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Recall : The heat equation

In 1D

∂I
∂t

=
∂2I
∂x2
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Recall : Numerical Derivatives

First order forward difference:

I ′(x0) ≈ I(x0 + 1)− I(x0)

First order backward difference:

I ′(x0) ≈ I(x0)− I(x0 − 1)

Second order, second centered difference:

I ′′(x0) ≈ I(x0 + 1)− 2I(x0) + I(x0 − 1)
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Discretized 1D Heat Equation : Explicit

Using the forward difference in time we get

Explicit formulation

I t+δ
x = I t

x + δ(I t
x+1 − 2I t

x + I t
x−1)

Explicit : Update I t using derivatives computed at time t .
Form a vector, w of image values, so that w i = I(i)
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Discretized 1D Heat Equation : Explicit

We can rewrite the discretized heat equation as the system of
linear equations:

w t+δ
i = [δ, 1− 2δ, δ]

 w t
i−1

w t
i

w t
i+1


This is equivalent to

w t+δ
i = [0, δ, 1− 2δ, δ, 0]


w t

i−2
w t

i−1
w t

i
w t

i+1
w t

i+2


We can continue padding the row vector of coefficients with 0
entries until...
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Discretized 1D Heat Equation : Explicit

w t+δ
i = [0, . . . , 0, δ, 1− 2δ, δ, 0, . . . , 0]wt

= aiw
t

Where (1− 2δ) is in the i-th column, since it multiplies w t
i .

We can write the whole system of equations by forming a
matrix A whose i-th row is ai

wt+1 = Aw t

A is a tridiagonal matrix.
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Discretized 2D Heat Equation : Explicit

Recall the 2D heat equation

∂I
∂t

=
∂2I
∂x2 +

∂2I
∂y2

Using the forward difference in time we get

Explicit formulation

I t+δ
x ,y = I t

x ,y + δ(I t
x+1,y − 4I t

x ,y + I t
x−1,y + I t

x ,y+1 + I t
x ,y−1)

Update I t using derivatives computed at time t .
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Discretized 2D Heat Equation : Implicit

Recall the heat equation

∂I
∂t

=
∂2I
∂x2 +

∂2I
∂y2

Using the backward difference in time we get

Explicit formulation

I t+δ
x ,y = I t

x ,y + δ(I t+δ
x+1,y − 4I t+δ

x ,y + I t+δ
x−1,y + I t+δ

x ,y+1 + I t+δ
x ,y−1)

Implicit : Update I t using derivatives computed at time t + δ.
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Mapping the image to a vector

2D image indices to 1D image index

Map 2d coordinates of I(x , y)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)

to 1d coordinates of w(i)

0 3 6
1 4 7
2 5 8

The coordinate transformation is given by

i(x , y) = nx + y

for an n × n image.
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Mapping the image to a vector

Writing central differences in 1D vector form

For the coordinate transformation function

i(x , y) = nx + y

If I(x , y) → w(i), then I(x , y + 1) → w(i + 1), since
i(x , y + 1) = nx + y + 1 = i(x , y) + 1.

If I(x , y) → w(i), then I(x + 1, y) → w(i + n), since
i(x + 1, y) = n(x + 1) + y = i(x , y) + n.
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Mapping the image to a vector

Writing central differences in 1D vector form

For the coordinate transformation function

i(x , y) = nx + y

So,

∂I2

∂y2 (x , y) ≈ I(x , y + 1)− 2I(x , y) + I(x , y − 1)

≈ w(i + 1)− 2w(i) + w(i − 1)

and

∂I2

∂x2 (x , y) ≈ I(x + 1, y)− 2I(x , y) + I(x − 1, y)

≈ w(i + n)− 2w(i) + w(i − n)
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Mapping the image to a vector

Writing difference equations in matrix form

The implicit formulation of the heat equation involves solving n2

simultaneous equations:

w t
i = w t+δ

i + δ(w t+δ
i+1 − 4w t+δ

i + w t+δ
i−1 + w t+δ

i+n + w t+δ
i−n )

...

...

w t
i

...

...


=


. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . δ . . . δ 1− 4δ δ . . . δ . . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .





...
w t+δ

i−n
...

w t+δ
i−1

w t+δ
i

w t+δ
i+1
...

w t+δ
i+n
...


What to do when w(i ± 1) or w(i ± n) falls outside the image
boundaries?
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Boundary Conditions

Constant Boundary Value

(x < 0) or (x > n) → I(x) = c
For c = 0:

Ixx(0) ≈ −2I(0) + I(1)
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Boundary Conditions

Constant Boundary Slope

Fixing the slope at zero
(adiabatic) gives
(x < 0) → I(x) = I(0)
(x > n) → I(x) = I(n)

Ixx(0) ≈ −I(0) + I(1)
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Boundary Conditions

Periodic Boundary Conditions

(x < 0) → I(x) = I(x + n)
(x > n) → I(x) = I(x − n)

Ixx(0) ≈ I(n−1)−2I(0)+ I(1)
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Boundary Conditions

Reflective Boundary Conditions

(x < 0) → I(x) = I(−x)
(x > n) → I(x) = I(2n − x)

Ixx(0) ≈ −2I(0) + 2I(1)
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Stability

Stability of the explicit 1D heat equation

The 1D heat equation, It = Ixx , has solution I(x , t) = e−t cos(x).
This corresponds to the problem with initial condition
I(x , 0) = cos(x).

Discretize only in time (forward)

Observe that Ixx(x , t) = −e−t cos(x) = −I(x , t)

I t+δ − I t

δ
= −I t

I t+δ = I t − δI t
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Stability

Convergence criterion : ratio test

The sequence I t is convergent if

lim
t→∞

∣∣∣∣ I t+δ

I t

∣∣∣∣ < 1

The explicit equation we formed earlier

I t+δ = I t − δI t

has convergence criterion∣∣∣∣ I t+δ

I t

∣∣∣∣ = |1− δ| < 1

This is satisfied for 0 < δ < 2. (Only conditionally convergent.)
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Stability

Stability of the implicit 1D heat equation

Discretize only in time (backward)

I t+δ − I t

δ
= −I t+δ

I t+δ = I t − δI t+δ

The implicit equation has convergence criterion∣∣∣∣ I t+δ

I t

∣∣∣∣ = ∣∣∣∣ 1
1 + δ

∣∣∣∣ < 1

This is satisfied for δ > 0.
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Stability

Stability

In general, it can be shown that

Explicit methods are conditionally stable.

Implicit methods are unconditionally stable.
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Introduction

Scale-space

The need for multiscale image representations: Details in
images should only exist over certain ranges of scale.
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Introduction

Scale-space

Definition: a family of images, I(x , y , t), where

The scale-space parameter is t .

I(x , y , 0) is the original image.

Increasing t corresponds to coarser resolutions.

I(x , y , t) can be generated by convolving with wider Gaussian
kernels as t increases, or equivalently, by solving the heat
equation.
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Introduction

Earlier Scale-space properties

Causality: coarse details are ”caused” by fine details.

New details should not arise in coarse scale images.

Smoothing should be homogeneous and isotropic.

This paper will challenge the last property, and propose a more
useful scale-space definition.
The new scale-space will be shown to obey the causality
property.
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Weaknesses of the standard scale-space paradigm

Lost Edge Information

Edge location is not preserved across the scale space.

Edge crossings may disappear.

Region boundaries are blurred.

Gaussian blurring is a local averaging operation. It does not
respect natural boundaries.
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Weaknesses of the standard scale-space paradigm

Linear Scale Space

Def: Scale spaces generated by a linear filtering operation.

Nonlinear filters, such as the median filter, can be used to
generate scale-space images.

Many nonlinear filters violate one of the scale-space
conditions.
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Weaknesses of the standard scale-space paradigm

New Criteria

Causality.

Immediate localization : edge locations remain fixed.

Piecewise Smoothing : permit discontinuities at
boundaries.

At all scales the image will consist of smooth regions
separated by boundaries (edges).
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Inhomogeneous diffusion

Diffusion equation

∂I
∂t

= div(c(x , y , t)∇I)

The diffusion coefficient, c(x , y , t) controls the degree of
smoothing at each point in I.

The basic idea:
Setting c(x , y , t) = 0 at region boundaries, and c(x , y , t) = 1 at
region interior will encourage intraregion smoothing, and
discourage interregion smoothing.
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Inhomogeneous diffusion

Diffusion equation

By the chain rule:

∂I
∂t

= div

(
c(x , y , t) ∂I

∂x
c(x , y , t) ∂I

∂y

)

=
∂c
∂x

∂I
∂x

+ c(x , y , t)
∂2I
∂x2 +

∂c
∂y

∂I
∂y

+ c(x , y , t)
∂2I
∂y2

= c(x , y , t)∇2I +∇c · ∇I

Notation
The paper uses the symbol ∆ to represent the Laplacian.
∆I = ∇2I = div(∇I)
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Inhomogeneous diffusion

Conduction coefficient

What properties would he like c(x , y , t) to have?

c = 1 at interior of a region.

c = 0 at boundary of a region.

c should be nonnegative everywhere.

Since c(x , y , t) depends on edge information, we need an edge
descriptor, E(x , y , t), to compute c.

Notation
When written as a function of the edge descriptor, the authors
use the symbol g() for conduction coefficient.
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Inhomogeneous diffusion

Edge Estimate (or Edge Descriptor)

E(x , y , t) should convey the following information:

Location.

Magnitude (contrast across edge).

Direction.

and obey the following properties:

E(x , y , t) = 0 at region interior.

E(x , y , t) = K e(x , y , t) at region boundaries.

K is the contrast, e(x , y , t) is perpendicular to the edge.
∇I(x , y , t) has these properties, and is a useful edge estimator.
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Properties of inhomogeneous diffusion

Maximum Principle

The maximum and minimum intensities in the scale-space
image I(x , y , t) occur at t = 0 (the finest scale image).

Since new maxima and minima correspond to new image
features, the causality requirement of scale-space can
satisfied if the evolution equation obeys the maximum
principle.

We will make some less rigorous observations concerning
causality...
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Properties of inhomogeneous diffusion

Maximum Principle

For the 1D heat equation : It = Ixx .

Solving the heat equation is equivalent to convolution.

Convolution is a local averaging operation.

Averaging is bounded by the values being averaged.
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Properties of inhomogeneous diffusion

Maximum Principle

For the Perona-Malik equation

∂I
∂t

= c(x , y , t)∇2I +∇c · ∇I

Note that at local minima ∇I = 0 and we are evolving by the
original heat equation.
It can be shown that this general class of PDEs obeys the
maximum principle.
We will also inspect a maximum principle for the discretized
equations.
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Properties of inhomogeneous diffusion

Edge Enhancement

Inhomogeneous diffusion may actually enhance edges, for a
certain choice of c(x , y , t).

1D example:

Let s(x) = ∂I
∂x , and φ(s) = g(s)s = g(Ix)Ix .

The 1D heat equation becomes

It =
∂

∂x
(g(Ix)Ix) =

∂

∂x
φ(s)

by chain rule =
∂φ

∂s
∂s
∂x

= φ′(s)Ixx
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Properties of inhomogeneous diffusion

Edge Enhancement

We are interested in the rate of change of edge slope with
respect to time.

∂

∂t
(Ix) =

∂

∂x
(It) if I is smooth

=
∂

∂x
(φ′(s)Ixx)

= φ′′(s)I2
xx + φ′(s)Ixxx
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Properties of inhomogeneous diffusion

Edge Enhancement

I, Ix , Ixx , Ixxx

∂

∂t
(Ix) = φ′′(s)I2

xx + φ′(s)Ixxx

For a step edge with Ix > 0 look at the
inflection point, p.
Observe that Ixx(p) = 0, and Ixxx(p) < 0.

∂

∂t
(Ix)(p) = φ′(s)Ixxx(p)

The sign of this quantity depends only on
φ′(s).
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Properties of inhomogeneous diffusion

Edge Enhancement

At the inflection point:

∂

∂t
(Ix)(p) = φ′(s)Ixxx(p)

If φ′(s) > 0, then ∂
∂t (Ix)(p) < 0 (slope is decreasing).

If φ′(s) < 0, then ∂
∂t (Ix)(p) > 0 (slope is increasing).

Since φ(s) = g(s)s, selecting the function g(s) determines
which edges of smoothed and which are sharpened.
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Properties of inhomogeneous diffusion

The function g()

Perona and Malik suggest two possible functions

g(|∇I|) = e−( ||∇I||
K )2

g(|∇I|) =
1

1 + ( ||∇I||
K )1+α

(α > 0)
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Next Class

We will continue to discuss the Perona-Malik paper, looking at
parameter setting and implementation details.
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