Fig- 
ure 10 illustrates how our filter behaves according to 
the different criteria outlined before. The Figure also 
compares our filter with that of the second derivative 
of a gaussian, which is a close approximation to the 
ridge-filter Canny used. There are a number of poten- 
tial candidates within this framework such as splitting 
a Canny filter by half, using two edge detectors and 
many others. We tried a number of possibilities on the 
Connection Machine using a real and a synthetic image 
with varying degrees of noise. Table 1 describes the fil- 
ter which gives a response most similar to the inertia 
values and the tolerated length that one would obtain 
using similar formulas for the corresponding edges, as 
described in [Subirana-Vilanova 19901. 

Our approach uses two filters (see profile in Figure 
7), each of which looks at one side of the ridge. The 
output of the combined filter is the minimum of the 
two responses. Each of the two parts of the filter is 
asymmetrical, reflecting the fact that we expect the 
object to be uniform (which explains each filter's large 
central lobe), and that we do not expect that a region 
of equal size be adjacent to  the object (which explains 
each filter's small side lobe to  accomodate for narrower 
adjacent regions). In other words, our ridge detector 
is designed to handle narrow valleys. 

Handling steps and the extension to color is tricky 
because there is no clear notion of what is positive 
and what is negative in vector quantities nor in steps. 
We solve this problem by adaptively defining a refer- 
ence color a t  each point as the weighted average color 
over a small neighborhood of the point (about eight 
times smaller than the scale of the filter in the cur- 
rent implementation). Thus, this reference color will 
be different for different points in the image. Scalar 
deviations from this reference color are computed as 

10). 
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Figure 8: Notations for (a): Ridge profile, (b): Spa- 1 tial Localization, and (c) and (d): Scale localization. 

defined in section 3. 

6 Filter Characteristics 
This section summarizes the main results of our filter’s 
opt imum scale response, scale localization and spatial 
localization characteristics under varying degrees of 
noise. We refer the interested reader to [Subirana- 
Vilanova and Sung 911 for details. Scale localization 
tneasures the closeness in value between the actual 
width of a ridge and the filter’s optimum mask size a t  
the ridge center. Spatial localization measures prox- 
imity between the filter’s peak response location and 
the actual ridge center. We shall see that both these 
measures remain remarkably stable even at noticeably 
high noise levels. 

For simplicity, we use scalar ridge profiles instead 
of color ridge profiles. Our filter notations are similar 
to those given in Table 1.  In particular, CY denotes the 
main lobe’s width (or scale) and F, denotes the fil- 
ter’s main lobe to side lobe width ratio. The following 
iire some additional notations (see Figure 8): R is the 
width of the ridge we are detecting, (1  - s) is the ridge 
height, d = IR - CY,[ is the size difference between the 
ridge width and the optimal filter scale a t  the ridge 
center (for scale localization), and h is the distance 
between the actual ridge center and peak location of 
the filter’s all scales ridge response (for spatial local- 
iization). Noise is white with variance n:. 

6.1 Response and Localization 
Let 2 be distance from the ridge center and a,(z) be 
the maximum response filter scale at 2. It can be 
:shown that the all scales opt imum filter response for a 
noiseless ridge is: 

Opt(z, R) = -&=[(F,s - l ) (e -*  - 1)- 
6. (r )+r-R)’  

(1 - s)(l - e- l  3 e . ( t ) P  )], (2) 

(3) 

where a,(z) M ( R  + z) falls within the following 
bounds: 

.- < bo < ( R  + 

Fixing a,(x) its ( R t t )  and differentiating Equation 2 
with respect to t, we see that Opt(z, R)  indeed peaks 
at  jc  = 0. 
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Figure 9: Comparison of Left: relative scale error 
( d / R ) ,  and Right: relative spatial error ( h / R ) ,  as a 
function of noise to  signal ratio ( n o / ( l  - 3)) between 
our filter and the Canny ridge operator. For the d / R  
plot, curves from top to bottom are those of F, = 16, 
F, = 8 ,  F, = 4, F, = 2, and Canny. For the h / R  
plot, curves from top to bottom are: Canny, F, = 16, 
F, = 8 ,  F, = 4 and F, = 2. Curves are very similar for 
other values of R.  

For scale localization, we want to  estimate d/R,  the 
relative scale error due to noise, in terms of the noise 
t o  signal ratio no/(l - s). It can be shown that: 
d / R  G S. (0 5 e < (1 - e - * ) ( ~  - e-$)@) 

where : K = - ln( l -  z h d a ) .  (4) 

Similarly, for spatzal localization, we want to estab- 
lish a magnitude bound for h / R  in terms of the noise 
t o  signal ratio. We have: 

h lR = .*fi (0 I 3% < (1 - e - Z I & F )  

where : K = -ln(l - em). (5) 

6.2 Comparison with the Canny 
Ridge Operator 

We compared our filter’s scale and spatial localiza- 
tion characteristics with those of a Canny ridge opera- 
ior. This 1,s a relevant comparison because the Canny 
ridge operator was designed to  be optimal for simple 
ridge profiles (see [Canny 19861 for details on the op- 
timality criterion). The normalized form of Canny’s 
ridge detector can be approximated by the shape of a 

yz scaled Gaussian second derivative: 
C ( r ,  U )  = +(U’ - r 2 ) e - - 2 e 2 .  

For scale r‘ocalization, the Canny ridge operator yields 
the following equation that implicitly relates d / R  to 

(6) 2na  

For spatial localization, we get: 

-h 1.-s M &[e-+ - & e -  

( R c o s h ( 5 )  - hsinh($))], (8) 

where 6, :z JRZ + h 2  - ZRh(1 - e-*)/(1 + e - * ) .  

We see from Figure 9 that a t  typical Fa ratios, our 
filter’s scale and spatial localization characteristics are 
comparable to those of the Canny ridge operator. 
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Figure 10: First column: Different input signals. Sec- 
ond column: Output given by second derivative of the 
gaussian. Third column: Output given by our ridge de- 
tector using reference color. The First row shows the 
result of a single scale filter application on an edge pro- 
file. Notice that there is no edge response. The Second, 
Third and Fourth rows are results of a multiple scale fil- 
ter application on three different profiles. Note that no 
scale parameter is involved in any case. 

7 Previous work on perceptual 
organization without edges 

The scheme we present in this paper is an extension 
of Curved Inertia Frames (CIF), a brightness-based 
segmentation scheme presented in [Subirana-Vilanova 
19901, which in turn is an extension of an edge-based 
perceptual organization scheme presented in the same 
paper. We choose this scheme because it is the only ex- 
isting scheme that can compute global regions directly 
on the image without imposing a three-dimensional 
representation of the data. 

[Subirana-Vilanova 19901's scheme proceeds in three 
stages. In the first one, it computes two local measures 

I 

Figure 11: Left: Blob image. Center: Inertia sur- 
faces for blob image at four orientations (clockwise 12, 
1:30, 3 and 4:30). Note that exactly the same lisp code 
(without changing the parameters) was used for all the 
images. Right: Blob with skeleton obtained using our 
scheme in the bolb image. Note that our scheme recov- 
ers the structures at the right scale, without the need 
of changing any parameters. 

at each point p for a number of orientations 0:  the iner- 
tia valueZ(p, e)  and the tolerated length 7 ( p ,  6) .  These 
two local values are based on the output of elongated 
gabor filters and are used to  associate a saliency mea- 
sure to each curve C(t) in the image plane as defined in 
equation 9, were the curve is assumed to be parameter- 
ized between 0 and L, 2(1) ('T(t)) is the inertia value 
(tolerated length) at the point with parameter 1 and 
with the orientation of the curve at that point, and p 
and a are suitable constants. The tolerated length de- 
pends also on the curvature of the curve C ( t )  so that 
more curvature is permited on skeletons going through 
narrow regions of the image [Subirana-Vilanova 19911. 

In the second stage, the scheme computes the skele- 
ton which yields the maximum saliency using dynamic 
programming. 

The scheme favors curves which are long, smooth 
(according to  the associated tolerated length values) , 
and central to the shape (i.e. which have high inertia 
values). This second stage yields the skeleton sketch 
a representation of the potential skeletons in the im- 
age. See [Subirana-Vilanova 19901, [Subirana-Vilanova 
19911 for more details. The obtained measure favors 
curves that lie in large and central a r e a  of the shape 
and that have a low overall internal curvature. The 
measure is bounded by the area of the shape; e.g. a 
straight symmetry axis of a convex shape will have a 
saliency equal to the area of the shape. 

In the third stage, the scheme computes a succession 
of individual curves (or skeletons) and the correspond- 
ing perceptual groups by them growing outward from 
the skeletons. 

In the next section we will present some results 
showing the robustness of the scheme in the presence 
of noisy shapes. 

8 Results 
We have tested our scheme (filter + network) ex- 

tensively, Figure 10 shows that our filter produces 
sharper and more stable ridge responses than the sec- 
ond derivative of a gaussian filter. First, our filter lo- 
calizes all the ridges for a single ridge, for multiple or 
step ridges and for noisy ridges. In contrast, the sec- 
ond derivative of the gaussian fails under the presence 
of multiple or step ridges. Second, the scale chosen 
by our operator matches the underlying data closely. 
And third, our filter does not respond to edges while 
the second derivative of the gaussian does. 

Figure 11 shows the directional output (i.e. iner- 
tia surfaces) of our filter on the person image. The 
two-dimensional version of the filter can be used with 
different degrees of elongation. In our experiments we 
used one pixel width to study the worst possible sce- 
nario. 

The inertia surfaces and the tolerated length are 
the output of the first stage of our scheme. In the 
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Figure 12: Inertia surfaces for the person image at 
four orientations. Note that ezactly the same lisp code 
(without changing the parameters) was used for these 
images and the others shown in this paper. 

second stage we use these to  compute the Curved In- 
ertia Frames (see [Subirana-Vilanova 19901) as shown 
in Figures 2, 11 and 13. These skeleton representa- 
tions are used to  grow the corresponding regions by 
a simple region growing process which starts a t  the 
skeleton and proceeds outward. This process is very 
stable because it can use global information provided 
by the frame such as the average color or the expected 
size of the enclosing region. See Figures 2, 11 and 
13 for some examples of the regions that are obtained. 
Observe that the shape of the regions is accurate, even 
at  corners or junctions. Note that each region can be 
seen as an individual test since the computations per- 
formed within it are independent of those performed 
outside it.  

9 Discussion: Brightness and Edges 
Are Necessary 

A central motivating point is that edge detec- 
tion may not precede perceptual organization (see 
[Subirana-Vilanova and Sung 19911 and [Subirana- 
Vilanova and Richards 19911 for a more detailed dis- 
cussion). However, there are a number of situations in 
which edges are clearly necessary as when you have a 
line drawing or in illusory contours. Nevertheless some 
sort of region processing must be involved since sur- 
faces are also perceived. We (like others) believe that 
region-based representations should be sought even in 
this case. 

We have implemented our scheme for color on the 
Connection Machine. The scheme can be extended 
naturally to  brightness and texture. The more cues a 
system uses, the more robust it will be. In fact, im- 
age brightness is crucial in some situations because 
luminance boundaries do not always come together 
with color boundaries (e.g. cast shadows). But, 

Figure 13: Regions obtained for the person image. 
The white curve on the bottom image is the Curved In- 
ertia Frame from which the pant region was recovered. 
Bottom Right: An illustration of how the scheme can 
be used to guide attention. Close-up image of face and 
maximum intertia point. 

should these different schemes be applied indepen- 
dently? Consider a situation in which a surface is de- 
fined by an iso-luminant color edge on one side and 
by a brightness edge (which is not a color edge) on 
the other. Our scheme would not recover this surface 
because the two sides of our filter would fail (on one 
side for the brightness module and on the other for the 
iso-luminant one). A combined filter could be used to 
obtain the inertia values and the tolerated length in 
this case. The second stage would then be applied 
only to  one set of values. Instead of having a filter 
with two sides, our new combined filter has four sides. 
Two responses on each side, one for color Rc,i and one 
for brightness Rb,i, the combined response is then: 

min(maz(&,lejt 1 & , l e f t ) ,  mat(Rb,right 1 & , r i g h t ) ) .  

10 Discussion: Large versus Small 

Our scheme solves the problem of finding different re- 
gions by looking at  the large structures one by one. 
The larger structures are the first ones in being recov- 
ered, cutting into small parts the structures that are 
occluded. This embodies the constraint that larger 
structures tend to be perceived as occluding surfaces. 
(See Figure 14.) 

The emphasis of our scheme is towards finding large 
structures. However, this may be misleading as shown 
in Figure 14 where the interesting structure is not com- 
posed by individual elements that pop-out in the back- 
ground. Instead, what seems to  capture our attention 
can be described as "what is not large". That  is, look- 
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Figure 14: Left: Large shapes occlude small ones. 
From [Kanizsa 19791. Center: Small structures, 
whether edges or regions are sometimes more salient. 
From [Rock 19841. Right: Drawing of Mir6. This draw- 
ing illustrates a similar principle as the center Figure 
but using edges rather than regions. 

ing for the large structures and finding what is left 
would recover the interesting structure as if we where 
getting rid of the background. I t  is unclear though, 
if this observation would hold in general. Future re- 
search is necessary 

11 What's New 
In this paper we have argued that early visual pro- 
cessing should seek representations that make regions 
explicit, not just edges. Furthermore, we have argued 
that region representations should be computed di- 
rectly on the image (i.e. not using discontinuities). 
These suggestions can be taken further to  imply that 
an at  tentional "coordinate" frame (which corresponds 
to  one of the perceptual groups obtained) is imposed 
in the image prior to  constructing a description for 
recognition (see also [Subirana-Vilanova and Richards 
19911). We have provided some motivation by list- 
ing both, a number of problems with alternatives 
approaches and arguments in favor of region-based 
schemes. 

Our scheme suggests that vision may start by com- 
puting a set of features all over the image (correspond- 
ing to the inertia values and the tolerated length). 
This can be thought of as "smart" convolutions of the 
image with suitable filters plus some simple non-linear 
processing. In fact, recently filter-based approaches 
to texture, motion, and stereo have been presented 
(see references in [Subirana-Vilanova and Sung 19911). 
Our proposal differs from theirs in the non-linear filter 
proposed and in the use of the filter output to  look for 
ridges and regions, not discontinuities. 

This has been the motivation for designing a new 
non-linear filter for ridge-detection. Our ridge detector 
has a number of advantages over previous ones since 
it selects the appropriate scale a t  each point in the 
image, does not respond to  edges, can be used with 
brightness as well as color data, is tolerant to noise' 
and can handle narrow valleys and multiple steps. 

'We have verified this em irically but we have not 
formed a detailed study of t f e  effect of noise in our fii",; 
An improved version of the filter may be obtained from 
such exercise. 

The resulting scheme can segment an image without 
making explicit use of discontinuities and is compu- 
tationally efficient on the Connection Machine (takes 
time proportional to the size of the image). The per- 
formance of the scheme can in principle be attributed 
to  a number of intervening factors; but we believe that 
one of the critical aspects of the scheme (and one of 
the contributions of this paper) is our ridgedetector. 
Running the scheme on the edges or using simple gabor 
filters would not yield comparable results. The effec- 
tive use of color makes the scheme very robust but we 
believe that comparable results would be obtained on 
brightness or texture data. 
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