Scale-Space Representation Using Anisotropic Diffusion

James Fishbaugh

February 9, 2010

James Fishbaugh Scale-Space Representation Using Anisotropic Diffusion

Image is viewed through an Gaussian aperture $L(x, y) = L_0(x, y) \otimes G(x, y; \sigma)$

By varying σ , we create images at different scales

Image from http://cvr.yorku.ca/members/gradstudents/kosta/compvis/.

Pros

・聞き ・ ヨキ・ ・ ヨキ

3

Pros

- Gaussians have many nice properties
 - Linearly separable
 - Convolution of two Gaussians is a Gaussian
- Efficient to implement via FFT
- Meets causality criteria
 - Features at coarse scales have to originate from finer scales.

Pros

- Gaussians have many nice properties
 - Linearly separable
 - Convolution of two Gaussians is a Gaussian
- Efficient to implement via FFT
- Meets causality criteria
 - Features at coarse scales have to originate from finer scales.

Cons

Pros

- Gaussians have many nice properties
 - Linearly separable
 - Convolution of two Gaussians is a Gaussian
- Efficient to implement via FFT
- Meets causality criteria
 - Features at coarse scales have to originate from finer scales.

Cons

- Poor localization at coarse scales
 - Requires tracing through scale space
- Regions are blurred together before large scale features are recognized
 - Example: leaves of a tree blend with sky before leaves blend with each other

Causality

- No spurious features
- Immediate Localization
 - Region boundaries should be sharp at every scale

Piecewise Smoothing

Intra-region smoothing favored over inter-region smoothing

Consider diffusion where the conduction coefficient is not constant

$$I_t = \nabla \cdot (c(x, y, t) \nabla I)$$

What is the ideal solution using this formulation?

Consider diffusion where the conduction coefficient is not constant

$$I_t = \nabla \cdot (c(x, y, t) \nabla I)$$

What is the ideal solution using this formulation?

- *c* = 0 at region boundaries
- c = 1 everywhere else

- We need an estimation of edge strength ${\it E}$
- We need some function g(||E||)
 - Must be non-negative monotonically decreasing

$$g(0) = 1$$

- We need an estimation of edge strength E
- We need some function g(||E||)
 - Must be non-negative monotonically decreasing

$$g(0) = 1$$

Now we must make reasonable choices for E and g.

Choosing E and G

Choose E

<ロ> <部> <き> <き> <き> <き> <き</p>

Choosing E and G

Choose E

Image gradient gives a simple and effective edge estimation

 $E = \nabla I$

伺 ト く ヨ ト く ヨ ト

Choosing E and G

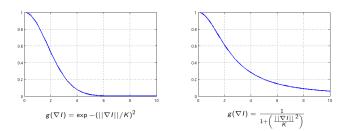
Choose E

Image gradient gives a simple and effective edge estimation

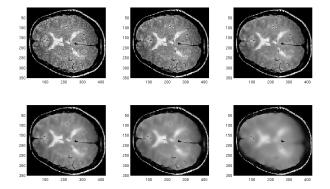
$$E = \nabla I$$

Choose g

There are many choices for g



Example



・ロン ・聞と ・ ヨン ・ ヨン

æ