
Mutual Information for Image Registration (Notes G. Gerig)

Excellent descriptions of applications can be found in the following papers [1, 2]. The theory is
explained in the textbook [3].
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General Definition

Entropy and joint entropy of a random variable x:

h(x) = −
∫

p(x) ln p(x)dx

h(x, y) = −
∫ ∫

p(x, y) ln p(x, y) dxdy

Entropy can be interpreted as a measure of uncertainty, variability, and complexity.

Mutual information:

I(x, y) = h(x) + h(y)− h(x, y)

Application: Registration of two volume datasets

We follow the notation of [2]:

I(u(x), v(T (x)) = h(u(x)) + h(v(T (x)))− h(u(x), v(T (x)))

where the volume of the reference volume is denoted as u(x) and the volume of the test volume
as v(x). T is a transformation from the coordinate frame of the reference volume to the test
volume and x the coordinates of the voxel.

The mutual information can be explained as follows (citing [2]): The mutual information defined
in the equation above has three components. The first term on the right is the entropy in the
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reference volume. The second term is the entropy of the part of the test volume into which
the reference volume projects. It encourages transformations that project u into complex parts
of v. The third term, the (negative) joint entropy of u and v, contributes when u and v are
functionally related. The negative joint entropy encourages transformations where u explains v
well. Together the last two terms identify transformations that find complexity and explain it
well. This is the essence of mutual information.

Binary Case

Entropy

The pixels of a binary segmentation results have two states of nature, i.e. 0 or 1. The probabilities
of a pixel x to be 0 or 1 and the binary entropy can be expressed as follows:

PX(0) = p

PX(1) = 1− p

H(X) = −(p log2(p) + (1− p) log2(1− p)) = h(p)

The binary entropy is 0 for p = 0 and p = 1 and has a maximum for p=0.5. The entropy H(X)
explains how many bits per pixel are needed to describe the image, if p is estimated over the
whole image.

Mutual Entropy

One could calculate an entropy measure between a pair of binary images to tell how much
information is given by one image to describe a second one, for example to compare the similarity
of two segmentation results.

H(X|y = 0) = H(
P (x = 1|y = 0)

P (y = 0)
)

H(X|y = 1) = H(
P (x = 1|y = 1)

P (y = 1)
)

H(X, Y ) = P (y = 0) ∗H(X|y = 0) + P (y = 1) ∗H(X|y = 1)

I(X, Y ) = H(X) + H(Y )−H(X, Y )

The mutual entropy I(X, Y ) expresses the amount of information given by image Y on image
X. A value of 1.0 would reflect perfect agreement and 0.0 complete disagreement between the
two images X and Y .
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