Medical Image Analysis

CS 593 / 791

Computer Science and Electrical Engineering Dept.
West Virginia University
20th January 2006

Outline

(1) Discretizing the heat equation
(2) Perona-Malik

Outline

(1) Discretizing the heat equation

- Mapping the image to a vector
- Boundary Conditions
- Stability
(2) Perona-Malik

Recall : The heat equation

In 1D

$$
\frac{\partial I}{\partial t}=\frac{\partial^{2} I}{\partial x^{2}}
$$

Recall : Numerical Derivatives

First order forward difference:

$$
I^{\prime}\left(x_{0}\right) \approx I\left(x_{0}+1\right)-I\left(x_{0}\right)
$$

First order backward difference:

$$
I^{\prime}\left(x_{0}\right) \approx I\left(x_{0}\right)-I\left(x_{0}-1\right)
$$

Second order, second centered difference:

$$
I^{\prime \prime}\left(x_{0}\right) \approx I\left(x_{0}+1\right)-2 I\left(x_{0}\right)+I\left(x_{0}-1\right)
$$

Discretized 1D Heat Equation : Explicit

Using the forward difference in time we get

Explicit formulation

$$
I_{x}^{t+\delta}=I_{x}^{t}+\delta\left(I_{x+1}^{t}-2 I_{x}^{t}+I_{x-1}^{t}\right)
$$

Explicit: Update I^{t} using derivatives computed at time t.
Form a vector, \mathbf{w} of image values, so that $\mathbf{w}_{i}=I(i)$

Discretized 1D Heat Equation : Explicit

We can rewrite the discretized heat equation as the system of linear equations:

$$
w_{i}^{t+\delta}=[\delta, 1-2 \delta, \delta]\left[\begin{array}{l}
w_{i-1}^{t} \\
w_{i}^{t} \\
w_{i+1}^{t}
\end{array}\right]
$$

This is equivalent to

$$
w_{i}^{t+\delta}=[0, \delta, 1-2 \delta, \delta, 0]\left[\begin{array}{l}
w_{i-2}^{t} \\
w_{i-1}^{t} \\
w_{i}^{t} \\
w_{i+1}^{t} \\
w_{i+2}^{t}
\end{array}\right]
$$

We can continue padding the row vector of coefficients with 0 entries until...

Discretized 1D Heat Equation : Explicit

$$
\begin{aligned}
w_{i}^{t+\delta} & =[0, \ldots, 0, \delta, 1-2 \delta, \delta, 0, \ldots, 0] \mathbf{w}^{t} \\
& =\mathbf{a}_{i} \mathbf{w}^{t}
\end{aligned}
$$

Where $(1-2 \delta)$ is in the i-th column, since it multiplies w_{i}^{t}.
matrix \mathbf{A} whose i -th row is \mathbf{a}_{i}
\mathbf{A} is a tridiagonal matrix.

Discretized 1D Heat Equation : Explicit

$$
\begin{aligned}
w_{i}^{t+\delta} & =[0, \ldots, 0, \delta, 1-2 \delta, \delta, 0, \ldots, 0] \mathbf{w}^{t} \\
& =\mathbf{a}_{i} \mathbf{w}^{t}
\end{aligned}
$$

Where $(1-2 \delta)$ is in the i-th column, since it multiplies w_{i}^{t}. We can write the whole system of equations by forming a matrix \mathbf{A} whose i-th row is \mathbf{a}_{i}

$$
\mathbf{w}^{t+1}=\mathbf{A} \mathbf{w}^{t}
$$

A is a tridiagonal matrix.

Discretized 2D Heat Equation : Explicit

Recall the 2D heat equation

$$
\frac{\partial I}{\partial t}=\frac{\partial^{2} I}{\partial x^{2}}+\frac{\partial^{2} I}{\partial y^{2}}
$$

Using the forward difference in time we get

Explicit formulation

$$
I_{x, y}^{t+\delta}=I_{x, y}^{t}+\delta\left(I_{x+1, y}^{t}-4 I_{x, y}^{t}+I_{x-1, y}^{t}+I_{x, y+1}^{t}+I_{x, y-1}^{t}\right)
$$

Update I^{t} using derivatives computed at time t.

Discretized 2D Heat Equation : Implicit

Recall the heat equation

$$
\frac{\partial I}{\partial t}=\frac{\partial^{2} I}{\partial x^{2}}+\frac{\partial^{2} I}{\partial y^{2}}
$$

Using the backward difference in time we get

Explicit formulation

$$
I_{x, y}^{t+\delta}=I_{x, y}^{t}+\delta\left(I_{x+1, y}^{t+\delta}-4 I_{x, y}^{t+\delta}+I_{x-1, y}^{t+\delta}+I_{x, y+1}^{t+\delta}+I_{x, y-1}^{t+\delta}\right)
$$

Implicit: Update I^{t} using derivatives computed at time $t+\delta$.

2D image indices to 1D image index

Map 2d coordinates of $I(x, y)$

$(0,0)$	$(1,0)$	$(2,0)$
$(0,1)$	$(1,1)$	$(2,1)$
$(0,2)$	$(1,2)$	$(2,2)$

to 1 d coordinates of $\mathrm{w}(\mathrm{i})$

0	3	6
1	4	7
2	5	8

The coordinate transformation is given by

$$
i(x, y)=n x+y
$$

for an $n \times n$ image.

Writing central differences in 1D vector form

For the coordinate transformation function

$$
i(x, y)=n x+y
$$

- If $I(x, y) \rightarrow w(i)$, then $I(x, y+1) \rightarrow$

Writing central differences in 1D vector form

For the coordinate transformation function

$$
i(x, y)=n x+y
$$

- If $I(x, y) \rightarrow w(i)$, then $I(x, y+1) \rightarrow w(i+1)$, since $i(x, y+1)=n x+y+1=i(x, y)+1$.

Writing central differences in 1D vector form

For the coordinate transformation function

$$
i(x, y)=n x+y
$$

- If $I(x, y) \rightarrow w(i)$, then $I(x, y+1) \rightarrow w(i+1)$, since $i(x, y+1)=n x+y+1=i(x, y)+1$.
- If $I(x, y) \rightarrow w(i)$, then $I(x+1, y) \rightarrow$

Writing central differences in 1D vector form

For the coordinate transformation function

$$
i(x, y)=n x+y
$$

- If $I(x, y) \rightarrow w(i)$, then $I(x, y+1) \rightarrow w(i+1)$, since $i(x, y+1)=n x+y+1=i(x, y)+1$.
- If $I(x, y) \rightarrow w(i)$, then $I(x+1, y) \rightarrow w(i+n)$, since $i(x+1, y)=n(x+1)+y=i(x, y)+n$.

Writing central differences in 1D vector form

For the coordinate transformation function

$$
i(x, y)=n x+y
$$

- If $I(x, y) \rightarrow w(i)$, then $I(x, y+1) \rightarrow w(i+1)$, since $i(x, y+1)=n x+y+1=i(x, y)+1$.
- If $I(x, y) \rightarrow w(i)$, then $I(x+1, y) \rightarrow w(i+n)$, since $i(x+1, y)=n(x+1)+y=i(x, y)+n$.

Writing central differences in 1D vector form

For the coordinate transformation function

$$
i(x, y)=n x+y
$$

So,

$$
\begin{aligned}
\frac{\partial I^{2}}{\partial y^{2}}(x, y) & \approx I(x, y+1)-2 I(x, y)+I(x, y-1) \\
& \approx w(i+1)-2 w(i)+w(i-1)
\end{aligned}
$$

Writing central differences in 1D vector form

For the coordinate transformation function

$$
i(x, y)=n x+y
$$

So,

$$
\begin{aligned}
\frac{\partial I^{2}}{\partial y^{2}}(x, y) & \approx I(x, y+1)-2 I(x, y)+I(x, y-1) \\
& \approx w(i+1)-2 w(i)+w(i-1)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial I^{2}}{\partial x^{2}}(x, y) & \approx I(x+1, y)-2 I(x, y)+I(x-1, y) \\
& \approx w(i+n)-2 w(i)+w(i-n)
\end{aligned}
$$

Writing difference equations in matrix form

The implicit formulation of the heat equation involves solving n^{2} simultaneous equations:

$$
w_{i}^{t}=w_{i}^{t+\delta}+\delta\left(w_{i+1}^{t+\delta}-4 w_{i}^{t+\delta}+w_{i-1}^{t+\delta}+w_{i+n}^{t+\delta}+w_{i-n}^{t+\delta}\right)
$$

$\left(\begin{array}{c} \\ \vdots \\ \vdots \\ w_{i}^{t} \\ \vdots \\ \vdots\end{array}\right)=\left(\begin{array}{ccccccccc}\ddots & \ddots \\ \cdots & \delta & \cdots & \delta & 1-4 \delta & \delta & \cdots & \delta & \cdots \\ \ddots & \ddots\end{array}\right)\left(\begin{array}{c}\vdots \\ w_{i-n}^{t+\delta} \\ \vdots \\ w_{i-1}^{t+\delta} \\ w_{i}^{t+\delta} \\ w_{i+1}^{t+\delta} \\ \vdots \\ w_{i+n}^{t+\delta} \\ \vdots\end{array}\right)$
What to do when $w(i \pm 1)$ or $w(i \pm n)$ falls outside the image

Constant Boundary Value

$$
(x<0) \text { or }(x>n) \rightarrow I(x)=c
$$

For $c=0$:

$$
I_{x x}(0) \approx-2 I(0)+I(1)
$$

Constant Boundary Slope

Fixing the slope at zero (adiabatic) gives
$(x<0) \rightarrow I(x)=I(0)$
$(x>n) \rightarrow I(x)=I(n)$

$$
I_{x x}(0) \approx-I(0)+I(1)
$$

Boundary Conditions

Periodic Boundary Conditions

Reflective Boundary Conditions

$$
\begin{aligned}
& (x<0) \rightarrow I(x)=I(-x) \\
& (x>n) \rightarrow I(x)=I(2 n-x)
\end{aligned}
$$

$$
I_{x x}(0) \approx-2 I(0)+2 I(1)
$$

Stability of the explicit 1D heat equation

The 1D heat equation, $I_{t}=I_{x x}$, has solution $I(x, t)=e^{-t} \cos (x)$.
This corresponds to the problem with initial condition $I(x, 0)=\cos (x)$.

Discretize only in time (forward)

Observe that $I_{x x}(x, t)=-e^{-t} \cos (x)=-I(x, t)$

$$
\frac{I^{t+\delta}-I^{t}}{\delta}=-I^{t}
$$

$$
I^{t+\delta}=I^{t}-\delta I^{t}
$$

Convergence criterion : ratio test

The sequence I^{t} is convergent if

$$
\lim _{t \rightarrow \infty}\left|\frac{I^{t+\delta}}{I^{t}}\right|<1
$$

The explicit equation we formed earlier

$$
I^{t+\delta}=I^{t}-\delta I^{t}
$$

has convergence criterion

$$
\left|\frac{I^{t+\delta}}{I^{t}}\right|=|1-\delta|<1
$$

This is satisfied for $0<\delta<2$. (Only conditionally convergent.)

Stability of the implicit 1D heat equation

Discretize only in time (backward)

$$
\begin{aligned}
& \frac{I^{t+\delta}-I^{t}}{\delta}=-I^{t+\delta} \\
& I^{t+\delta}=I^{t}-\delta I^{t+\delta}
\end{aligned}
$$

The implicit equation has convergence criterion

$$
\left|\frac{t^{t+\delta}}{l^{t}}\right|=\left|\frac{1}{1+\delta}\right|<1
$$

This is satisfied for $\delta>0$.

Stability

In general, it can be shown that

- Explicit methods are conditionally stable.
- Implicit methods are unconditionally stable.

Outline

(1) Discretizing the heat equation

(2) Perona-Malik

- Introduction
- Weaknesses of the standard scale-space paradigm
- Inhomogeneous diffusion
- Properties of inhomogeneous diffusion
- Next Class

Scale-space

The need for multiscale image representations: Details in images should only exist over certain ranges of scale.

Scale-space

Definition: a family of images, $I(x, y, t)$, where

- The scale-space parameter is t.
- $I(x, y, 0)$ is the original image.
- Increasing t corresponds to coarser resolutions.
$I(x, y, t)$ can be generated by convolving with wider Gaussian kernels as t increases, or equivalently, by solving the heat equation.

Earlier Scale-space properties

- Causality: coarse details are "caused" by fine details.
- New details should not arise in coarse scale images.
- Smoothing should be homogeneous and isotropic.

This paper will challenge the last property, and propose a more useful scale-space definition.
The new scale-space will be shown to obey the causality property.

Lost Edge Information

- Edge location is not preserved across the scale space.
- Edge crossings may disappear.
- Region boundaries are blurred.

Gaussian blurring is a local averaging operation. It does not respect natural boundaries.

Linear Scale Space

Def: Scale spaces generated by a linear filtering operation.

- Nonlinear filters, such as the median filter, can be used to generate scale-space images.
- Many nonlinear filters violate one of the scale-space conditions.

New Criteria

- Causality.
- Immediate localization : edge locations remain fixed.
- Piecewise Smoothing : permit discontinuities at boundaries.

At all scales the image will consist of smooth regions separated by boundaries (edges).

Diffusion equation

$$
\frac{\partial I}{\partial t}=\operatorname{div}(c(x, y, t) \nabla I)
$$

The diffusion coefficient, $c(x, y, t)$ controls the degree of smoothing at each point in I.

The basic idea:

Setting $c(x, y, t)=0$ at region boundaries, and $c(x, y, t)=1$ at region interior will encourage intraregion smoothing, and discourage interregion smoothing.

Diffusion equation

By the chain rule:

$$
\begin{aligned}
\frac{\partial I}{\partial t} & =\operatorname{div}\binom{c(x, y, t) \frac{\partial I}{\partial x}}{c(x, y, t) \frac{\partial I}{\partial y}} \\
& =\frac{\partial c}{\partial x} \frac{\partial I}{\partial x}+c(x, y, t) \frac{\partial^{2} I}{\partial x^{2}}+\frac{\partial c}{\partial y} \frac{\partial I}{\partial y}+c(x, y, t) \frac{\partial^{2} I}{\partial y^{2}} \\
& =c(x, y, t) \nabla^{2} I+\nabla c \cdot \nabla I
\end{aligned}
$$

Notation

The paper uses the symbol Δ to represent the Laplacian.
$\Delta I=\nabla^{2} I=\operatorname{div}(\nabla I)$

Conduction coefficient

What properties would he like $c(x, y, t)$ to have?

- $c=1$ at interior of a region.
- $c=0$ at boundary of a region.
- c should be nonnegative everywhere.

Since $c(x, y, t)$ depends on edge information, we need an edge descriptor, $E(x, y, t)$, to compute c.

Notation

When written as a function of the edge descriptor, the authors use the symbol $g()$ for conduction coefficient.

Edge Estimate (or Edge Descriptor)

$E(x, y, t)$ should convey the following information:

- Location.
- Magnitude (contrast across edge).
- Direction.
and obey the following properties:
- $E(x, y, t)=0$ at region interior.
- $E(x, y, t)=K \mathbf{e}(x, y, t)$ at region boundaries.
K is the contrast, $\mathbf{e}(x, y, t)$ is perpendicular to the edge.
$\nabla I(x, y, t)$ has these properties, and is a useful edge estimator.

Maximum Principle

- The maximum and minimum intensities in the scale-space image $I(x, y, t)$ occur at $t=0$ (the finest scale image).
- Since new maxima and minima correspond to new image features, the causality requirement of scale-space can satisfied if the evolution equation obeys the maximum principle.
- We will make some less rigorous observations concerning causality...

Maximum Principle

For the 1D heat equation: $I_{t}=I_{x x}$.

- Solving the heat equation is equivalent to convolution.
- Convolution is a local averaging operation.
- Averaging is bounded by the values being averaged.

Maximum Principle

For the Perona-Malik equation

$$
\frac{\partial I}{\partial t}=c(x, y, t) \nabla^{2} I+\nabla c \cdot \nabla I
$$

Note that at local minima $\nabla I=\mathbf{0}$ and we are evolving by the original heat equation.
It can be shown that this general class of PDEs obeys the maximum principle.
We will also inspect a maximum principle for the discretized equations.

Edge Enhancement

Inhomogeneous diffusion may actually enhance edges, for a certain choice of $c(x, y, t)$.

1D example:

Let $s(x)=\frac{\partial I}{\partial x}$, and $\phi(s)=g(s) s=g\left(I_{x}\right) I_{x}$.
The 1D heat equation becomes

$$
\begin{aligned}
I_{t}=\frac{\partial}{\partial x}\left(g\left(I_{x}\right) I_{x}\right) & =\frac{\partial}{\partial x} \phi(s) \\
\text { by chain rule } & =\frac{\partial \phi}{\partial s} \frac{\partial s}{\partial x} \\
& =\phi^{\prime}(s) I_{x x}
\end{aligned}
$$

Edge Enhancement

We are interested in the rate of change of edge slope with respect to time.

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(I_{x}\right) & =\frac{\partial}{\partial x}\left(I_{t}\right) \text { if I is smooth } \\
& =\frac{\partial}{\partial x}\left(\phi^{\prime}(s) I_{x x}\right) \\
& =\phi^{\prime \prime}(s) I_{x x}^{2}+\phi^{\prime}(s) I_{x x x}
\end{aligned}
$$

Edge Enhancement

$I, I_{x}, I_{x x}, I_{x x x}$

$$
\frac{\partial}{\partial t}\left(I_{x}\right)=\phi^{\prime \prime}(s) I_{x x}^{2}+\phi^{\prime}(s) I_{x x x}
$$

For a step edge with $I_{x}>0$ look at the inflection point, p.
Observe that $I_{x x}(p)=0$, and $I_{x x x}(p)<0$.

$$
\frac{\partial}{\partial t}\left(I_{x}\right)(p)=\phi^{\prime}(s) I_{x x x}(p)
$$

The sign of this quantity depends only on $\phi^{\prime}(s)$.

Edge Enhancement

At the inflection point:

$$
\frac{\partial}{\partial t}\left(I_{x}\right)(p)=\phi^{\prime}(s) I_{x x x}(p)
$$

- If $\phi^{\prime}(s)>0$, then $\frac{\partial}{\partial t}\left(I_{x}\right)(p)<0$ (slope is decreasing).
- If $\phi^{\prime}(s)<0$, then $\frac{\partial}{\partial t}\left(I_{x}\right)(p)>0$ (slope is increasing).

Since $\phi(s)=g(s) s$, selecting the function $g(s)$ determines which edges of smoothed and which are sharpened.

Properties of inhomogeneous diffusion

The function g()

Perona and Malik suggest two possible functions

$$
\begin{gathered}
g(|\nabla I|)=e^{-\left(\frac{\|\nabla\| \|}{K}\right)^{2}} \\
g(|\nabla \||)=\frac{1}{1+\left(\frac{\|\nabla\| \|}{K}\right)^{1+\alpha}} \quad(\alpha>0)
\end{gathered}
$$

We will continue to discuss the Perona-Malik paper, looking at parameter setting and implementation details.

