Medical Image Analysis

CS 593 / 791

Computer Science and Electrical Engineering Dept. West Virginia University

23rd January 2006

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The rest of the paper...

Anisotropic Diffusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Outline

- 3
- **Experimental Results**
- 4 The rest of the paper...
- 5 Anisotropic Diffusion

The rest of the paper...

Anisotropic Diffusion

Outline

- Experimental Results
- 4 The rest of the paper...

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

The rest of the paper...

Anisotropic Diffusion

Edge Enhancement

Inhomogeneous diffusion may actually enhance edges, for a certain choice of g().

1D example:

Let
$$\mathbf{s}(\mathbf{x}) = \frac{\partial I}{\partial \mathbf{x}}$$
, and $\phi(\mathbf{s}) = \mathbf{g}(\mathbf{s})\mathbf{s} = \mathbf{g}(I_{\mathbf{x}})I_{\mathbf{x}}$.

The 1D heat equation becomes

$$l_t = \frac{\partial}{\partial x} (g(I_x)I_x) = \frac{\partial}{\partial x} \phi(s)$$
$$= \phi'(s)I_{xx}$$

 $\frac{\partial}{\partial t}(I_x)$ is the rate of change of edge slope with respect to time.

$$\frac{\partial}{\partial t}(I_{x}) = \frac{\partial}{\partial x}(I_{t})$$
$$= \phi''(s)I_{xx}^{2} + \phi'(s)I_{xxx}$$

The rest of the paper...

Anisotropic Diffusion

Edge Enhancement

$$\frac{\partial}{\partial t}(I_{\mathsf{X}}) = \phi''(\mathsf{S})I_{\mathsf{X}\mathsf{X}}^2 + \phi'(\mathsf{S})I_{\mathsf{X}\mathsf{X}\mathsf{X}}$$

For a step edge with $I_x > 0$ look at the inflection point, *p*. Observe that $I_{xx}(p) = 0$, and $I_{xxx}(p) < 0$.

 $\frac{\partial}{\partial t}(l_{x})(p) = \phi'(s)l_{xxx}(p)$

The sign of this quantity depends only on $\phi'(s)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

The rest of the paper...

Anisotropic Diffusion

Edge Enhancement

$$\frac{\partial}{\partial t}(I_{\mathbf{x}}) = \phi''(\mathbf{s})I_{\mathbf{x}\mathbf{x}}^2 + \phi'(\mathbf{s})I_{\mathbf{x}\mathbf{x}\mathbf{x}}$$

For a step edge with $I_x > 0$ look at the inflection point, *p*.

Observe that $I_{xx}(p) = 0$, and $I_{xxx}(p) < 0$.

$$\frac{\partial}{\partial t}(I_{x})(p) = \phi'(s)I_{xxx}(p)$$

The sign of this quantity depends only on $\phi'(s)$.

・ロト・日本・日本・日本・日本・日本

The rest of the paper...

Anisotropic Diffusion

Edge Enhancement

At the inflection point:

$$rac{\partial}{\partial t}(I_{\mathsf{X}})(\mathsf{p}) = \phi'(\mathsf{s})I_{\mathsf{XXX}}(\mathsf{p})$$

- If $\phi'(s) > 0$, then $\frac{\partial}{\partial t}(I_x)(p) < 0$ (slope is decreasing).
- If $\phi'(s) < 0$, then $\frac{\partial}{\partial t}(I_x)(p) > 0$ (slope is increasing).

Since $\phi(s) = g(s)s$, selecting the function g(s) determines which edges are smoothed and which are sharpened.

The rest of the paper...

Anisotropic Diffusion

Outline

- Experimental Results
- 4 The rest of the paper...

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

The rest of the paper...

Anisotropic Diffusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

The function $\phi(s) = g(s)s$

- φ(0) = 0

- $\lim_{s\to\infty} \phi(s) \to 0$

The rest of the paper...

Anisotropic Diffusion

The function g(s)

Perona and Malik suggest two possible functions ($s = ||\nabla I||$):

$$g(|\nabla I|) = e^{-(\frac{||\nabla I||}{\kappa})^2}$$

$$g(|
abla l|) = rac{1}{1+(rac{||
abla l||}{K})^{1+lpha}} \quad (lpha > 0)$$

The rest of the paper...

Anisotropic Diffusion

Effect of varying K on g()

$$g(|
abla I|) = rac{1}{1+(rac{||
abla I||}{K})^{1+lpha}} \quad (lpha > 0)$$

Figure: K = 2, 4, 6

▲□ > ▲□ > ▲目 > ▲目 > ▲目 > ④ < ⊙

The rest of the paper...

Anisotropic Diffusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Effect of varying α on g()

Figure: α = 1, 3, 5, 7, 9

The rest of the paper...

Anisotropic Diffusion

<ロ> (四) (四) (三) (三) (三) (三)

Effect of varying K and α on c()

Figure: *I* and $||\nabla I||$.

The rest of the paper...

Anisotropic Diffusion

Effect of varying K on c()

Figure: *K* = 3, 5, 10, 100.

The rest of the paper...

(日)

э

Anisotropic Diffusion

Effect of varying α on c()

Figure: $\alpha = 1, 2, 3, 5$.

The rest of the paper...

Anisotropic Diffusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Outline

Experimental Results

- Discretized Inhomogeneous Heat Equation
- Perona-Malik Implementation
- Discrete Maximum Principle
- Adaptive Parameter Setting

Experimental Results

The rest of the paper...

Anisotropic Diffusion

Discretized Inhomogeneous Heat Equation

Explicit Formulation

$$\frac{\partial I}{\partial t} = c(x, y, t) \nabla^2 I + \nabla c \cdot \nabla I$$

Using centered differences for the Laplacian and gradients:

$$\begin{array}{lll} \displaystyle \frac{l_{x,y}^{t+1}-l_{x,y}^{t}}{\lambda} & = & c_{x,y}(l_{x-1,y}^{t}+l_{x+1,y}^{t}+l_{x,y-1}^{t}+l_{x,y+1}^{t}-4l_{x,y}^{t}) \\ & + & (\frac{c_{x+1,y}-c_{x-1,y}}{2})(\frac{l_{x+1,y}-l_{x-1,y}}{2}) \\ & + & (\frac{c_{x,y+1}-c_{x,y-1}}{2})(\frac{l_{x,y+1}-l_{x,y-1}}{2}) \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Experimental Results

The rest of the paper...

Anisotropic Diffusion

Discretized Inhomogeneous Heat Equation

Implicit Formulation

Same diagonal structure as homogeneous heat equation? Yes.

Symmetric? No.

Diagonal dominance? Data dependent.

Experimental Results

The rest of the paper...

Anisotropic Diffusion

Discretized Inhomogeneous Heat Equation

Implicit Formulation

- Same diagonal structure as homogeneous heat equation? Yes.
- Symmetric? No.
- Diagonal dominance? Data dependent.

Experimental Results

The rest of the paper...

Anisotropic Diffusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Discretized Inhomogeneous Heat Equation

Implicit Formulation

- Same diagonal structure as homogeneous heat equation? Yes.
- Symmetric? No.
- Diagonal dominance? Data dependent.

Experimental Results

The rest of the paper...

Anisotropic Diffusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Discretized Inhomogeneous Heat Equation

Implicit Formulation

- Same diagonal structure as homogeneous heat equation? Yes.
- Symmetric? No.
- Diagonal dominance? Data dependent.

The rest of the paper...

Anisotropic Diffusion

Perona-Malik Implementation

Explicit Formulation

$$\frac{\partial I}{\partial t} = c(x, y, t) \nabla^2 I + \nabla c \cdot \nabla I$$

By splitting the Laplacian and averaging the forward and backward differences in the gradient:

$$\frac{l_{x,y}^{t+1} - l_{x,y}^{t}}{\lambda} = c_{x,y}[(l_{x-1,y}^{t} - l_{x,y}^{t}) + (l_{x+1,y}^{t} - l_{x,y}^{t}) \\
+ (l_{x,y-1}^{t} - l_{x,y}^{t}) + (l_{x,y+1}^{t} - l_{x,y}^{t})] \\
+ \frac{\partial c}{\partial x}(\frac{l_{x+1,y} - l_{x,y}}{2} + \frac{l_{x,y} - l_{x-1,y}}{2}) \\
+ \frac{\partial c}{\partial y}(\frac{l_{x,y+1} - l_{x,y}}{2} + \frac{l_{x,y} - l_{x,y-1}}{2})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

The rest of the paper...

Anisotropic Diffusion

Perona-Malik Implementation

Explicit Formulation

$$\frac{\partial I}{\partial t} = c(x, y, t) \nabla^2 I + \nabla c \cdot \nabla I$$

$$\begin{split} \frac{I_{x,y}^{t+1} - I_{x,y}^{t}}{\lambda} &= (c_{x,y} - \frac{1}{2} \frac{\partial c}{\partial x})(I_{x-1,y}^{t} - I_{x,y}^{t}) \\ &+ (c_{x,y} + \frac{1}{2} \frac{\partial c}{\partial x})(I_{x+1,y}^{t} - I_{x,y}^{t}) \\ &+ (c_{x,y} - \frac{1}{2} \frac{\partial c}{\partial x})(I_{x,y-1}^{t} - I_{x,y}^{t}) \\ &+ (c_{x,y} + \frac{1}{2} \frac{\partial c}{\partial x})(I_{x,y+1}^{t} - I_{x,y}^{t}) \end{split}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ◆ ◆

Experimental Results

The rest of the paper...

Anisotropic Diffusion

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Perona-Malik Implementation

Explicit Formulation

$$\begin{split} \mathbf{c}_{\mathbf{x},\mathbf{y}} &+ \frac{1}{2} \frac{\partial \mathbf{c}}{\partial \mathbf{x}} &\approx \mathbf{c}_{\mathbf{x}+\frac{1}{2},\mathbf{y}} \\ \mathbf{c}_{\mathbf{x},\mathbf{y}} &- \frac{1}{2} \frac{\partial \mathbf{c}}{\partial \mathbf{x}} &\approx \mathbf{c}_{\mathbf{x}-\frac{1}{2},\mathbf{y}} \end{split}$$

$$egin{array}{rll} c_{x+rac{1}{2},y} &pprox & g(rac{s_{x,y}+s_{x+1,y}}{2}) \ c_{x-rac{1}{2},y} &pprox & g(rac{s_{x,y}+s_{x-1,y}}{2}) \end{array}$$

Where $s_{x,y} = ||\nabla I(x,y)||$.

The rest of the paper...

Anisotropic Diffusion

Perona-Malik Implementation

Explicit Formulation

$$\begin{aligned} \frac{l_{x,y}^{t+1} - l_{x,y}^{t}}{\lambda} &= g(\frac{s_{x,y} + s_{x-1,y}}{2})(l_{x-1,y}^{t} - l_{x,y}^{t}) \\ &+ g(\frac{s_{x,y} + s_{x+1,y}}{2})(l_{x+1,y}^{t} - l_{x,y}^{t}) \\ &+ g(\frac{s_{x,y} + s_{x,y-1}}{2})(l_{x,y-1}^{t} - l_{x,y}^{t}) \\ &+ g(\frac{s_{x,y} + s_{x,y+1}}{2})(l_{x,y+1}^{t} - l_{x,y}^{t}) \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The rest of the paper...

Anisotropic Diffusion

Perona-Malik Implementation

Anisotropic Implementation

Compute g() using the projection of the gradient along one direction.

For example, in $g(\frac{s_{x,y}+s_{x+1,y}}{2})$, let

$$\begin{aligned} s_{x,y} &= |\frac{\partial I}{\partial x}(x,y)| \\ s_{x+1,y} &= |\frac{\partial I}{\partial x}(x+1,y)| \end{aligned}$$

Computing $s_{x,y}$ using forward differences, and $s_{x+1,y}$ using backward differences

$$\begin{split} s_{x,y} &= |I_{x+1,y} - I_{x,y}| \\ s_{x+1,y} &= |I_{x+1,y} - I_{x,y}|, \\ \text{so } g(\frac{s_{x,y} + s_{x+1,y}}{2}) &= g(|I(x+1,y) - I(x,y)|). \end{split}$$

The rest of the paper...

Anisotropic Diffusion

Perona-Malik Implementation

Explicit Formulation

Notation:

The authors use \bigtriangledown to denote finite differences. This is not the gradient operator (∇).

The rest of the paper...

Anisotropic Diffusion

Perona-Malik Implementation

Image neighborhood system

$$\nabla_{N} I_{i,j} \equiv I_{i-1,j} - I_{i,j}$$

$$\nabla_{S} I_{i,j} \equiv I_{i+1,j} - I_{i,j}$$

$$\nabla_{E} I_{i,j} \equiv I_{i,j+1} - I_{i,j}$$

$$\nabla_{W} I_{i,j} \equiv I_{i,j-1} - I_{i,j}$$

$$\begin{array}{rcl} c_{N_{i,j}} &=& g(|\bigtriangledown_N I_{i,j}|) \\ c_{S_{i,j}} &=& g(|\bigtriangledown_S I_{i,j}|) \\ c_{E_{i,j}} &=& g(|\bigtriangledown_E I_{i,j}|) \\ c_{W_{i,j}} &=& g(|\bigtriangledown_W I_{i,j}|) \end{array}$$

◆□ > ◆□ > ◆三 > ◆三 > ◆□ > ◆○ ◇ ◇ ◇

The rest of the paper...

Anisotropic Diffusion

Perona-Malik Implementation

Explicit Formulation

The previous explicit formulation

can be rewritten as

$$I_{x,y}^{t+1} = I_{x,y}^{t} + \lambda (c_{N_{i,j}} \bigtriangledown_N I_{i,j} + c_{S_{i,j}} \bigtriangledown_S I_{i,j}$$

+ $c_{E_{i,j}} \bigtriangledown_E I_{i,j} + c_{W_{i,j}} \bigtriangledown_W I_{i,j})^t$

The rest of the paper...

Anisotropic Diffusion

Discrete Maximum Principle

Let
$$I_{M_{ij}} = \max(I, I_N, I_S, I_E, I_W)$$

$$I_{\mathbf{x},\mathbf{y}}^{t+1} = I_{\mathbf{x},\mathbf{y}}^{t} + \lambda (\mathbf{c}_{N_{i,j}} \bigtriangledown_N I_{i,j} + \mathbf{c}_{S_{i,j}} \bigtriangledown_S I_{i,j} + \mathbf{c}_{E_{i,j}} \bigtriangledown_E I_{i,j} + \mathbf{c}_{W_{i,j}} \bigtriangledown_W I_{i,j})$$

$$\begin{array}{ll} I_{x,y}^{t+1} &=& I_{x,y}^{t} (1 - \lambda (c_{N_{i,j}} + c_{S_{i,j}} + c_{E_{i,j}} + c_{W_{i,j}})) \\ &+& \lambda (c_{N_{i,j}} I_{N_{i,j}} + c_{S_{i,j}} I_{S_{i,j}} + c_{E_{i,j}} I_{E_{i,j}} + c_{W_{i,j}} I_{W_{i,j}}) \end{array}$$

Since all *c*'s and λ are positive and between 0,1:

$$egin{array}{rcl} I_{{f x},y}^{t+1} &\leq & I_{M_{ij}}^t(1-\lambda(c_{N_{i,j}}+c_{S_{i,j}}+c_{E_{i,j}}+c_{W_{i,j}})) \ &+ & I_{M_{ij}}^t(\lambda(c_{N_{i,j}}+c_{S_{i,j}}+c_{E_{i,j}}+c_{W_{i,j}})) \ &= & I_{M_{ij}}^t \end{array}$$

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで

The rest of the paper...

Anisotropic Diffusion

Discrete Maximum Principle

Let
$$I_{M_{ij}} = \max(I, I_N, I_S, I_E, I_W)$$

$$I_{\mathbf{x},\mathbf{y}}^{t+1} = I_{\mathbf{x},\mathbf{y}}^{t} + \lambda (\mathbf{c}_{N_{i,j}} \bigtriangledown_N I_{i,j} + \mathbf{c}_{S_{i,j}} \bigtriangledown_S I_{i,j} + \mathbf{c}_{E_{i,j}} \bigtriangledown_E I_{i,j} + \mathbf{c}_{W_{i,j}} \bigtriangledown_W I_{i,j})$$

$$\begin{array}{ll} I_{x,y}^{t+1} &=& I_{x,y}^{t} (1 - \lambda (c_{N_{i,j}} + c_{S_{i,j}} + c_{E_{i,j}} + c_{W_{i,j}})) \\ &+& \lambda (c_{N_{i,j}} I_{N_{i,j}} + c_{S_{i,j}} I_{S_{i,j}} + c_{E_{i,j}} I_{E_{i,j}} + c_{W_{i,j}} I_{W_{i,j}}) \end{array}$$

Since all *c*'s and λ are positive and between 0,1:

$$egin{array}{rcl} l_{X,Y}^{t+1} &\leq l_{\mathcal{M}_{ij}}^t (1-\lambda(c_{\mathcal{N}_{i,j}}+c_{\mathcal{S}_{i,j}}+c_{\mathcal{E}_{i,j}}+c_{\mathcal{W}_{i,j}})) \ &+ l_{\mathcal{M}_{ij}}^t (\lambda(c_{\mathcal{N}_{i,j}}+c_{\mathcal{S}_{i,j}}+c_{\mathcal{E}_{i,j}}+c_{\mathcal{W}_{i,j}})) \ &= l_{\mathcal{M}_{ij}}^t \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Compute a histogram, f_i , of $||\nabla I||$

Find *K* such that 90% of the pixels have gradient magnitude < K. (If $\sum_{i=1}^{b} f_i \ge 0.9n^2$ then bin *b* corresponds to gradient magnitude *K*).

▲ロト▲母ト▲国ト▲国ト 国 のえぐ

The rest of the paper...

Anisotropic Diffusion

Outline

- Experimental Results
- 4 The rest of the paper...

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

The rest of the paper...

Anisotropic Diffusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Edge Detection

Due to

- Edge enhancement
- Edge localization

edge detection algorithms will benefit from using this nonlinear diffusion process rather than using linear diffusion (Gaussian convolution).

The rest of the paper...

Anisotropic Diffusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Energy Minimization and Markov Random Field Models

- The 'anisotropic' diffusion algorithm minimizes 'some energy function.'
- Smoothness → conditional dependence on nearest neighbors (Markovian property)

The rest of the paper...

Anisotropic Diffusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Outline

- 2 Edge Enhancement
- Experimental Results
- The rest of the paper...
- Anisotropic Diffusion

 Introduction

The rest of the paper...

Anisotropic Diffusion

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Introduction

The problem with inhomogeneous diffusion

• Noise on edges will not be reduced.

Even with the anisotropic implementation of Perona-Malik, noise on diagonal edges will not be handled properly.

The rest of the paper...

Anisotropic Diffusion

(日) (日) (日) (日) (日) (日) (日)

Introduction

The problem with inhomogeneous diffusion

The inhomogeneous heat equation

$$\frac{\partial I}{\partial t} = \operatorname{div}(c(x, y, t) \nabla I)$$

only controls the magnitude of intensity (or heat) flow. The anisotropic heat equation

$$\frac{\partial I}{\partial t} = \operatorname{div}(D(x, y, t)\nabla I),$$

where D(x, y, t) is a matrix-valued function, can also control the direction of intensity (or heat) flow.

Recap	Edge Enhancement	Experimental Results	The rest of the paper	Anisotropic Diffusion ○○●
Introduction				
Next:				

Wednesday:

• Susan Lemieux will continue the MRI acquisition lecture. Friday:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Weickert "A review of nonlinear diffusion filtering".
- The physical laws of heat flow and diffusion.
- Anisotropic diffusion filtering.