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Discretization

Recall : The heat equation




Discretization

Recall : Numerical Derivatives

First order forward difference:
I"(Xo) =~ (X0 + 1) — 1(Xo)

v

First order backward difference:

I"(x0) = I(x0) — I(x0 — 1)

N

Second order, second centered difference:

1”(x0) = 1(Xg + 1) — 21(Xg) + 1(Xo — 1)




Discretization

Discretized 1D Heat Equation : Explicit

Using the forward difference in time we get

Explicit formulation

b =+ 00 — 20 + 1)

Explicit : Update I' using derivatives computed at time t.
Form a vector, w of image values, so that w; = I(i)



Discretization

Discretized 1D Heat Equation : Explicit

We can rewrite the discretized heat equation as the system of
linear equations:

wh
i—

wito = [5,1 - 24,0 { w! ]

Wi

This is equivalent to

Wiz—z
Wi_q

wit? =10,6,1 - 26,8,0] | wf
Wit+1
Wito

We can continue padding the row vector of coefficients with O
entries until...



Discretization

Discretized 1D Heat Equation : Explicit

wit = [0,...,0,0,1—26,6,0,...,0w"
= ath

Where (1 — 26) is in the i-th column, since it multiplies w/.



Discretization

Discretized 1D Heat Equation : Explicit

wit = [0,...,0,4,1—26,4,0,...,0w"

= ath
Where (1 — 26) is in the i-th column, since it multiplies w/.

We can write the whole system of equations by forming a
matrix A whose i-th row is a;

wil = Aawt

A is a tridiagonal matrix.



Discretization

Discretized 2D Heat Equation : Explicit

Recall the 2D heat equation
oA P
ot ox2 = gy?

Using the forward difference in time we get

Explicit formulation

1)
IH_ Ity+5(|X+1y 4l y+lx 1y+|xy+1+|xy 1)

Update It using derivatives computed at time t.



Discretization

Discretized 2D Heat Equation : Implicit

Recall the heat equation
oA P
ot ox2 = gy?

Using the backward difference in time we get

Explicit formulation

t+6 _ gt t+4d t+9 t+4 t+48 t+4d
Ly =lxy + 5(|x+1,y -4, + Ix_l’y + IX,erl + vay_l)

Implicit : Update I' using derivatives computed at time t + .



Discretization
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Mapping the image to a vector

2D image indices to 1D image index

Map 2d coordinates of I(x,y)

(0,0) | (1,0) | (2,0)
(0,1) | (1,1) | (2,1)
(0,2) | (1,2) | (2,2)

to 1d coordinates of w(i)

2158

The coordinate transformation is given by

i(X,y)=nx+y

for an n x n image.



Discretization
000

Mapping the image to a vector

Writing central differences in 1D vector form

For the coordinate transformation function

i(X,y)=nx+y

@ Ifl(x,y) — w(i), thenl(x,y +1) —



Discretization
000

Mapping the image to a vector

Writing central differences in 1D vector form

For the coordinate transformation function

i(X,y)=nx+y

@ IfI(x,y) — w(i), then I(x,y + 1) — w(i + 1), since
ixX,y+1)=nx+y+1=i(x,y)+1.



Discretization
000

Mapping the image to a vector

Writing central differences in 1D vector form

For the coordinate transformation function

i(X,y)=nx+y

@ IfI(x,y) — w(i), then I(x,y + 1) — w(i + 1), since
ixX,y+1)=nx+y+1=i(x,y)+1.
e Ifl(x,y) —w(i), thenl(x +1,y) —



Discretization
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Mapping the image to a vector

Writing central differences in 1D vector form

For the coordinate transformation function

i(X,y)=nx+y

@ Ifl(x,y) — w(i), thenI(x,y +1) — w(i + 1), since
ixX,y+1)=nx+y+1=i(x,y)+1.

@ IfI(x,y) — w(i), thenl(x +1,y) — w(i 4+ n), since
ix+1ly)=n(x+1)+y=i(x,y)+n.



Discretization
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Mapping the image to a vector

Writing central differences in 1D vector form

For the coordinate transformation function

i(X,y)=nx+y

@ Ifl(x,y) — w(i), thenI(x,y +1) — w(i + 1), since
ixX,y+1)=nx+y+1=i(x,y)+1.

@ IfI(x,y) — w(i), thenl(x +1,y) — w(i 4+ n), since
ix+1ly)=n(x+1)+y=i(x,y)+n.



Discretization
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Mapping the image to a vector

Writing central differences in 1D vector form

For the coordinate transformation function
i(X,y)=nx+y
So,

012

—(X,Y) I(x,y +1) —2I(x,y) +I(x,y — 1)

Q

~ w(i+1)—2w(i)+w(i —1)



Discretization
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Mapping the image to a vector

Writing central differences in 1D vector form

For the coordinate transformation function

So,

and

i(X,y)=nx+y

2

gylz(x,y) ~ I(x,y +1)=2I(x,y)+1(x,y — 1)
~ w(i+1)—2w(i)+w(i —1)

012

H2Y) = I+ Lly) =21 y) +1(x - 1y)

w(i+n)—2w(i)+w(i —n)

%
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Mapping the image to a vector

Writing difference equations in matrix form

The implicit formulation of the heat equation involves solving n?

simultaneous equations:

t e t+o 40 | w0 | w0 | 6
Wi =W (W — AW+ w T Wi 4w

What to do when w(i + 1) or w(i & n) falls outside the image

t+48
Wi—n

t+6
wi_%
Wit+
t+s
Wit1

t+5

Wi+n




Discretization
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Boundary Conditions

Constant Boundary Value

(x<0)or(x >n)—1I(x)=c
Forc =0:
: k(0 & —2(0) +1()

x=0 X=n



Discretization
000

Boundary Conditions

Constant Boundary Slope

1(x)

1 Fixing the slope at zero
(adiabatic) gives

(x <0) = 1(x)=1(0)
(x >n) —I(x)=1(n)

lyx (0) = —1(0) + 1(1)

x=0 X=n



Discretization
00®0

Boundary Conditions

Periodic Boundary Conditions

1(x)

(x <0) = I(x) =I(x+n)
(x>n)—=I(xX)=I1(x—n)

le (0) = I(n — 1) — 21(0) +1(1)




Discretization
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Boundary Conditions

Reflective Boundary Conditions

1(x)

(x <0) —I(x)
(x >n)—1(x)

1(—x)
[(2n — x)

Lo (0) & —21(0) + 21(1)




Discretization
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Stability

Stability of the explicit 1D heat equation

The 1D heat equation, Iy = Iy, has solution I(x,t) = et cos(x).
This corresponds to the problem with initial condition

[(x,0) = cos(x).

Discretize only in time (forward)

Observe that Iy (X,t) = —e~'cos(x) = —I(x,t)

|t+5 _ |t

It
0

e




Discretization
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Stability

Convergence criterion : ratio test

The sequence I is convergent if
|t+6

It <1

The explicit equation we formed earlier

|t+§ — It _ 5|t

has convergence criterion

|t+6
=1-4l<1

|t

This is satisfied for 0 < § < 2. (Only conditionally convergent.)



Discretization
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Stability

Stability of the implicit 1D heat equation

Discretize only in time (backward)

|t+§ It

— _|t+5

J

|t+5 — It 6|t+5

The implicit equation has convergence criterion

|t+5

1
I _‘1+5'<1

This is satisfied for § > 0.
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Stability

Stability

In general, it can be shown that
@ Explicit methods are conditionally stable.
@ Implicit methods are unconditionally stable.
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Perona-Malik
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Introduction

Scale-space

The need for multiscale image representations: Details in
images should only exist over certain ranges of scale.




Perona-Malik
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Introduction

Scale-space

Definition: a family of images, I(x,y,t), where
@ The scale-space parameter is t.
@ I(x,y,0) is the original image.
@ Increasing t corresponds to coarser resolutions.

I(x,y,t) can be generated by convolving with wider Gaussian
kernels as t increases, or equivalently, by solving the heat
equation.
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Introduction

Earlier Scale-space properties

@ Causality: coarse details are "caused” by fine details.
@ New details should not arise in coarse scale images.
@ Smoothing should be homogeneous and isotropic.

This paper will challenge the last property, and propose a more
useful scale-space definition.

The new scale-space will be shown to obey the causality
property.
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Weaknesses of the standard scale-space paradigm

Lost Edge Information

@ Edge location is not preserved across the scale space.
@ Edge crossings may disappear.
@ Region boundaries are blurred.

Gaussian blurring is a local averaging operation. It does not
respect natural boundaries.



Perona-Malik
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Weaknesses of the standard scale-space paradigm

Linear Scale Space

Def: Scale spaces generated by a linear filtering operation.
@ Nonlinear filters, such as the median filter, can be used to
generate scale-space images.

@ Many nonlinear filters violate one of the scale-space
conditions.



Perona-Malik
folel }
Weaknesses of the standard scale-space paradigm

New Criteria

@ Causality.
@ Immediate localization : edge locations remain fixed.

@ Piecewise Smoothing : permit discontinuities at
boundaries.

At all scales the image will consist of smooth regions
separated by boundaries (edges).
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Inhomogeneous diffusion

Diffusion equation

ol .
N div(c(x,y,t)VI)

The diffusion coefficient, c(x,y,t) controls the degree of
smoothing at each pointin I.

The basic idea:

Setting c(X,y,t) = 0 at region boundaries, and c(x,y,t) =1 at
region interior will encourage intraregion smoothing, and
discourage interregion smoothing.
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000

Inhomogeneous diffusion

Diffusion equation

By the chain rule:

o cxy,t)d
a - d'“(c(xjy,t)g;
ac o1 21 dc ol o

= Oxox +C(X7y7t)W + oy ay +C(X»y,t)W

= c(x,y,t)V?l+ Ve - VI

The paper uses the symbol A to represent the Laplacian.
Al = V21 = div(VI)
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Inhomogeneous diffusion

Conduction coefficient

What properties would he like c(x,y,t) to have?
@ c = 1 at interior of a region.
@ ¢ = 0 at boundary of a region.
@ c should be nonnegative everywhere.

Since c(x,y,t) depends on edge information, we need an edge
descriptor, E(X,y,t), to compute c.

When written as a function of the edge descriptor, the authors
use the symbol g() for conduction coefficient.
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Inhomogeneous diffusion

Edge Estimate (or Edge Descriptor)

E(x,y,t) should convey the following information:
@ Location.
@ Magnitude (contrast across edge).
@ Direction.
and obey the following properties:
@ E(x,y,t) =0 at region interior.
@ E(x,y,t) =Ke(x,y,t) at region boundaries.

K is the contrast, e(x,y,t) is perpendicular to the edge.
VI(x,y,t) has these properties, and is a useful edge estimator.
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Properties of inhomogeneous diffusion

Maximum Principle

@ The maximum and minimum intensities in the scale-space
image 1(x,y,t) occur att = O (the finest scale image).

@ Since new maxima and minima correspond to new image
features, the causality requirement of scale-space can
satisfied if the evolution equation obeys the maximum
principle.

@ We will make some less rigorous observations concerning
causality...
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Properties of inhomogeneous diffusion

Maximum Principle

For the 1D heat equation : |y = Iy.

1(x) 1(x) —\/v 1(x) %

X X X

@ Solving the heat equation is equivalent to convolution.
@ Convolution is a local averaging operation.
@ Averaging is bounded by the values being averaged.
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Properties of inhomogeneous diffusion

Maximum Principle

For the Perona-Malik equation

n_
ot

(x,y,t)V2l + Vc - VI

Note that at local minima VI = 0 and we are evolving by the
original heat equation.

It can be shown that this general class of PDEs obeys the
maximum principle.

We will also inspect a maximum principle for the discretized
equations.



Perona-Malik
fo)

Properties of inhomogeneous diffusion

Edge Enhancement

Inhomogeneous diffusion may actually enhance edges, for a
certain choice of c(x,y,t).

1D example:

Lets(x) = &5, and ¢(s) = g(s)s = g(Ix)lx.

The 1D heat equation becomes

0 0
ly = 87(9(|x)|x) = 87¢(S)
e 0008
by chain rule = 95 Ix

= ¢'(s)lk



Properties of inhomogeneous diffusion

Edge Enhancement

We are interested in the rate of change of edge slope with
respect to time.

gt(IX) = E)a)((lt) if I is smooth
9 4
= ax(¢(5)|XX)

= ¢"(s)l5 + ()b

Perona-Malik

fo]
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Properties of inhomogeneous diffusion

Edge Enhancement

0

§(|X) = ()l + ¢/ (5)hoe

For a step edge with Iy > 0 look at the
inflection point, p.

Observe that Iy« (p) = 0, and Iy (p) < O.

0 /
a(lxxp) = ¢'(s)hox (P)

The sign of this quantity depends only on
¢'(s).

T

|7 IX7 IXX7 IXXX
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Properties of inhomogeneous diffusion

Edge Enhancement

At the inflection point:

0 /
a('xxp) = ¢'(s)hox (P)

@ If ¢'(s) > 0, then %(IX)(p) < 0 (slope is decreasing).
@ If ¢'(s) <O, then %(IX)(p) > 0 (slope is increasing).

Since ¢(s) = g(s)s, selecting the function g(s) determines
which edges of smoothed and which are sharpened.
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Properties of inhomogeneous diffusion

The function g()

Perona and Malik suggest two possible functions

g(vI)) =e &

g(IVI|) = 1+||—a
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Next Class

We will continue to discuss the Perona-Malik paper, looking at
parameter setting and implementation details.
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